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The absorption coefficient of a material can be determined by measuring the heating which occurs 
as a result of ultrasonic irradiation. When narrow focused beams are used to heat a sample, or 
when the available volume of a material is restricted to small dimensions, then the effect of heat 
conduction to surrounding unheated regions becomes significant, complicating the relation 
between measured temperatures and acoustic parameters. In this paper new analytical 
expressions, which account for radial and axial heat flow in a medium, are derived for the case of 
Gaussian-shaped ultrasonic beam patterns in thin or semi-infinite absorbing materials. Solutions 
are given for temperature histories resulting from an ultrasonic impulse {pulse decay method} or a 
step input {rate of heating method}. The use of these equations in absorption measurements is 
discussed, and experimental results are given. These expressions provide flexibility in choice of 
laboratory ultrasonic parameters, and the results are especially useful for many biomedical 
measurements where the volume of tissue available is restricted. 

PACS numbers: 43.80.Ev, 87.80. q- s, 43.35.Yg 

LIST OF SYMBOLS 

I 

k 

K 

amplitude absorption coefficient, Np/cm 
Gaussian variance, cm 2 
specific heat, J/g øC 
error function, erflz}----{2/x/-•}œ• e- t2 dt 
ultrasonic intensity, W/cm 2 
thermal diffusivity, cm2/s 
thermal conductivity, W/cm øC 

P 

T 

PD 

RH 

r,O,z 
x,y• 

density, g/cm 3 
instantaneous thermal point source, ø C-cm 3 
time, seconds 
time, seconds 
temperature, ø C 
subscript denoting pulse decay 
subscript denoting rate of heating 
axes of cylindrical coordinates 
axes of Cartesian coordinates 

INTRODUCTION 

The ultrasonic absorption coefficient of a material can 
be determined by measuring the temperature elevation 
caused by insonation at known frequency and intensity. An 
embedded thermocouple probe can be used to provide in- 
stantaneous temperature readings at a point in the medium. 
The classical approach utilizes a 1-s duration on time at con- 
stant intensity, where the absorption coefficient is deter- 
mined by measuring the slope of temperature during insona- 
tion. 1'2 This rate of heating method presumes that no 
significant heat conduction to surrounding, cooler regions 
takes place during measurement, and therefore the relation 
between temperature slope and absorption is given simply 
form the energy conservation equation: 

dT 
pc • = 2aI. (1) 

dt 

In practice, thermal conduction from an ultrasonically 
heated region can occur along two principle axes. in experi- 
ments where the thermojunction is located at the center of 
the mainlobe, heat will flow radially to regions of lower in- 
tensity which are cooler. Heat can also flow along the axis of 
insonation since the surface of the test sample is usually in 
contact with a coupling medium which is nonabsorbing and 

therefore unheated. Figure 1 depicts a typical experimental 
arrangement using a focused beam, coupling medium, and 
thermocouple embedded in an absorbing material. From 
this figure one can judge qualitatively that the magnitude of 
heat loss in the radial r, and axial z, directions will depend on 
the beamwidth, and thermocouple depth, respectively. Gui- 
delines have been given which relate the radial loss of heat in 
rate of heating measurements to the focal region size, or 
beamwidth. 3 No systematic treatment of the axial flow of 
heat to the sample surface is known by this author. The need 
to minimize heat conduction effects during rate of heating 
measurements places restrictions on sample sizes and ultra- 
sonic beamwidths used in practice. The thermal pulse decay 
method for measuring absorption coefficients was devel- 
oped 4 to explicitly account for beam shape and radial heat 
conduction effects, thereby allowing for the use of arbitrarily 
small, Gaussian shaped focal regions. However, the question 
of heat conduction in the axial direction towards the unheat- 

. 

ed coupling medium was not explicitly addressed in the de- 
velopment of the pulse decay equations. The effects of heat 
transfer to the coupling medium can become prominent, in 
both pulse decay and rate of heating measurements, when 
measurements are performed on thin tissue specimens or or- 
gans from small animals. 

In this paper, the effects of heat conduction to the sur- 
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FIG. 1. Typical experimental configuration using focused ultrasonic beam 
and embedded thermocouple to measure the absorption coefficient. 

rounding, unheated coupling medium are considered for 
both the pulse decay and rate of heating measurements. Ex- 
act analytical expressions are developed which describe the 
temperature history in both pulse decay and rate of heating 
experiments, for any Gaussian shaped beamwidth size, and 
arbitrary sample thickness. Procedurally, exact expressions 
are first developed for the pulse decay curves. These results 
are interpreted as the output of a linear system to an ultra- 
sonic impulse. Then, expressions for rate of heating tempera- 
ture histories are easily obtained by considering this experi- 
ment as eliciting the response of the same linear system to a 
step input. The results are of practical importance in biome- 
dical ultrasound since sample volumes are unavoidably 
small in many experiments using animalStissues. In work on 
human tissue, biopsy samples of millimeter dimensions are 
sometimes available, and the expressions derived in this pa- 
per could permit meaningful absorption measurements to be 
obtained from these restricted volumes, enhancing the ultra- 
sonic characterization of normal and diseased tissue. 

I. THEORY 

A. Radial heat conduction only 

In the pulse decay method, a short burst of ultrasound 
is used to generate an initial temperature elevation in the 
absorbing medium. The intensity distribution is assumed to 
have the Gaussian form: 

I (r) = Ioe- •/• (2) 
and is assumed to have no variation in the axial direction. 

This, of course, precludes any heat transfer in the z direction. 
Within this approximation, the initial excess temperature 
distribution in the material following a short pulse of A t-s 
duration is 

T(r) = To e- •/o, (3) 
where the proportionality between temperature and intensi- 
ty is 

To = 2alozl t /pc. (4) 

The resulting temperature history at any distance r from the 

center of the focal region is given by4: 

/ ) 2aloZlt exp . . . (5) TeD (r,t) = pc[ 1 q- (4kt//• )] (4kt q-/•) 
In practice, the first second of thermocouple reading is 

influenced by the localized "viscous heating" effect. Data 
obtained between 1 and 10 s are compared with Eq. (5) with a 
as the sole unknown coefficient to be determined by least 
squares error curve fitting. 4 

The pulse decay equations can also be used to generate 
analytical expressions for rate of heating curves. Beginning 
with the simplest case, we assume a pulse decay experiment 
is performed where the thermocouple is centered with re- 
spect to the focal region. In that case, r = 0 and the decay 
history is obtained from Eq. (5) as 

TpD(r= O,t ) = 2alozlt/Qac[1 + (4kt//•)]•. (6) 

Ifa rate of heating experiment is next performed, the intensi- 
ty is maintained at a constant value of Io for long durations, 
as opposed to an impulse interval ,4 t. The observed tempera- 
ture can therefore be expressed as the convolution of the 
impulse response of the system, Eq. (6), with a step inputS'6: 

* 2alo dr. (7) T•. ( t ) = pc [ 1 + ( 4kr/tg ) ] 
Evaluating the convolution integral yields: 

T•.{t)= 2aIø In 1 + {8) 
pc /• / 

The above expression indicates that temperature does not, 
strictly speaking, increase linearly with time during rate of 
heating experiments. However, Eq. (8) provides a quantita- 
tive guide to when conduction can be neglected. Using the 
approximation 

ln(1 q-x)•x, forx•l, 
then for short durations such that 

4kt //•< 1, 

Eq. {8} can be rewritten as 

TR.(t )= 2aIø ( 4-•) 4kt -- pc /• 
2a/ot 

pc 

(9) 

(10) 

(11) 

The last expression would also be obtained directly from 
energy conservation, Eq. (1), neglecting heat conduction. 
However, by deriving Eq. (8), the effects of conduction are 
explicitly included as a function of beam shape and time. 

The "viscous heating" effect will add an unknown mag- 
nitude to the thermocouple reading, in practice. The excess 
heating will, however, approach a quasiequilibrium value 
within about 0.3 s in soft materials where small ( < 76/•m 
diam) thermocouple wires are used. 2'3 Therefore, the slope of 
temperature rise measured after 0.3 s can be directly related 
to true absorption and conduction effects using Eqs. (5)-(8) 
and the relations between the impulse response and the step 
response of a linear system. Specifically, the slope of tem- 
perature measured subsequent to 0.3 s is 

•TRfi 2alo 
- . 

•t pc [ 1 + { 4kt //• ) ] 
As expected, the simple relation given by Eq. (1) is obtained 
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for beamwidths and measurements times such that (4kt/ 
.•)<1. 

More generally, when the thermocouple is not centered 
in the focal region, the rate of heating method would give 

8Tm.• 2alo : e -r•/(4kt +•. (13) 
8t pc[ 1 + {4kt 

Equations {12} and {13} remove previous restrictions on the 
use of rate of heating absorption measurements. Beam- 
widths smaller than 3 mm in diameter can be used, and 

placement of the thermocouple at the center of the focal 
region is no longer required. The extension of pulse decay 
and rate of heating measurements to very thin samples re- 
quires additional considerations which are developed below. 

B. Axial heat flow 

In modeling heat flow to the water coupling medium, 
we assume that the effects of convection in the fluid, and 
thermal resistance at the absorber-water interface, are negli- 
gible. Furthermore, we assume that in soft biomaterials with 
large water content, the values of K and k are identical to 
water. Under these conditions, the problem of absorption 
and conduction in a layer of material can be handled in a 
straightforward manner by use of Green's functions. The 
derivation begins with the solution for an instantaneous 
point heat source of strength Q3 liberated at time t = 0 in a 
homogeneous medium, as measured at a distance rs in 
spherical coordinates, 6 

-- •/4kt T(rs,t ) = [Q3/8(rrkt )3/•]e . (14) 

To build up the solution for an ultrasonic impulse, we next 
consider a semi-infinite line source located along the z axis of 
Fig. 2 from z' = 0 to oo. With Q2 as the source strength per 
unit length, the temperature at observation point (xo,Yo,Zo) 
can be written in terms of Eq. (14) using superposition: 

T (Xo,Yo•o,t) 

-- •,• Q• ( - [Xo• + Y•o + (Z' -Zo)•] ) dz - o 8(rrkt }3/: exp . 4kt 

The integration over z' can be expressed in terms of the error 

WATER' k, K 

y'•/ • ABSORBER: k, K,a 

HEAT ...,. ( Xo,Y o ,z o ) SOURCES • 
i 

'Z 

FIG. 2. Geometry of derivations for heating in a semi-infinite medium. 

function 7 

T (xo,Yo•o,t) 

8½rkt ) exp(.--(Xo• +Yo•).)(l+er f Zo ). 4kt • 
(16) 

The error function rises monotonically from 0 at zero argu- 
ment, to 0.84 at unity argument, to 1.0 at infinite argument. 7 
Thus, for small times such that 

t<Zeo/4k (17) 

the error function term is nearly unity; and Eq. {16) would be 
identical to the infinite line case. In other words, Eq. { 17) tells 
how long it takes an observer at depth Zo to "see" the surface 
effects on heat transfer. The derivation proceeds with a su- 
perposition of semi-infinite line sources to form a single cy- 
lindrical shell around the observation point. Thus, line 
sources of strength Q2 - Q•r' dO' are placed at distance r' 
around observation point at Zo. {Here, a cylindrical coordi- 
nate system is used with r' being the distance in the x',y' 
plane from the observation point.) 

r(r' = 0•o,t) 

••'• Q,r' ele,/4kt}(l+er f z o )dO' 
= l+eff Zo . (18) 

Finally, the Gaussian initial temperature distributions 
caused by an impulse of ultrasound centered on the observa- 
tion point is modeled as a supe•osition of appropriately 
weighted cylindrical sources. Hence 

Q•(r') = To e-•/a dr' (19) 

and 

T (r' = O•.o,t ) 

•• r' e -- r•/4kt I = (To e- •2/•). • 1 + err Zo • dr'. (20) o 
Evaluating the integral and designating the result as the 
pulse decay solution with Eq. {4) substituted for To, we have 

TED (r = 0,z,t ) 

= 2aloAt (1 + erf 4_•) ' (21) 2pc[ 1 + (4kt 
where the prime notation on r and subscript on z have been 
dropped to generalize the result. The above equation gives 
the results for a centered pulse decay experiment including 
separable terms which account for heat transfer in the radial 
and axial directions. Note that for small times (or large 
depths) such that the condition on Eq. (17) is satisfied, the 
error function has a value of nearly unity, and Eq. (21) re- 
duces to the case of Eq. (6) where axial heat flow is ignored. 

If the thermocouple were positioned at the center of a 
sample of finite thickness 2Z (as opposed to the semi-infinite 
case), then the upper limit of integration of Eq. (15) would 
change to z'= 2Z. This yields a slightly modified term 
which propagates through the derivation of the pulse decay 
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history. Hence, for finite sample thickness we obtain: 

TpD (r = O,Z,t ) = pc[ 1 + {4kt/tg )] 
Here, the erfl.) term can be interpreted as a separable correc- 
tion function which accounts for the finite sample thickness. 
Generalizing the results to the off-axis case {r%0), gives 

TeD ( r,Z,t ) = 2aloA t 
pc[ 1 + (4kt 

Xexp[ -- r2/{4kt +/g)] [erf{ZN4kt)]. (23) 
Expressions valid for use with rate of heating experi- 

ments may also be obtained directly from the pulse decay 
equations. As mentioned previously, the slope of tempera- 
ture rise is used to eliminate effects of viscous heating during 
cw insonation, so using the relations between step response 
and impulse response of a linear system one derives the rela- 
tion: 

o3 TR•i 2alo 

cgt pc[ 1 

X exp [ -- r2/(4kt + tg )] [ erflZ/x/4kt ) ], 
{24) 

which is written directly from Eq.(23) assuming the thermo- 
couple is positioned at depth Z within a sample of thickness 
2Z. For simplified experimental conditions where r = 0, and 
t is small enough to satisfy Eqs. {10) and {17), this rate of 
heating expression reduces to the simple case of no conduc- 
tion given by Eq. {1). 

II. RESULTS 

To demonstrate the effect of heat conduction to the cou- 

pling medium, rate of heating experiments were performed 
on samples of soft polyethylene plastic of varying thickness. 
The results are shown in Fig. 3. In these measurements, a 
0.9-MHz beam was used with a half-intensity focal beam- 
width of 4.3 mm. This focal region diameter is sufficiently 
large to prevent appreciable radial heat flow at 0.5 s follow- 
ing commencement of ultrasonic heating. • In the case of the 
1.8-mm sample, a thermocouple, located at the sample cen- 
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O. 25 

slope A 
- /.•"' •,.I.8 mm 

55 mm 
- pie 
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0.0 0.2 0.4 0.• 0.• I. 0 
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FIG. 3. Rate of heating curves obtained in soft polyethylene strips of differ- 
ent thicknesses, using 0.9-MHz ultrasound. Solid lines--measured tem- 
perature rise. Dashed lines--theoretical values for the slope of temperature 
at0.5 s. 

ter, records a slope at 0.5 s which is very close to the value of 
dT/dr obtained by using Eq. { 1) with known values 8 ofp,c, a, 
and I. Radial and axial heat conduction are not accounted 

for in Eq. {1), and are not significant effects at 0.5 s in this 
experimental configuration as demonstrated by the close 
match between calculated and measured slopes. 

In contrast, when the material thickness is reduced to 
0.55 mm, the center thermocouple records a temperature 
history which is clearly affected by heat conduction to the 
top and bottom surfaces. Attempts to obtain the tempera- 
ture slope before conduction effects become significant are 
thwarted by the presence of a "viscous heating" pheno- 
menon around the embedded thermocouple which is promi- 
nent in the first 0.3 s of insonation. •-• From the theory de- 
veloped in the previous section; the slope of temperature in 
the 0.55-mm sample can be predicted from the slope of the 
1.8-mm piece by accounting for the presence of significant 
axial heat flow in the thinner sample. Thus, the value of the 
slope A (o C/s) was multiplied by the term erf(Z/x/• ), 
where Z = 0.055/2 cm; k = 1.6X 10-3cm2/s, and t = 0.5 s, 
to obtain a predicted value of the slope of the 0.55-mm sam- 
ple. The result is denoted as slope B, and is superimposed on 
the measured rate of heating curve in Fig. 3. Slope B appears 
to be a better match to the data between 0.4 and 0.45 s, but 
the fit at 0.5 s is reasonable, considering the small mismatch 
between thermal diffusivities of plastic and water, a condi- 
tion which is not accounted for in the theory. 

A demonstration of axial heat conduction in pulse de- 
cay measurements was obtained using thermocouples em- 
bedded at 0.75- and 2.5-mm depth in an absorbing, castable 
rubber material of total thickness 20 mm (essentially semi- 
infinite). Figure 4 shows measured pulse decay curves for 
both depths, where a 0.1 s on time, 1.25-MHz focused beam 
was employed. A comparison of the temperature histories 
must account for the attenuation which occurs in the sample 
between the two depths, and also. the greater effect of heat 
transfer to the sample surface in the case of the shallow (0.75- 
mm depth) thermojunction. Accordingly, the raw data from 
the 2.5-ram thermocouple were scaled by a factor of 1.25 to 
compensate for attenuation losses between 0.75 and 2.5 mm. 
This figure was based on a radiation force measurement of 

1.25 

1.00 

AT 0.75 o C 

0,50 

0,25 

mm depth 

Q75 

m measured data 

--.- lheoretical fit 

I 2 3 4 5 6 7 8 9 

t, seconds 

FIG. 4. Pulse decay results from 1.25-MHz insonation of thermocouples at 
different depths in an absorbing rubber compound. Solid lines---experimen- 
tal data. Dashed lines--calculated values using theory to "convert" the 
deep thermocouple data into readings from the shallower depth. The theory 
accounts for the greater effect of heat flow to the surface in the case of the 
shallow thermocouple. 
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attenuation. The scaled version is plotted along with the raw 
data from 0.75-mm depth in Fig. 4. From the theoretical 
result presented in Eq. {21}. the remaining difference 
between the 0.75-and 2.5-mm heating curves should be at- 
tributable to error function terms. Accordingly, the scaled 
2.5-mm data were multiplied by a compensating factor of 
[ 1 + erf[O.O75/x/4kt }/1 -+- erf[O.25/•/4kt}], with k = 1.6 
X 10 -3 cm:/s. This correction function should reduce the 
magnitude of the 2.5-mm curve, at each point in time, to 
precisely overlap the data from 0.75 mm. The result is shown 
as a dotted line in Fig. 4, and although the match of the 
compensated 2.5-mm data to the 0.75-mm data is not precise 
over the entire curve, the results are within the error imposed 
by the approximately 10% uncertainty in the location of 
each thermojunction, the values of a and k, and by the small 
mismatch between thermal properties of the absorbing ma- 
terial and water. 

An integral-differential relationship between rate of 
heating and pulse decay methods has been assumed in the 
theory. To demonstrate this experimentally, both pulse de- 
cay and rate of heating curves were obtained at 0.75-mm 
depth in a castable rubber absorber, using focused 1.25-MHz 
insonation. The result of the 0.1 s on time pulse decay experi- 
ment is shown in Fig. 5. The integral of the decay curve, 
when scaled by a factor of 1/At and plotted as a continuous 
function of time, should yield precisely the data obtained 
from a step input of ultrasound at the same intensity, accord- 
ing to the general relations which exist between the impulse 
response of a linear, time invariant system. Figure 6 shows 
the rate-of-heating data obtained at an intensity level 0.33 
times lower than in the pulse decay experiment. Also shown 
in Fig. 6 is the results of numerical integration of the pulse 
decay experiment of Fig. 5, scaled by a factor of {0.33}/{0.1} 
which accounts for the intensity change between experi- 
metns and the on time used in the pulse decay case. The 
overlap of these curves is good overall even though both 
curves include the effects of "viscous heating" which is local- 
ized around the thermojunction. The small deviation may be 
attributable to the use of a finite duration input of acoustic 
energy which is short but not truly impulsive in the pulse 
decay experiment. 

In summary, these experiments verify the impulse re- 
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AT 0.75- 
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0.:;'5 - 

I I I , 
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FIG. 5. Pulse decay results using a 1.25-MHz focused beam and a thermo- 
couple located at 0.75 mm in an absorbing material. 
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FIG. 6. Comparison of rate of heating and the integral of the pulse decay 
experiment shown in Fig. 5. These data demonstrate the impulse response- 
step response relationship between pulse decay and rate of heating experi- 
ments. 

sponse-step response relationship between pulse decay and 
rate of heating approaches, and also validate the use of error 
functions to account for axial heat flow. 

III. DISCUSSION 

The practicability of any measurement technique de- 
pends in part on the number of parameters which must be 
known a priori, and the complexity of mathematics used in 
analysis. Therefore, it is useful to consider the degree of diffi- 
culty encountered in the approaches described herein. The 
simplest situation is the rate of heating measurement where 
heat conduction effects can be ignored. Here the absorption 
coefficient is given by Eq. {1 }, and accurate values for p, c, 
and ! must be known. Measurement of the slope, dT?dt can 
be done graphically since temperature is presumably in- 
creasing at a constant rate during a substantial interval. 

In cases where radial heat transfer cannot be ignored, 
then use of the central pulse decay' [Eq. {6}], or rate of heating 
[Eq. {12}] methods require the additional parameters k and 
/•. These are not usually difficult to determine since the ther- 
mal diffusivity of many soft tissues is close to that of water, 9 
and the ultrasonic beamwidth can be measured in the medi- 

um using the embedded thermocouple. 4 The data are no 
longer a straight line, however, and must be curve fit to Eq. 
(6} or (12} to determine the unknown value of a. While esti- 
mations of a can still be obtained graphically, it is straight- 
forward to perform a least squares error curve fit using a 
minicomputer where the temperature histories have been'di- 
gitized and stored. 

If axial heat flow is also significant, then the error func- 
tion term must be incorporated into pulse decay [Eq. {22}] or 
rate of heating [Eq. (24}] analyses. This additional complex- 
ity requires specification of the thermocouple depth Z, 
which can be determined by visual or microscopic inspection 
in transparent or incised samples; or by high resolution pulse 
echo interrogation where echoes can be obtained from the 
sample surface and the embedded thermocouple. Computa- 
tionally, erf(.} can be programmed using a polynomial ap- 
proximation valid for all positive arguments. 7 Thus, a curve 
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FIG. 7. Calculated rate of heating curves for various beamwidths. The ef- 
fects of viscous heating and axial heat flow are not incorporated into these 
calculations. These data indicate that radial heat flow may be ignored when 
an ultrasonic beamwidth of approximately 3 mm or greater is used and ob- 
servation times are limited to approximately 0.5 s. 

FIG. 8. Calculated pulse decay temperatures, including axial and radial 
heat flow, for thermojunctions at various depths in a semi-infinite medium. 
The results indicate that axial heat conduction to the coupling medium may 
be ignored when the thermojunction is at least 3 mm deep and observation 
times are limited to no more than 10 s. 

fit to determine the value of a can still be accomplished ra- 
pidly by minicomputer. One additional parameter is re- 
quired if off-axis pulse decay or rate of heating experiments 
are performed. The radial distance, r, must be known for use 
of Eqs. (5}, (13}, (23}, and (24}. Since precision positioners are 
frequently used in laboratory alignment, an accurate lateral 
displacement of a focused beam with respect to a thermo- 
junction can be readily accomplished. 

Another procedural question concerns the choice of 
rate of heating versus pulse decay approaches. Theoretically, 
these are linked by the general relations between the step 
response and impulse response of a linear system, and there- 
fore the same values are obtained from either taking the deri- 
vative of rate of heating curves, or taking the absolute tem- 
perature elevation of a pulse decay curve. There are 
important practical considerations, however. One disadvan- 
tage of the rate of heating approach is that a time-varying 
derivative must be calculated from a signal which generally 
contains noise, introducing some computational issues and 
uncertainties. However, an advantage of the rate of heating 
method is that the absolute temperature rise obtained using 
cw insonation is much greater than the absolute tempera- 
tures obtainable under identical conditions but utilizing a 
short pulse of ultrasound. This becomes important when low 
absorption and/or restricted output intensity (from avoid- 
ance of cavitation or shock thresholds, for example} result in 
a low thermocouple signal to noise ratio. 

Bounds on when radial and axial heat conduction can 

be neglected can be obtained from Eqs. (5}-(24}. 
The effects of radial heat flow on rate of heating curves 

are demonstrated in Fig. 7, where Eq..(8} {no axial flow in- 
eluded} was used to calculate temperatures of centered, rate 
of heating experiments given different values of/• (beam- 
widths}. It was assumed that 

2alo/pc = 10.0 o C/s and k = 1.5 X 10 -3 cm2/s, 

while/• was varied from a high value of 9 X 10-2cm 2 (half- 

intensity beamwidth of 5 mm) to 1.4 X 10-2cm 2 (half-inten- 
sity beamwidth of 0.62 mm}. The results show that at 0.5 s, 
the slopes of the top two curves are within approximately 
10% of the value which would be obtained if no heat trans- 

fer, were permitted [Eq. (1 }]. The smaller beam width cases 
have slopes at 0.5 s which can only be related to absorption 
by Eq. {12} which includes radial heat flow. This is in agree- 
ment with the guidelines given by Goss et al. 3 who used a 
numerical model. We generalize from Eqs. (7)-{ 11)and state 
that, in centered rate of heating experiments, radial heat flow 
can be neglected (within 10% accuracy} and therefore Eq. ( 1 } 
may be used, when 

4kt /•<O. 1. (25) 

Thus, for experiments on soft tissue where measurement 
times are t<0.6 s and k = 1.5 X 10 -3 cm2/s, then the inequa- 
lity is satisfied for/•>0.036 cm :, corresponding to the use of a 
half-intensity beamwidth of 3 mm or greater. 

The effect of axial heat flow is more easily seen in pulse 
decay experiments where observation times may stretch to 
10 s or longer. Figure 8 shows calculated pulse decay experi- 
ments using Eq. (21) where it was assumed that 

2alo d t/pc = 10.0 o C, /• = 0.04 cm 2 
and 

k = 1.5 X 10- 3 cm2/s, 

while the thermocouple location z was varied from 0.5 mm 
to essentially infinite depth from the sample surface. These 
curves show that in order to neglect axial heat flow at 10.0 s, 
the thermocouple depth must be greater than 2.5 mm. We 
generalize this result to all rate of heating or pulse decay 
experiments by referring to Eqs. (21}-{24} and concluding 
that axial heat flow to the sample surfaces can be neglected 
{within 10% accuracy} when 

erf(Z/x/4kt )>/0.9, (26) 
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thus, 

Z/x/• > 1.2. {27} 
For rate of heating experiments where the inequality 

must hold for t = 0.6 s, we have Z>0.7 min. For pulse decay 
experiments where we wish to maintain the inequality to 
t = 10.0 s, we obtain Z> 3.0 min. Thus, to within approxi- 
mately 10% accuracy the heat flow to the coupling medium 
may be neglected, permitting the use of simpler expressions, 
when the embedded thermocouple is located around 1-mm 
depth for rate of heating experiments, and 3-mm depth for 
the pulse decay measurements. Since the radial and axial 
heat flow terms are separable, the above guidelines regarding 
thermocouple depth hold true independent of the beam- 
width or/• value, used. 

IV. CONCLUSION 

Analytical expressions have been developed which 
model the flow of heat in radial and axial directions during 
ultrasonic heating, assuming the use of a Gausssian shaped 
intensity distribution. These equations can be used to mea- 
sure absorption coefficients under a wide range of experi- 
mental conditions, using on or off axis, rate of heating or 
pulse decay methods, with arbitrary beamwidths and sample 
thickness. Key assumptions are that the coupling medium 
has no absorption or convection, but has a thermal diffusi- 
vity equal to that of the absorbing sample. Also, the intensity 
loss with depth due to absorption is considered to negligibly 
contribute to axial heat flow, so the equations presented 
herein would not be valid for deep thermocouple measure- 
ments in a highly absorbing medium. 

The derivations provide guidelines as to when axial or 
radial flow may be neglected, permitting use of simpler ex- 
pressions relating temperature histories and absorption. 
Specifically, the axial flow of heat may be neglected in typi- 
cal pulse decay experiments when the thermocouple is locat- 
ed at least 3ram in depth and observation times are less than 
l0 s. For rate of heating experiments with observation times 
between 0.5 and 0.6 s, the thermojunction must be approxi- 

mately 1 mm deep. Radial heat flow in centered rate of heat- 
ing experiments can also be neglected providing observation 
times are limited to 0.6 s, and the half-intensity beamwidth is 
at least 3 ram. 

These results should lead to more accurate measure- 
ments of absorption over an extended range of frequencies 
and sample sizes. In addition, the derivations may be of value 
in modeling ultrasonic applications such as hyperthermia or 
focal ablation of tissues. 
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