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configurations. It is shown that these filters are valuable for real-time 
image and video coding and are very easy to implement on VLSI. 

It should be emphasized that the codec structures implemented 
here did not have any visually justified fine tuning, Q-tables, etc., 
in bit allocation or in quantization steps, in order to obtain an 
unbiased performance comparison of different filter banks and block 
transforms. Therefore, the image coding performance presented in this 
correspondence is not competitive with the state-of-the-art solutions 
available in the literature. This tuning step is a topic of future study. 

VI. CONCLUSIONS 
It is shown in this correspondence that two-band multiplierless 

suboptimal PR-QMF solutions exist. Their objective and subjective 
performance in subband image coding are comparable or better than 
known subband- and DCT-based codecs for the scenarios considered. 
The multiplierless PR-QMF’s are expected to be used in real-time 
image and video processing and coding. 
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Artifact Reduction in Low Bit Rate 
DCT-Based Image Compression 

Jiebo Luo, Chang Wen Chen, Kevin J. Parker, and Thomas S. Huang 

Abstract-This correspondence presents a scheme for artifact reduction 
of low bit rate discrete-cosine-transform-compressed (DCT-compressed) 
images. First, the DC coefficients are calibrated using gradient continu- 
ity constraints. Then, an improved Huber-Markov-random-field-based 
(HMRF-based) smoothing is applied. The constrained optimization is im- 
plemented by the iterative conditional mode (ICM). Final reconstructions 
of typical images with improvements in both visual quality and peak 
signal-to-noise ratio (PSNR) are also shown. 

1. INTRODUCTION 

Discrete-cosine-transform-based (DCT-based) compression has 
been the most popular among many existing image compression 
techniques. The DCT has very good energy compaction and 
decorrelation properties. Moreover, the DCT can be computed using 
fast algorithms and efficiently implemented using very large scale 
integration (VLSI) techniques. In DCT-based coding, an image 
is partitioned into small square blocks (typically 8x8)  and the 
DCT is computed over these blocks to remove the local spatial 
correlation. In order to achieve high compression, quantization of 
the DCT coefficients is then performed [l], [2]. Quantization is an 
irreversible process that causes loss of information and distortions in 
the decompressed image. After quantization, the redundancy of the 
data is further reduced using entropy coding. At the decoder end, 
the received data is decoded, dequantized, and reconstructed by the 
inverse DCT. In general, a typical 8-b gray-level image can be coded 
with compression ratios up to 10 : 1 without noticeable artifacts. 

However, at low bit rates the reconstructed images generally 
suffer from visually annoying artifacts as a result of very coarse 
quantization. One major such artifact is the blocking effect, which 
appears as artificial block boundaries between adjacent blocks. At 
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Fig. 1. Illustration of the gradient continuity constraint 

a low bit rate, each block is represented mainly by the first few 
low-frequency coefficients and, since each block is processed in- 
dependently, no interblock correlation is accounted for in standard 
block DCT-based coding schemes. Therefore, discontinuity across 
the block boundary becomes noticeable. There are many techniques 
developed to reduce the blocking effect. Some increase the bit 
rate substantially or change the coding and decoding procedure 
dramatically [3], or even give rise to other artifacts such as the 
ringing effect [4]. In general, postprocessing at the decoder side 
only is very much desired because it causes the least change to 
the overall compression and transmission scheme. Postprocessing 
is generally implemented as image filtering-either linear filtering 
[3] or more sophisticated nonlinear filtering [5]. To preserve the 
edges, edge segments in the compressed image may be estimated 
before smoothing [SI, [6]. However, it is very hard to accurately 
differentiate true edges from the artifacts at low bit rates. Some 
techniques formulate the blocking effect removal as image restoration 
problems [7] ,  [8]. A Huber-Markov random field (HMW) model 
was first introduced in [9] to form a maximum a posteriori (MAP) 
estimation of the decompressed image. Another type of artifact is 
the ringing effect, which is caused by the loss of high-frequency 
coefficients and appears as ringing patterns around sharp edges. The 
ringing effect is particularly prominent in images that are of high 
contrast and contain sharp edges and thin structures, such as document 
images. In order not to blur these images, edge-preserving nonlinear 
filtering is desired. However, there has been little investigation on 
this aspect until recently [lo]. The ability to reduce both types of 
artifacts is especially valuable at low bit rates. 

The DC coefficients are of particular importance at low bit rates, 
where many high-frequency coefficients are discarded and the coarse 
quantization of the DC coefficients generally causes the reference 
level of each block to vary within a relatively large quantization 
interval. Therefore, the calibration of the reference level of a block is 
very much desired before we apply viable smoothing techniques to 
the image. Otherwise, an improvement in image quality, especially in 
terms of PSNR, cannot be achieved, even though a visually pleasing 
image may be produced by smoothing the artificial block boundaries. 

We propose a two-step approach to the artifact-reduction problem. 
First, a DC calibration is performed in a block-by-block fashion 
based on gradient continuity constraints over the block boundaries. 
Then, a modified Huber-Markov random field model i s  employed 
to formulate a convex constrained restoration problem. A similar 

0 Anchor block location 

Fig. 2. Anchor blocks and the double spiral scan. 

technique has been shown able to smooth the artificial discontinuities 
[9] while preserving the remaining details of the original image. We 
make two very important modifications to this technique [9]. First, 
we designate two Huber-Markov random field models in order to 
differentiate the pixels on the block boundary from those inside the 
block. This allows the artifacts along the block boundaries to be 
smoothed and the details inside the block to be preserved. Second, and 
more important, we apply a different local optimization technique, the 
iterative conditional mode (ICM) [ 111, to implement the smoothing 
algorithms so that the localized spatial constraints can be accurately 
enforced. 

Throughout the following sections, uppercase letters are used to 
denote random variables and lowercase letters for the corresponding 
realizations. A random field X will be defined on a set of sites S, 
i.e., a set of A T  x Npoints. X, E R denotes a pixel at site s. Bold 
uppercase letters denote matrixes or transformations. 

11. MAP ESTIMATION 

Bayesian estimation is a frequently employed approach to ill-posed 
inverse problems by incorporating the a priori probability of the 
random field X [12]. Maximum a posteriori (MAP) estimation has 
been very powerful given the observed data Y and a reasonable a 
priori distribution p ( X ) .  A MAP-based estimation that maximizes 
the a posteriori probability can generally be written as 

P = argmaxp(z1y) 
X 

The optimization can be conveniently rewritten using the Bayes' rule 
and the log-likelihood function 

(2) 

In the case of restoring a decompressed image, p ( z )  is the a priori 
probability of the two-dimensional (2-D) random field X and p ( y l z )  
represents the conditional probability of the compressed Y given the 
original image X .  

2 = argmax(logp(y1z) + logp(z)}. X 

A. Image Prior Model 

Markov random fields have been utilized to model images in many 
image processing applications, and are adopted to model the a priori 
probability p ( z )  in (2). As was proved by the Hammersley-Clifford 
Theorem 1121, there exists an equivalence between a Markov random 
field and a Gibbs random field. A Gibbs random field is characterized 
by a Gibbs distribution, which provides a simple and practical way 
of parameterizing MFWs by potential functions, instead of the local 
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Fig. 3. Illustrations of artifacts reduction. Top left: original Lena image. 
Top right: standard decompression. Bottom left: ICM without DC calibration. 
Bottom right: ICM with DC calibration. 

Fig. 4. Illustrations of artifacts reduction. Top left: original Peppers image. 
Top right: standard decompression. Bottom left: ICM without DC calibration. 
Bottom right: ICM with DC calibration. 

characteristics of the random field. A general form of the Gibbs 
distribution can be written as 

(3) 

where 2 is a normalization constant and V, is a certain clique 
potential function for clique e. Clique c is a local group of pixels, 
while C is the set of all such local groups. The neighborhood of a 
pixel at site s is denoted by ds C S where S is the set of all sites. 
If c is defined such that Vs, r E c, s and r are neighbors, then the 

clique has the property that 

Vs , r  E S, s # d s , r  E as u s E dr.  (4) 

Moreover, the essential property of an MRF 

means that the conditional probability depends only on the neighbor- 
hood constraints. This property facilitates the ICM implementation 
described in Section IV. 

Stevenson [9] has investigated a type of convex function known 
as the Huber minimax function, as follows: 

as a suitable potential function for the Gibbs distribution. The 
quadratic segment of the function imposes least-mean-square smooth- 
ing to small discontinuities A of magnitude smaller than T .  However, 
for A greater than T,  the linear segment of the function imposes a 
much lighter penalty and preserves sharp transitions such as edges. 
Note that since this function belongs to C1, its first derivative is 
continuous so that unnatural results are unlikely to occur. An MRF 
characterized by a Huber function is an HMRF. The parameter T 
controls not only the threshold to switch between the quadratic 
segment and the linear segment, but also the slope of the linear 
segment. Therefore, it plays a crucial role in determining the behavior 
of the HMRF. 

We modify the HMRF model to suit this particular application 
where we need to differentiate the true image edges from the 
artifacts. A single value of T is clearly inadequate to describe all the 
discontinuities, and in particular, is unable to differentiate true image 
edges from artifacts. Since the mechanism that generates the artifacts, 
and the locations of the blocking artifact, are known in DCT-based 
coding, we can incorporate such information to improve the HMRF 
model for this specific application. The discontinuities inside each 
image block are produced in a different way from those along the 
block boundaries. Inside the block, the distortions are caused by the 
quantization and the truncation of high frequency components. Along 
the block boundaries, further distortions are introduced because no 
correlation is exploited across the boundaries. The artificial block 
boundaries can be considered as some extra high frequency energy [7] 
and hence require additional smoothing. Therefore, these two types 
of discontinuities should be handled separately. In this research, a 
relatively larger parameter value of T = T1 is employed in the local 
HMRF model for those pixels in the boundary regions in order to 
smooth the artifacts, while a moderate value of T = T2 is applied 
to the inner block regions. 

B. Image Compression Model 

A class of lossy transform image coding can be modeled as 

Y = Q[H(X)I (7) 

where X is the original image, H stands for certain transform, &[.I 
is a designated quantization operation (scalar or vector), and Y is the 
lossy image representation. In DCT-based coding, H is the DCT, &[.I 
is a scalar quantization, and Y consists of the quantized coefficients 
that generally need fewer bits to represent. Since &[.I is a noiseless 
many-to-one mapping, the conditional probability P(Y IX) can be 
written as 

Because the human visual system is relatively insensitive to high- 
frequency energy, zonal sampling is often adopted so that only 
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Fig. 5. 
calibration. Bottom left: ICM with DC calibration. All images shown here are magnified by a factor of two. 

Illustrations of artifacts reduction. Top left: original Resolution Chart image. Top right: standard decompression. Bottom right: ICM without DC 

the coefficients in a specified low-frequency zone are uniformly in the following way: 
quantized, while the out-of-zone high-frequency coefficients are dis- 
carded [2]. Such a zonal sampling-based quantization scheme will be 
implemented in our experiments. Other quantization schemes can be 
found in 111 and 171. _ _  

in order to force the updated coefficient into the original quantization - -  
interval [d,, d,+l].  The projected image is then obtained by taking the 
inverse block DCT. Because the Huber function is convex, a convex 
constrained restoration problem is formed, and its convergence is 
guaranteed. TO Overcome the limitation of the basic MAP restoration 
in which the reference level errors of the whole block cannot 

C. Formulation of the MAP Estimation 

probability given in (S), can be substituted in (2) f o r d z )  andJJ(Y lx), 
respectively. The optimization is then derived as 

The modified based On ( 6 )  and the 

be corrected, we propose to perform a DC calibration prior to 
the application of the MAP restoration. Moreover, both the DC 
calibration and the MAP restoration will be implemented using the 

X = arg min v ~ ( x )  
XtX 

C E C  

= arg min ' 1 p ( z m ,  - z k i )  (9) ICM. 
X E X  

m,n k,lEc,, 

where cmn is an 8-pixel neighborhood system of the current pixel at 
(m,n) ,  and X is the constraint space 

111. DC CALIBRATION 
The DC coefficients are of particular importance at low bit rates 

because they serve as the reference levels for all the pixels within each 
block, including the pixels along the block boundaries. Without prior 
DC calibration, subsequent processing such as the MAP restoration 
may result in further distortion beyond the original quantization 
errors, although the quantization errors may still be within the 
constrained ranges. As indicated by (ll), the error range expands 

X = { X :  y = Q [ H ( X ) ] } .  (10) 

The MAP estimation produces a smoothed update of the decom- 
pressed image. Such an estimation is then projected back to the 
constraint space X .  The projection is done in the transform domain 
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to the whole quantization interval in the constrained restoration, 
as opposed to half of the interval during the original quantization. 
The uncertainty is doubled, since the projected coefficient may 
jump to the other half of the quantization interval level than where 
the original coefficient resides. This is more serious when the 
quantization intervals are often very large at low bit rates. Therefore, 
a smoothing technique cannot be expected to substantially improve 
the fidelity of the reconstruction in terms of PSNR, even though a 
visually pleasant image can be produced. 

The primary constraint in the DC calibration comes from smooth- 
ness constraints on the transition of the image scene, namely, the 
gradient continuity. This is consistent with the HMRF image prior 
model, which implies the continuity of first derivatives. While the 
intensity continuity [8] imposes desired constraints in flat regions, 
gradient continuity constraint is a logical choice for both flat regions 
and slowly varying regions. We impose smoothness constraints on 
the gradient components perpendicular to the block boundary. The 
mean square difference between the gradient components and their 
estimates is minimized along the block boundaries subject to the 
constraints from the received data. As illustrated in Fig. 1, the 
gradient-continuity constraint avoids the possible overadjustment in 
a ramp region when the intensity-continuity constraint is enforced. 
The constrained DC estimation is given as 

where D denotes the vector of all DC coefficients and D is the 
constraint space given by 

V = { D :  Q[D]  = D and D is the quantized DC}. (13) 

gs is the gradient at a boundary site s of the block B,, and ijs is its 
estimation (see Fig. 1). Here, dB,, denotes the set of all boundary 
points of the block Bmn. 

To improve the efficiency of the DC calibration, we select a few 
anchor blocks to impose additional constraints. These anchor blocks 
serve as the controlling points and their DC coefficients are losslessly 
coded. In general, human attention tends to be in the center of the 
picture. For the same reason, the region-of-interest is, in many cases, 
in the center of various visual products such as painting, drawing, 
photo, film, and video. One natural layout of the anchor blocks 
reflecting human attention is illustrated in Fig. 2. It is true that the best 
choice of the anchor blocks would be scene-dependent. However, the 
criterion for such a choice is not clear without a priori knowledge of 
the image contents. A constraint on maintaining the same dynamic 
range is also enforced in the DC calibration. The particular layout 
of the anchor blocks facilitates a double spiral scan in the DC 
calibration, which starts from two central blocks to maximize the 
constraints between the current block and neighboring anchor blocks 
(or updated blocks). At the center of the image, the greater density 
of anchor blocks imposes stronger constraints, which decrease as the 
calibration spirals out. The anchor blocks also serve as resetting points 
to prevent error propagating. Note that the anchor blocks are located 
at the turning points of the spirals. 

IV. OPTIMIZATION TECHNIQUE 
The optimization technique is critical to the iterative solution of 

a constrained problem. A good optimization should be not only 
computationally efficient but also capable of converging to a desirable 
solution. An appropriate optimization technique should be carefully 
selected according to the nature of the problem. In this research, 
the local characteristics of an image are combined with the given 
compressed data to construct a MAP estimation of the original image. 
As discussed by Besag [ 111, certain large-scale characteristics of the 

imodel are often induced in choosing a nondegenerate field to describe 
1 he local properties of the scene. In general, the Markov random field 
imay exhibit positive correlations over arbitrarily large distances in the 
iterative process so that adjacent pixels are very likely to be of same 
color or intensity. Therefore, in addition to computational efficiency, 
it is also a major concern to avoid such large-scale characteristics. 

Some optimization techniques may lead to undesired computation 
or convergence difficulties. Simulated annealing [ 121, while it can 
guarantee the convergence to the global optimum, is computationally 
demanding and therefore impractical. Gradient descent [ 121 used in 
191, is less computationally demanding, but it often converges to some 
local optimum of the objective function. Both methods are global 
optimization techniques, so that the reconstruction may suffer from 
some undesired large-scale properties of the random field due to the 
simultaneous optimization of the objective function. 

ICM [ 111 is a computationally inexpensive local optimization 
technique, and is invulnerable to the large-scale characteristics. It 
was first proposed as an approximation to the Bayesian estimation 
that has overall maximum probability and later established itself 
as a distinctive optimization method that yields an estimation that 
has maximum probability at each individual pixel. A single cycle of 
the ICM only requires the successive minimization of the objective 
function at each pixel. Note that each pixel has only a few neighbors, 
and the dependence of the estimation on only the local characteristics 
is ensured by the rapid convergence of the ICM [l 11, typically within 
ten iterations. Therefore, the interference between pixels is limited 
and the undesired large-scale effects, such as oversmoothing, are 
minimized. With ICM implementations, we not only speed up the 
convergence, but, more important, we are able to obtain a better 
MAP estimation under the original assumption of a localized MRF. 

v. EXPERIMENTS AND DISCUSSIONS 

We use 256x256 images in our experiments because images are 
often of relatively small sizes in low-bit-rate applications. Group 

L includes typical gray-scale images Lena, Peppers, USC Girl, and 
I3oats to verify the reduction of the blocking artifact. Group 2 includes 
it document image “text” and a standard test image “resolution 
chart” to verify the reduction of the ringing artifact. Table I shows 
the bit rate and the corresponding PSNR for each test image. The 
proposed approach improves PSNR significantly in both groups. The 
I’SNR improvements for Group 1 images range from 0.7 dB to 
over 1.0 dB, and those for Group 2 images range from 3.0 to 4.5 
dB. PSNR improvement is especially valuable at low bit rates and 
often represents improved visual quality, as shown in Figs. 3-5. Note 
that the PSNR actually drops without DC calibration in the most 
challenging case of the Boats image (indicated by * in Table I). The 
blocking artifact has been substantially reduced in all test images. 
The ringing effect is also effectively reduced, as demonstrated in 
Fig. 5. Notice that the image details are better preserved and the 
reconstructed images are much sharper if DC calibration is employed. 

The additional coding cost of this approach comes from the coding 
of DC coefficients of the anchor blocks. Residues of these DC 
coefficients can be transmitted as a separate sparse image in which 
each block contains only the residue of corresponding DC coefficient 
followed directly by the EOB (end-of-block) sign. The increase in 
bit rate is insignificant (less than 2% in the experiments). Due to the 
ICM implementation, the computational complexity is comparable to 
many existing postprocessing methods. 

VI. CONCLUSION 

Three new aspects contribute to the overall success of the proposed 
approach. First, the DC calibration adjusts the reference level of a 
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TABLE I 
PSNR EVALUATION OF THE RESULTS 

DCC (dB) 

21.61 

27.79 

30.39 

27.41 

block as a whole and results in noticeable additional improvement 
in image quality, especially in terms of PSNR. Second, an improved 
H M W  model is developed to differentiate the artifacts from image 
details. Finally, the ICM implementation is not only computationally 

Differential Block Coding of Bilevel Images 

George R. Robertson, Maurice F. Aburdene, and Richard J. Kozick 

effective but also avoids undesired large-scale effects in enforcing the 
localized image model, conclusion, the proposed scheme is able 
to improve the image quality both subjectively and objectively. 

Abstract- In this correspondence, a simple one-dimensional (1-D) 
differencing operation is applied to bilevel images prior to block coding to 
produce a sparse binary image that can be encoded efficiently using any of 
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a number of well-known techniques. The difference image can be encoded 
more efficiently than the original bilevel image whenever the average 
run length of black pixels in the original image is greater than two. 
Compression is achieved because the correlation between adjacent pixels 
is reduced compared with the original image. The encoding/decoding 
operations are described and compression performance is presented for 
a set of standard bilevel images. 

I. INTRODUCTION 

The storage and/or transmission requirements of binary images are 
proportional to the number of pixels in the image. Two methods 
for reducing these requirements are lossless [1]-[5] and lossy [6] 
compression. Kunt and Johnsen [3] ,  [7], [8] investigated block coding 
methods for image compression. Block coding takes advantage of the 
small number of black pixels relative to the number of white pixels 
by breaking the image into blocks and only coding the blocks that 
contain black pixels. Zeng and Ahmed [I]  and Kavalerchik 121 have 
shown that bilevel images composed of sparse binary patterns can be 
efficiently compressed with block coding. Zeng and Ahmed’s (ZA) 
block coding scheme assumes random binary patterns and achieves 
compression if the density of black pixels is less than 19%. 

References [l], [2] indicate that text documents are not well- 
modeled as sparse, random, binary patterns, but after some decor- 
relation or prediction procedures, they can be well-approximated 
as random, binary patterns. This paper presents a very simple 
decorrelation method for one-dimensional (1 -D) blocks by performing 
differences between adjacent pixel values that can be implemented 
by an EXCLUSIVE-OR gate. General block coding methods can be 
applied to the difference image, such as those of Kunt and Johnsen 
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