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Abstract—Image segmentation remains one of the major chal-
lenges in image analysis, since image analysis tasks are often
constrained by how well previous segmentation is accomplished.
In particular, many existing image segmentation algorithms fail
to provide satisfactory results when the boundaries of the desired
objects are not clearly defined by the image intensity information.
In medical applications, skilled operators are usually employed to
extract the desired regions that may be anatomically separate but
statistically indistinguishable. Such manual processing is subject
to operator errors and biases, is extremely time consuming, and
has poor reproducibility. We propose a robust algorithm for the
segmentation of three-dimensional (3-D) image data based on a
novel combination of adaptiveKKK-mean clustering and knowledge-
based morphological operations. The proposed adaptiveKKK-mean
clustering algorithm is capable of segmenting the regions of
smoothly varying intensity distributions. Spatial constraints are
incorporated in the clustering algorithm through the modeling of
the regions by Gibbs random fields. Knowledge-based morpho-
logical operations are then applied to the segmented regions to
identify the desired regions according to thea priori anatomical
knowledge of the region-of-interest. This proposed technique has
been successfully applied to a sequence of cardiac CT volumetric
images to generate the volumes of left ventricle chambers at 16
consecutive temporal frames. Our final segmentation results com-
pare favorably with the results obtained using manual outlining.
Extensions of this approach to other applications can be readily
made whena priori knowledge of a given object is available.

Index Terms—Cardiac imaging, clustering, Gibbs random field,
image segmentation, K-mean, morphological operations.

I. INTRODUCTION

T HREE-DIMENSIONAL (3-D) image segmentation has
attracted considerable attention for the last few years,

due to the advances in multidimensional image acquisition
techniques. In general, 3-D image segmentation algorithms are
derived directly from two-dimensional (2-D) image segmenta-
tion algorithms. Many existing image segmentation algorithms
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are suited for certain classes of boundary extraction when
a priori knowledge of the object in the image is available.
These segmentation approaches can be divided into two major
categories: optimization in parameter space and optimization
in image space. In the case of boundary finding through
optimization in parameter space, a class of parameterized
templates are used to model the objects [1]–[3]. All these
approaches have been implemented through fitting the model
to the image data by searching the parameter space for
the best fit. Recently, Staib and Duncan [4] proposed an
algorithm for boundary finding with probabilistic deformable
models in order to increase the flexibility of enforcing the
constraints in parameter space. In the case of boundary finding
through the optimization in image space, the measure of fit is
represented by certain image-related quantities [5], [6]. Among
them, an elegant approach proposed by Kass, Witkin, and
Terzopoulos [7] uses the boundary model primitives called
snakesto form an energy minimization problem. The flexibility
of snakesenables its applications to many interactive image
segmentation schemes when the skilled operator is employed
to supervise the segmentation process. As opposed to the
parameter space based boundary representation, the image
space based representation and optimization are usually not
efficient in the incorporation of thea priori shape information
to the algorithm, especially those specific algebraic properties
of the object boundary other than the smoothness constraints.

In biomedical-oriented image analysis research, the devel-
opment of robust 3-D image segmentation techniques is an
imperative task for the processing of the huge amount of
volumetric biomedical images or image sequences produced
by various medical imaging modalities. In general, the in-
tensity of the same anatomical structure within a given set
of volumetric image produced by medical imaging device is
spatially varying because of the inevitable inhomogeneity in
the process of image acquisition. In addition, a biomedical
image analysis task often needs to extract the desired regions
that may be separate in anatomy but indistinguishable in
intensity. To segment such biomedical structures from the 3-
D volumetric images, labor-intensive and operator-dependent
outlining of region-of-interest has traditionally been employed
[8]–[10]. Recently, there have been some attempts working
toward a robust and operator-independent segmentation of
desired biomedical structures from given volumetric images
[11]–[14]. However, these algorithms would require either
initial input or interactive interface of a human operator for
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every set of images to overcome the difficulties in segmenting
the spatially varying intensity as well as in identifying the
ambiguous anatomical structures. Such segmentation processes
are able to produce better results than the simple and time-
consuming manual extraction, however, the results obtained
are still subject to operator bias.

We describe here a novel 3-D image segmentation technique
capable of robust segmentation using-mean clustering and
knowledge-based morphological operations. This technique
aims at solving the problems encountered in the segmentation
of images consisting of regions that may be separate in
anatomy but indistinguishable in intensity. The proposed adap-
tive -mean clustering algorithm is adopted from [15] and is
capable of initial segmentation of the structures characterized
by spatially varying intensity distributions. Spatial constraints
are incorporated in the form of Gibbs random fields in our
adaptive clustering algorithm to enforce the neighborhood
configuration to overcome the noise in the given image.
Simple morphological operations are then applied to clear the
results obtained from -mean clustering to form the initial
segmented regions. Although we are able to overcome the
difficulties originating from spatially varying intensity distri-
butions and image acquisition noise with adaptive-mean
clustering and simple morphological operations, resolving the
anatomical ambiguity presented in many biomedical image
segmentations is still a challenging task. It is this challenge that
motivated the development of the algorithm for knowledge-
based morphological operations which determines desired final
segmentation according to thea priori anatomical knowledge
of the region-of-interest. To illustrate the effectiveness of
this proposed algorithm, we have successfully implemented a
robust segmentation on a sequence of cardiac CT volumetric
images to extract time-varying chamber of left ventricle.
The volumes of left ventricle extracted using this approach
compare favorably with the volumes obtained using operator
manual outlining. However, such knowledge-based segmenta-
tion is fast, reproducible, and without operator bias.

The application of the proposed algorithm to other ap-
plications of image segmentation can be easily adopted as
long as thea priori knowledge of the structure-of-interest is
available. In many biomedical image segmentation tasks, such
knowledge is usually available since we often study certain
biomedical structures with known anatomical information. The
anatomical information can be used in the design of-
mean clustering when it is necessary to set the value
and to incorporate the spatial characteristics of each class.
Such information is crucial in the design of knowledge-
based morphological operations since it is the only way of
intelligently identifying the anatomical structures from the
possibly ambiguous segmentations obtained through adaptive

-mean clustering. It is true that a particular implemen-
tation scheme of 3-D image segmentation would depend
on individual applications. However, the principles of this
knowledge-based approach will provide, without doubt, the
methodology in the design of an individualized 3-D image
segmentation algorithms.

Section II describes the given CT volumetric data used in
this paper to implement a knowledge-based approach to image

segmentation. It also interprets how the cardiac anatomy would
appear in a given volumetric image. Section III presents the
adaptive -mean clustering algorithm and the implementation
of such algorithm on the given 3-D image data. Section IV
explains the necessity for initial post processing after-
mean clustering and introduces the morphological operations
based approach to accomplish such processing. Section V
addresses the difficulty in identifying the structures from
the given images when they are separate in anatomy but
indistinguishable in intensity. It then describes a knowledge-
based approach to overcome such difficulty with the proposed
constrained morphological operations. Section VI presents the
segmentation results obtained using this proposed approach.
Section VII concludes this paper with discussion on future
extensions to this approach and potential integration of the
image segmentation with subsequent image analysis tasks.

II. 3-D IMAGE DATA AND CARDIAC ANATOMY

The 3-D image data used in this research are a sequence
of CT volumetric images obtained from dynamic spatial re-
constructor (DSR), a unique ultra-fast multislice scanning CT
system built and managed by the Mayo Foundation [16]. Ac-
cording to Ritman and his colleagues [8], [10], the DSR syn-
chronously scans multiple, parallel, transaxial sections within
1/100 s. These scans are repeated 60 times/s. Up to 120 images
of transaxial sections were reconstructed for each 1/60-s scan
sequence, and post scan manipulation and interpolation of the
reconstructed images were used to generate cubic voxels of
such volumetric image sequences. With such rapid, extensive
data collection, high-resolution volumetric images, largely
free of motion blur, can be generated for moving organs,
such as the heart. In a typical DSR experiment, 16 volumes
are reconstructed within a cardiac cycle, with each volume
representing one time instant. Each reconstructed volumetric
image usually contains roughly 120 slices of size 128
128, however, this research is based on a sequence of 16
volumes, each containing 95 90 90 slices. Each slice of
a reconstructed volume represents an approximately 0.9 mm
thick transverse cross section of the scanned anatomy, and
each of the volumetric elements, or voxels, represents an (0.9
mm cube) of tissue. To bring out the left ventricle chamber
as a bright object, a Roentgen contrast agent is injected into
the right atrium several seconds prior to the scanning of the
heart. A few cross sections of the original DSR data from a
canine heart scan are presented in Fig. 1.

In a typical volume of such images, the left ventricle is
included in a high intensity region which would also includes
the left atrial chamber and aorta. Although there are valves
separating the left ventricle chamber from left atrial chamber
and aorta, the valves of this canine heart, are at the order of
1 mm thick and their visibility in the volume is diminished
by the partial volume effect and the resolution limitation of
DSR scanner [17]. Furthermore, the valves open and close
alternatively during a cardiac cycle so that whether or not
they appear in an acquired image would also depend on the
timing of the image acquisition. Therefore, the left ventricle
chamber often appears connected with the left atrial chamber
and aorta in the acquired volumetric images.
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Fig. 1. A few typical cross sections of the original DSR data.

Overall, the intensity of the left ventricle is much brighter
than the myocardium. However, within the volume, the in-
tensity distribution of left ventricle chamber is not uniform
due to the uneven distribution of the contrast agent. The
nonuniform distribution of the contrast agent is difficult to
model and compensate, and therefore requires the image
segmentation algorithm to be adaptive to local properties
of the intensity distribution. In addition to the nonuniform
distribution of contrast agent, the noise from the errors in
scanning and volume reconstruction causes the blurring of
the structural borders and hence introduces the ambiguity in
boundary classifications. According to Higgins [10], the left
ventricle chamber appearing in the CT volumetric images is a
large, bright, smooth, solid region, varying in size and shape
over time, approximately attached to the left atrial chamber and
aorta through the valves, and separated from the myocardium
by a strong, but blurred and noisy, interface.

These are two types of ambiguity present in the given CT
volumetric data: imaging related ambiguity and anatomy re-
lated ambiguity. Imaging related ambiguity can be resolved by
designing an adaptive clustering algorithm while the anatomy
related ambiguity cannot be resolved using image intensity
information alone. It is necessary for us to utilize thea
priori knowledge of the cardiac anatomy in order to identify
the separations between the left ventricle and the left atrium
and aorta. The simultaneous presence of imaging related
ambiguity and anatomical ambiguity is the major challenge
in this research and our successful solution to this challenging
problem constitutes the main contributions of our work.

III. SEGMENTATION USING ADAPTIVE K-MEAN CLUSTERING

Traditional statistical image segmentation algorithms, as
simple as thresholding or as complicated as-mean [18] and
even fuzzy -mean clustering [19], all classify the pixels into
clusters based only on their intensity values. Each cluster is
usually characterized by a constant intensity and no spatial
constraint is imposed. In practice, images are usually noise
contaminated versions of the reflected density function, and the
image intensity of the same class may change over space due
to some physical constraints of the imaging system as we have
discussed in Section II. In many biomedical applications, even
though the relative intensity is evident for different clusters

within a small neighborhood, different clusters at different
locations may have similar intensity appearance due to the
inhomogeneous nature of the imaging media. Therefore, a
single global threshold is usually inapplicable to such images
even within the same 2-D cross-section. The ability of being
adaptive to the local intensity distribution is generally required
for a robust image clustering algorithm to obtain the correct
clustering results. In addition, certain spatial constraints are
needed to prevent the algorithm from misclustering caused
by the impulse noise introduced in the process of image
acquisition and reconstruction. Such spatial constraint is based
on the assumption that a pixel generally tends to belong to
same cluster as most of its neighbors unless it is on the edge
of a sharp region transition.

With the successful application of Markov random field in
image segmentation [21]–[25], several extensions to the tra-
ditional -mean clustering algorithm based on Gibbs random
fields have recently been proposed [26]–[28]. These extensions
have included the spatial constraints through the modeling of
the spatial distribution of the clusters as Gibbs random fields.
Such modeling of spatial distribution indeed imposes the spa-
tial continuity in the process of clustering and produces more
robust results than traditional -mean algorithm. However,
they all assume that the intensity or its related parameters
would be constant within each clustered region. The adaptive

-mean algorithm we develop is based on the segmentation
algorithm proposed recently by Pappas [15]. His algorithm
includes not only the 2-D spatial constraints characterized by
Gibbs random fields, but also the adaptive capability specified
through iterative estimation of local means of each region. We
have extended Pappas’ algorithm through the development of
3-D spatial constraints to suit the volumetric nature of the
image data and an enhanced adaptive capability to account
for the varying characteristics of the cluster means as well as
cluster variances.

-mean clustering is often suitable for biomedical image
segmentation since the number of clusters () is usually
known for images of particular regions of human anatomy. In
biomedical applications, the spatially varying intensity change
of a biomedical structure is usually caused by inhomogeneity
in the process of image acquisition, such as the inhomogeneous
distribution of the contrast agent in CT imaging or inhomo-
geneous distribution of the magnetic field gradient in MR
imaging. It has been shown that [29] such intensity change can
be updated locally during the segmentation process through
a maximuma posteriori (MAP) estimation scheme. In this
research, the update of intensity change is represented by the
estimated local cluster means and local cluster variances. If we
denote a given image by and a segmentation of this image
by , according to Bayes’ rule, thea posteriori probability
can be expressed as

(1)

where is the a priori probability of the segmentation,
and represents the conditional probability of the image
data given the segmentation. The Gibbs random field can be
characterized by a neighborhood system and a potential func-
tion. A Gibbs random field constrained image segmentation is
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accomplished by assigning labels to each pixel in the given
image. A label implies that the pixel belongs to the
th class of the classes. Therefore, we have

(2)

where represents the defined neighborhood for pixel.
Associated with each neighborhood system are cliques and
their potentials. A clique is a set of sites where all elements
are neighbors. If we consider that a 2-D image is defined
on the Cartesian grid and the neighborhood of a pixel is
represented by its four nearest pixels [30], then the two-point
clique potentials are defined as

if and
if and

(3)

For a 3-D image, a straightforward extension of 2-D neigh-
borhood system concludes that the neighborhood of a voxel
can be represented by its six nearest neighbors [29]. A Gibbs
distribution can then be defined as

(4)

where is certain clique potential for clique. For a 4 4
4 3-D lattice, there will be 24 cliques within each 44 cross
section, and 16 cliques between two cross sections. The total
number of two-point cliques for such 3-D lattice is therefore
144. If we model the conditional density as a Gaussian process
with mean and variance at a pixel location , then it can
be written as a spatially varying density function with respect
to pixel location , as follows:

(5)

Then, the overall probability function will be

(6)

There are two components in the overall probability function.
One corresponds to the adaptive capability that force the
segmentation to be consistent with local image distribution
with locally estimated mean and variance . The other
corresponds to the spatial continuity constraint characterized
by the clique potentials within a given 3-D lattice.

MAP estimation based adaptive-mean clustering can be
implemented using various optimization techniques depending
on the specific applications. In particular, when the sampling
lattice of the given 3-D images are not uniformly structured,
the clique potentials need to be carefully modified according
to the relative length of each lattice unit. A nonuniformly
structured sampling lattice is a common practice in medical
imaging since resolution within a cross section is usually
different from the resolution between cross sections. In the
case of CT volumetric data used in this research, we assign
the same to the clique potentials both within a cross section
and between cross sections, since the sampling lattice of the
CT volumetric data is uniformly structured. The proposed

adaptive clustering algorithm applied to the CT volumetric
data is implemented using the method ofiterative conditional
modes[31]. First, an initial segmentation is acquired through
the simple -mean algorithm. The value is chosen to
be four in the case of CT volumetric image data according
to the availablea priori knowledge of the cardiac structure.
Then, overall probability function is maximized on a point-
by-point basis, with the mean and the variance of
each cluster being updated after each iteration. Therefore,
the optimization is accomplished through alternating between
MAP estimation of the clustered regions and iterative update of
the cluster means and variances. Such alternating processing
is repeated until no pixels change classes. The result is the
desired segmentation of the given 3-D images.

In the case of segmenting the left ventricle from CT images,
the adaptive clustering algorithm is applied to obtain four
clusters with the brightest cluster corresponding to potential
left ventricle chamber. Even though only the brightest cluster
is used for subsequent extraction of left ventricle chamber, the
multicluster segmentation ( ) is still necessary. Because
the given volumetric images indeed consist of four clusters of
intensity corresponding to four types of biomedical structures,
the binary clustering ( ), or thresholding, would produce
incorrect segmentation results.

There exist a number of differences between this algorithm
and that of Pappas [15]. One important difference is the
introduction of iterative estimation of cluster variances in
the process of optimization. The assumption of the changing
variance and the implementation of estimation scheme allow
us to account for the noise levels to change from one local area
to another, and from one cluster to another. This additional
feature of the proposed scheme enhances the flexibility of
the adaptive -mean clustering algorithm, since, in practice,
the variances of different clusters are generally different and
the variance of a specific cluster also changes with location.
This varying nature in both intensity and variance is due to
the inhomogeneous distribution of density in various medical
images. The specific characteristics of CT images used in
this research have already been discussed in Section II. The
computational complexity of estimating variances is more
complicated than the mean estimation as described in [15].
The second difference is the choice of the number of classes.
The value of used in our approach corresponds to the actual
number of classes present in the given image. Therefore, the
choice of is based on the available knowledge, whereas the
choice of in [15] is not based upon any available knowledge.
Instead, it is stated that the best choice appears to be
related to the famous four-color theorem. The third difference
is the choice of the parameterof the Gibbs random field. It is
evident that the parameteris related to the image contents as
well as imaging conditions. According to biomedical structure
and known imaging condition, we have chosen the parameter

such that the spatial constraint is strong enough to smooth
out the noise while still preserving the structural details.

IV. I NITIAL MORPHOLOGICAL OPERATIONS

For many biomedical image analysis tasks, one usually
focuses on a particular structure contained in a given image.



CHEN et al.: IMAGE SEGMENTATION VIA ADAPTIVE -MEAN CLUSTERING 1677

Fig. 2. Typical action curves.

In this research, the segmentation results are intended for the
study of the dynamics of the left ventricle chamber. The
subsequent analysis of motion and deformations is usually
based on the left ventricle volumes extracted from the given
CT volumetric data [32]. Ideally, upon -mean clustering, the
cluster corresponding to the brightest regions would represent
the left ventricle chamber and can be used for left ventricle
dynamics analysis. The representation can be obtained by
converting the clustering result into a binary image in which
each pixel is labeled as either belonging or not belonging
to the desired region representing left ventricle chamber.
However, the region so obtained may not be fully connected

due to the noise and may contain left atrium and aorta due
to the anatomical ambiguities. Two types of morphological
operations are applied to the binary images in order to clean the
noise and to clarify the anatomical ambiguities. They are initial
processing morphological operations described in this section
and knowledge-based morphological operations described in
Section V.

Initial morphological operations are necessary since the
spatial smoothness can be implemented through such oper-
ations. In addition, the morphological operations can also
be used to correct certain large misclustered regions that
are inevitably present in segmentation results when using
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the adaptive -mean algorithm since it is still an intensity-
based approach. The spatial constraints used in the MAP
estimation have indeed largely overcome the difficulties in
segmenting the noise contaminated images. However, certain
large misclustered regions are the consequence of trade-off
between preserving the structural detail and suppressing the
contaminating noise. In general, those misclustered regions
due to intensity ambiguity can be removed using simple
morphological operations which can also be used to smooth
the segmented volume to obtain a better representation of the
left ventricle boundary.

Such misclustered regions due to intensity ambiguity often
appear in a cross section as small bright regions disconnected
from main bright region, or small cavities inside the main
bright region. Binary morphological operations have been
proved capable of deleting small disconnected regions, filling
cavities and smoothing the region-of-interest [33] and [34].
Digital morphological operations, opening followed by clos-
ing, are applied to the binary image to eliminate the small
isolated regions outside the potential left ventricle volume and
small cavities inside such volume. These operations are defined
as an ordered combinations of fundamental operations, dilation
and erosion, which can be written as

(7)

(8)

where and denote the operators opening and closing,
respectively, and and denote the operators, erosion, and
dilation, respectively. If the translation operation is defined as

(9)

then the operators erosion and dilation can be written as

(10)

(11)

where is the image and is the structuring element. Note
that denotes the reflection of with regard to the origin,
denotes a point in space, andis a point in the image . Here
we use circular element with radiuswhich can be determined
by a compromise between the noise suppression performance
and preservation of details. The larger the element is, the more
noise is suppressed and the more details are lost. Fortunately,
in many applications, we know in advance the rough size and
shape of the object we are looking for in the segmented images.
Such knowledge can be used in this initial postsegmentation
processing in which we try to eliminate small regions that are
considered not part of the left ventricle, and cavities inside the
left ventricle chamber region.

The opening and closing operations are inherently idem-
potent, that is, repeatedly applying the same combination of
opening and closing will not change the image after the first
application. Thus we choose a larger element in the closing
operation in order to compensate some possible detriment that
a certain opening operation may cause, such as opened hollow
areas at or inside the boundary. Such intuitive analysis has also
been confirmed by test images from cardiac CT sequences.
This asymmetric combination of opening and closing can

Fig. 3. Block diagram of the overall 3-D segmentation scheme.

be carefully balanced without significantly altering the shape
since the left ventricle chamber is fairly large and smooth. The
largest region in each cross section is chosen as the candidate
region belonging to the left ventricle chamber. The stack of
all regions forms the volumetric representation of extracted
left ventricle chamber presumably free of ambiguities caused
by inhomogeneous and noise corrupted intensity distributions.
However, the anatomical ambiguity caused by the lack of
clear boundary between left ventricle and left atrium and
aorta would still be present after the initial morphological
operations. The elimination of such ambiguity needs to utilize
the knowledge of the left ventricle anatomy and the imple-
mentation of such knowledge-based algorithm is described in
the next Section.

V. KNOWLEDGE-BASED MORPHOLOGICAL OPERATIONS

The necessity of further identification of the region-of-
interest lies in the fact that those two problems we have
pointed out are still unsolved. First of all, due to the anatomy
related ambiguity, part of the left atrium and aorta are classified
connected with the upper part of the left ventricle. As we have
pointed out earlier, such ambiguity can not be differentiated
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Fig. 4. Block diagram of the composite knowledge-based morphological
operations.

solely by the intensity. Furthermore, sometimes the local noise
may become so remarkable that large nonuniformly can occur
in the object or background region. The consequence may be
a large area attached to or hollow space inside the left ven-
tricle chamber even after the initial morphological operations.
Existing schemes dealing with such problem all introduced
human interferences one way or another, either outlining the
valves by a human operator, or applying additional constraints
interactively to the location where the ambiguity is present
[11] and [14].

In order to reduce potential errors and eliminate operator
biases associated with human interferences, a knowledge-
based intelligent approach is adopted. This is motivated by the
success of shape modeling the left ventricle by superquadrics
with tapering and bending deformations in the CT volumetric
data based shape and motion analysis of the left ventricle [32].
According to the anatomy of the left ventricle, the shape of its
cross sections is of similar shape within their neighborhood
while the area of these cross sections decreases from the
middle to the two ends. In addition, the curved nature of
its long axis results in a continuous shift of the centroid
from one cross-section to another. Therefore, the principle
of smooth transition in cross-section shape can be applied to
decide whether a discontinuity due to misclassification has
taken place. To avoid an over constrained operation, we make

(a) (b)

(c) (d)

(e)

Fig. 5. Comparison of the segmentation results. (a) Original CT image. (b)
K-mean segmentation. (c) Initial ROI. (d) Final ROI. (e) Manual segmen-
tation.

no assumption of a specific parametric model of the global
shape. Instead, we predict, in first or second order, the tapering
in area and the shift of centroid within a small neighborhood
of a given cross section and use such predictions to detect
possible misclassifications due to image or anatomy related
ambiguities.

For many correctly classified cross sections, no action
is taken in the knowledge-based morphological operation
illustrated in Fig. 4. Whether or not the knowledge-based
morphological operation is applied to a particular slice is
dependent on an action criterion defined, for current slice, as

(12)

where denotes the difference operator and’s are preset
thresholds. The action defined in (12) has taken into con-
sideration the variations in area, perimeter as well as shape
ratio (perimeter/area). Two cases would trigger the start of
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(a) (b) (c)

Fig. 6. Comparison of the segmentation in 3-D volumes. (a) Segmentation result without knowledge-based morphology. (b) Final segmentation result
using the proposed approach. (c) Result of manual segmentation.

knowledge-based morphological operations. Fig. 2 shows two
typical action curves in which the horizontal axis denotes the
slices and the vertical axis denotes the number of voxels. The
shape ratio should be in the range of 4–6, and should change
relatively smoothly. In the case that the value of the action
criterion is larger than 3.0, which means either all the three
measures are abnormal or some are extraordinarily abnormal,
the knowledge-based morphological operation is activated to
remove the extra areas attached to the desired region (e.g., type
A in Fig. 2). In another case both perimeter and the shape-
ratio change abruptly, even though the area change is within
tolerated variation. This case corresponds to one or more
hollow areas inside the region-of-interest, since the perimeter
is computed by counting all boundary pixels, including those
inside the region-of-interest. The appropriate closing operation
with an element of larger radius is applied to fill in the hollow
areas inside the desired region that were not filled using initial
morphological operation described in Section IV (e.g., type B
in Fig. 2). To ensure a robust processing, this procedure starts
from the middle of the volume where the segmentation and
initial morphological operation have produced good result, and
proceeds in opposite directions to the two ends. Experiments
have shown that our algorithm is insensitive to the choice of
the starting slice as long as it is chosen to be in the middle
of the whole volume.

When the knowledge-based morphological operation is ac-
tivated, the following steps are undertaken as illustrated in
Fig. 4, the block diagram of the knowledge-based morpho-
logical operations. First, a template is generated using the
predicted tapering parameter based on several of its previous
slices. This template is translated using the predicted shift of
centroid and compared with the given cross section. Depending
on the comparison result, dilation or erosion is applied to
obtain a region whose area is sufficiently close to predicted

template. Notice that the standard operations defined in (7),
(9), and (10) are implemented using a structure element with
radius of one. This discretized operation would result in a
change of cross-section area that equals to the total number of
pixels on the boundary at each iteration. It is evident that such
standard operations are not applicable to the cases when the
desired increase/decrease of the area equals to only a fraction
of total increase/decrease caused by a standard operation.

To meet the necessity of increasing or decreasing the area
at a rate equal to a fraction of area caused by standard
operation, a nonstandard operation with stochastic property
is introduced. Such a nonstandard operation is equivalent to a
standard operation with a structure element of subpixel radius.
A stochastic erosion is defined as a conditional
erosion in that whether a boundary pixel is removed or not
is determined by a random probability generator with uniform
distribution

(13)

The implementation of such stochastic erosion can be written
as

(14)

where denotes the uniform distribution in ,
and is a random selecting process. The parameter
is determined by the ratio of the number of points needed to
be eliminated and the total number of points of the current
boundary. Note that this stochastic erosion is a logical way
of implementing conditional erosion to determine whether a
boundary pixel should be eliminated. A conditional dilation
can be defined with similar operations. The nature of these
subpixel operations would result in a more accurate processing
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Fig. 7. Comparison of the volume (upper) and surface area (lower) over the cardiac cycle obtained using manual outlining, and segmentations with and
without the knowledge-based morphological operation.

of the boundary by a random process driven dilation and
erosion operations. With its stochastic characteristics, the
subpixel operations are also able to produce visually pleasing
boundaries, especially in the case of resolving anatomy related
ambiguity (e.g., point C in Fig. 2).

VI. SEGMENTATION RESULTS

The final result of this knowledge-based approach is a
segmented left ventricle chamber whose image related am-

biguities (corresponding to point A, B in action curve) as
well as anatomy related ambiguities (corresponding to point
C in action curve) are successfully resolved. Results of a few
typical 2-D cross sections are shown in Fig. 5. Based upon
the extracted cross-sections, we can reconstruct the whole left
ventricle volume. 3-D rendering of the left ventricle volume
for visualization and animation of cardiac dynamics is accom-
plished using AVS, a software of advanced visual systems.
3-D reconstructed volumes are shown in Fig. 6. Our results
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compare favorably with the results obtained using manual
outlining. Quantitative comparisons are also shown in Fig. 7
in which the horizontal axis denotes the time frame and the
vertical axis denotes the number of voxels. This knowledge-
based approach yields results very close to those of the manual
segmentation with an average percentage difference of 6.7%
and 1.9%, in volume and surface area respectively. Notice
that, according to [9], the intraobserver volume variability of
manual segmentation is on the order of%. On the contrary,
both the volume and surface area obtained without applying
the knowledge-based morphological operation are generally
much larger than the manual results due to the inclusion of
left atrium and aorta (i.e., unresolved anatomical ambiguities),
the average percentage difference is 27.1% for volume and
31.9% for surface area. Reproducibility of the knowledge-
based approach is very good in that it is insensitive to the
choice of the starting cross section as long as the starting
slice is in the middle part of the volume. The segmentation
results produced by the proposed approach compare favorably
with those presented in [10]–[12]. In [12], neither volumes
nor surface areas were compared with manual segmentation.
However, from the display results, large errors are expected
since the appearance of the extracted left ventricle chambers is
quite different from the manual results. In [10], the anatomy-
related ambiguity is resolved using an interactive manual
delineation. Portions of some 2-D slices which contain the left
atrium and aorta are deleted and the resultant empty regions
are propagated through the volume so that no processing is
applied to the ambiguous regions. The rest of the left ventricle
boundary is obtained through adaptive thresholding. With
proper starting slice, the extracted left ventricle chamber can be
obtained. Only volumes are compared with the results of full
manual segmentation and the results are presented in [10] as a
plot of volume versus time frames. Since no numerical average
difference has been provided, an estimate from the plot indi-
cates that the average difference is between five to ten percent,
which is compatible with the performance of this approach. In
[11], a method of image segmentation applicable to general
circumstances is described and the results of extracting left
ventricle chambers are presented. The adaptive thresholding
scheme in [10] has now been replaced by interactive relaxation
labeling, however, the anatomy-related ambiguity is again
resolved using manual delineation. The performance of the
scheme presented in [11] is about the same as those presented
in [10]. The major difference between the approach presented
in this paper and the approaches presented in [10] and [11] is
the way the anatomy-related ambiguity is resolved.

VII. CONCLUSION AND DISCUSSION

We have presented a knowledge-based approach for 3-
D image segmentation. This approach is able to resolve
the challenging issues corresponding to both image related
and anatomy related ambiguities in the segmentation of 3-
D medical images. The application in CT volumetric im-
age segmentation of the left ventricle has shown that the
knowledge-based approach can be very successful, especially
in medical image analysis wherea priori knowledge of the

biomedical objects is available. The generalization of this
approach to other similar application can be made readily. This
segmentation scheme can be incorporated into an integrated
approach in which image segmentation and shape analysis
are mutually constrained to produce a consistent estimation
of cardiac shape as well as cardiac dynamics [32].

Two extensions of this approach are currently under in-
vestigation. One extension addresses a scheme of true 3-D
morphological operations. Such 3-D operation may be able to
produce better result in the process of initial morphological
operation so that image related ambiguity may be resolved
completely. This will allow the easier implementation of the
knowledge-based operations. The other extension involves
the incorporation of temporal information into the segmen-
tation procedure. The temporal changes of the shape of the
biomedical object will undoubtedly provide useful information
which can be used to resolve the ambiguity at a particular
frame of given image data. The temporal information can
also be incorporated into a integrated approach where both
segmentation and subsequent analysis are studied.
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