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Feature-Adaptive Motion Tracking of Ultrasound
Image Sequences Using A Deformable Mesh
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Abstract—By exploiting the correlation of ultrasound speckle been applied in a variety of biomedical applications, including
patterns that result from scattering by underlying tissue elements, the use of an optical flow technique to assess local myocardial
two-dimensional tissue motion theoretically can be recovered by yoformation [2], and the use of a block matching algorithm

tracking the apparent movement of the associated speckle pat- . . .
terns. Speckle tracking, however, is an ill-posed inverse problem for blood flow assessment [3] and to derive tissue elasticity

because of temporal decorrelation of the speckle patterns and the information [4].

inherent low signal-to-noise ratio of medical ultrasonic images.  Unfortunately, the existing techniques are largely based
This paper investigates the use of an adaptive deformable meshon motion estimation algorithms developed for digital video.

for nonrigid tissue motion recovery from ultrasound images. The Despite similarities in the motion recovery problem for both

nodes connecting the mesh elements are allocated adaptively . | iented and ult . dical i the i
to stable speckle patterns that are less susceptible to temporal visual scene-oriented and uftrasonic medical images, the image

decorrelation. We use the approach of finite element analysis in @hd motion models in the two types of images and, hence,
manipulating the irregular mesh elements. A novel deformable the strategies of motion estimation, differ from each other in

block matching algorithm, making use of a Lagrange element various aspects. A comparison of scene-oriented and ultrasonic

for_hlgher-order_d_escrlpt_lon of local motion, is proposed to image sequences is summarized in Table I.
estimate a nonrigid motion vector at each node. In order to

ensure that the motion estimates are admissible to a physically
plausible solution, the nodal displacements are regularized by
minimizing the strain energy associated with the mesh defor-
mations. Experiments based on ultrasound images of a tissue- The inverse problem of motion recovery from ultrasonic

mimicking phantom and a muscle undergoing contraction, and on  jmage sequences poses a significant challenge. The challenges
computer simulations, have shown that the proposed algorithm in speckle tracking are discussed as follows

can successfully track nonrigid displacement fields. ] ) ) ) )

« Tissue deformatianTissue motion consists not only of
translation and rotation but also deformation. Tissue de-
formation requires a higher-order local description.

¢ Noisy images Ultrasonic medical images have a low
signal-to-noise ratio (SNR). The images are characterized
by Rayleigh-governed speckle noise and corrupted by
LTRASOUND images of soft tissues are characterized Gaussian-distributed electronic noise.
by a granular pattern known as speckle in analogy to the. Motion ambiguities The spatial and temporal changes
optical speckle observed with lasers. Given a stable scattering of g speckle pattern can be quantified and derived with
structure, ultrasound speckle is deterministic and is temporally |gcal operators that compute the spatial and temporal
stable for small tissue motions. The temporal correlation of (erivatives or match similarities in two frames. Ambi-
ultrasound speckle provides a basis for the recovery of tissue guities arise when there is insufficient representation of
motion by tracking the apparent movement of the associated spatial information, e.g., in regions of image saturation
speckle patterns, when motions are in plane and are small.  or specular reflection or homogeneous regions of weak
Speckle tracking represents a promising development in 5coustic scatterers.
ultrasound imaging due to its potential advantages over one- Spatial aliasing Because of similarities shared among
dimensional (1-D) ultrasound Doppler techniques [1]. It has different speckle patterns, spatial aliasing is likely to
occur if the tissue displacement is large compared to

the size of the speckle cell, resulting in false matches
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TABLE |
COMPARISON OF SCENE-ORIENTED AND ULTRASONIC IMAGE SEQUENCES

Visual Scene Image Sequence Ultrasound Image Sequence
Image capture Camera Ultrasound scanner
Image plane Perspective projection of 3-D objects Cross section of 3-D tissue structures
Intensity function Smooth, slow varying across objects Speckle-like pattern, rapidly varying
Motion types Translation+ rotation rigid Translationt rotation+ deformation
Typical resolution Pixel resolution (approx.) Pulse dimension resolution
Challenges Changes in external illumination, Low SNR, speckle decorrelation,

occlusion, aperture problems, motion ambiguities, spatial aliasing

no gray value changes

« Out-of-plane motionCurrent state-of-the-art clinical ul- information from the tissue itself. On the other hand, speckle
trasound scanners are limited to imaging cross-sectigoatterns that result from periodic strong scatterers appear to
of three-dimensional (3-D) tissue structures. This restridi® brighter, larger, and more structural than speckle patterns
the application of speckle tracking to the recovery of iom diffuse scattering. These structural speckle patterns in
two-dimensional (2-D) motion field only. Furthermorethe ideal case are temporally stable under conditions of small
out-of-plane motion can cause decorrelation of specklissue motion.
patterns from the diffraction pattern of the ultrasound In order to capture temporally stable speckle features, a
pulse in the elevational direction. feature energy function has been formulated that consists of

« Speckle motion artifactsSpeckle motion artifacts gener-a sum of oriented band-passed decompositions of ultrasound
ally refer to apparent speckle motion inherent to the imag®ages using multichannel filters. A quadrilateral mesh is then
formation process itself. A good example of this is thgenerated by assigning mesh nodes adaptively to places of
speckle rotation artifact [5] in which the apparent specklgigh feature energy, and motion vectors are estimated only at
motion consists of the actual tissue motion plus a strorigose nodes. The motion estimates should be more reliable by
translational component resulting from the curvature dfacking speckle patterns that are less susceptible to temporal
the system point spread function. Signal reverberation [@gcorrelation. Manipulation of the irregular mesh elements is
resulting from multiple reflections from specular strucaccomplished through the application of finite element analysis
tures may also produce false signals that are difficult {FEA). FEA provides a convenient mathematical tool that
handle by image processing means, but that often candiows the construction of a novel deformable block matching
eliminated manually by adjusting system parameters. algorithm. The algorithm involves the mapping of an irregular

¢ Quantization error Quantization errors in speckle track-mesh element to a regular parent element using a Lagrange
ing result from the discretization of the intensity functiorelement for higher-order description of local motion. Because
and from the measurement of displacement vectors time mapping compensates for local tissue deformations, a
discrete steps. traditional block matching algorithm that assumes motion

Most problems in ultrasonic speckle tracking are relatdépidity can then be applied to estimate local motion vectors.
to either an incomplete coupling or a decoupling of image The effect of speckle decorrelation on motion tracking is
information from that of the underlying tissue. Among thenfurther reduced by using a regularization method, as demon-
speckle decorrelation has the most profound effect on tE&ated in [8]. Specifically, the speckle tracking problem is
accuracy of motion estimates since speckle tracking algorithf@mulated as a conservative dynamic system in which the
depend on the stability of the speckle pattern. Understarfiotion solution results from the minimization of two energy

ing these problems may make it possible to develop betfgfctions. The first energy function is a similarity measure.
strategies for motion tracking. The second function is based on the strain energy of the mesh

elements, which acts as a stabilizing functional to ensure that
the motion estimates are admissible to a physically plausible
B. A New Approach to Speckle Tracking solution.

Our goal was to devise a motion estimation algorithm that is
sufficiently robust to be suitable for ultrasonic speckle tracking
of soft tissue motion. The first step toward accurate motion
estimation is to extract features from speckle patterns that ardn general, a mesh is a partition of an image domain into
stable with the underlying tissue motion. This requaigwmiori  polygonal elements. Motion vectors are estimated only at the
knowledge of ultrasound speckle models. The speckle patt@wdal points where the mesh elements intersect. The generation
resulting from the presence of numerous weak scatterersofsa feature-adaptive hierarchical mesh is accomplished in two
generally governed by Rayleigh statistics [7]. In this cassteps. First, features of the speckle patterns that are temporally
the speckle has a constant contrast (SNR1.91) and a stable are extracted. Next, an hierarchic mesh is generated
fixed speckle cell size related only to the system point-spreaatiaptively by allocating nodes to regions of high feature
function of the ultrasound scanner. In other words, the firsthergy and dividing those mesh elements that have a high
and second-order speckle statistics do not carry any signatinteaeclemental feature energy into finer elements.

Il. ADAPTIVE DEFORMABLE MESH
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(@) (b)

Fig. 1. Diagram of frequency responses of (a) Gabor filters. (b) Diagram of idealized frequency responses of the steerable wavelet pyramidndyhe freque
domain of an image in both diagrams is divided into subbands of three scale levels and orientatfong5t 60°, and 135.

A. Feature Extraction

Features such as scale and orientation of speckle patterns|
obtained from subband decomposition of ultrasound imag
using multichannel bandlimited and directional filters. Tw
such filters are Gabor wavelet filters [9] and the steerab
wavelet pyramid [10]. Fig. 1 compares the directional spati
frequency responses of the two filters. Scale and orientation
formation from the separate outputs of subband decompositi
are used to facilitate feature extraction. In doing so, the outp(s
of subband decomposition are used to form a composite feate
energy mapC, which is a sum of the energy of bandpass @ ()
filter outputs P,

Fig. 2. (a) An ultrasound image and (b) its corresponding composite feature
map. The size of the region of interest is 20Q00 pixels, or 2.5¢ 2.5 cn?.

3 3
Cr@)=)_ > Pl (1)
=L 0=0 uniformly within the region of interest. Although a regular grid

where s and o are the indexes of scale and orientatiorgould easily be superimposed on the image, the nodes would
respectively, andP? (x) is the energy of the filter outputs.not necessarily correspond to the regions of highest feature
Note that the low-pass (inner portion of the filter diagrams) arhergy. In order to place the nodes appropriately, the nodes are
high-pass (outer portion of the filter diagrams) energy bandsednsidered to be connected by elastic springs. A load is applied
the image are not used in the feature composition because ttegach node consisting of an attractive force that acts to move
contain little useful information for characterization of specklehe node to the vicinity of areas of high feature energy. We start
patterns. Ideally, the center frequency of the bandpass (middieplacing a uniformly spaced rectangular grid over the region
portion) energy band should be chosen to correspond to tfeinterest of the image plane. The potential energy at nade
spatial frequency of anatomical tissue features (e.g., musglg, is a combination of the internal spring restoration energy
fascicles). &, and the feature energy possessed by the applieddead

Fig. 2 shows a B-scan of a human forearm that contains
groups of muscles overlying a bone, thiaa, along with the
corresponding compqsﬂe fea_ture map. As can be seen, \%eeres2 at each node is the total sum of the squared length
feature map emphasizes regions of highly structural cont%?]ta

4 d hasizes h . b as th nges of the springs connected to the netle- ¥}, d7,
and de-emphasizes NOMOgeneous regions such as the regipny, spring constant, is the composite feature energy at
at the left of the image and the bone at the bottom.

the nodal position in the unstretched configuration, hfw|?

, ) is the squared magnitude of the nodal displacement vector.

B. Feature-Adaptive Mesh Design The length changé; is expressed as the difference of the rest
The generation of a feature-adaptive mesh begins widngth L and the stretched length, i.e., d; = I; — L. In the

the allocation of nodes using the composite feature enengyesh design it is assumed that all springs are identical so that

map. Ideally the nodes should be distributed more or lef®y have the same spring constant. The choice of the spring

Em = E+E = Lke? — L¢;D? )
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@ (b)

Fig. 4. Allocation of nodes. (a) The initial quadrilateral mesh. (b) The mesh
structure after spring energy minimization in the first hierarchic level. (c) The
mesh after subdivision in the second level. The normal and floating nodes
are denoted by squares and circles, respectively. The normal nodes in (c) are
either inherited from the initial mesh in (b) or added when the intraelement
feature energy is high and interpolation error is small.

START

level=3

limit of nodal movement

Fig. 3. lllustration of the unstretched and stretched springs of a node.
Feature Extraction

constant can be used to control the degree of deformation of
the initial regular grid.

The formulation of mesh generation in terms of potential
energy can be used to determine a configuration of nodal
positions. This is done by moving a node to a location of
minimum nodal potential energy while fixing its neighboring

/Nodal Allocatlon/
nodes to their original locations. The movement of a node > /Defomable Block /
t.

Feature Tracklng

must be restricted so as not to produce a degenerate elemen Matchlng
The easiest way to prevent the degeneration of an element is
to limit the movement of a node within the boundary shown
in Fig. 3. The nodes at the boundary may be fixed so as to
retain a constant region of interest.

The mesh is incorporated within an hierarchic scheme in

/ Regularlzatlon /

. . yes
order to handle tissue displacements that are large compared —p/ Dense Motion Field /
to the size of grid element. In successive hierarchic levels after
nodal allocation, each mesh element is subdivided recursively no ¢ level—level_l L

into four finer mesh elements until the number of subdivisions

reaches an allowed value. Nodes are added to each element T_/ Mesh Subdivision /

its intraelement feature energy is above the threshold value

Fig. 5. Flow diagram of the mesh-based motion estimation algorithm.

/ C'f(z) d.’l,' 2 tf (3)
Do . "
] ) ] level. Fig. 4 demonstrates the mesh structure of the first two
and the interpolation error is below the thresheld hierarchic levels.
2
fu(®) = foqi(z+u)) de < t; 4)
/Dm ( 2 +1 )) I1l. NONRIGID MOTION ESTIMATION

where f; and fr41 denote the intensity function of the Fig. 5 shows a flow diagram of the implementation of our
reference and comparison frames, respectively, aarisl the mesh-based speckle tracking method. The algorithm starts with
estimated motion vector. The threshold valugsand¢; are an initialization step which extracts useful features, allocates
selected in such a way that only mesh elements with higlodes in the first hierarchical level and estimates initial tissue
intraeclement feature energy and low speckle decorrelatideformation by tracking successive frames of the compos-
undergo mesh division. The integration of feature energie feature energy map using the traditional block-matching
and interpolation error over an elemeht,, is calculated technique. The motion estimation step consists of two distinct
easily using the Gauss quadrature formulation describedparts: deformable block matching and regularization.

the Appendix. In order to ensure connectivity of the mesh The mesh design and motion estimation are implemented
structure, “floating” nodes are added to unassigned mdsierarchically in a unified framework. After the first pass,
elements. The position vectors of those nodes are unifornthesh elements are divided into finer elements. Position and
interpolated from their neighboring nodes from the previousotion vectors at newly added nodes are interpolated from the
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Jm is the Jacobian of the eleme?,,. The displacement
vectord is the estimated vector between the position of the
target node and the best-matched position in the comparison
parent element. Block matching is performed over reference
and comparison parent elements of normal target nodes only,
denoted by the seM.

The estimate of the motion vectas(x) at the target node

is given by
Fig. 6. lllustration of mapping of an irregular element to a regular parent

Boundary of Searching

element using a Lagrange shape function. The boundary of the allowed search 9
region is marked using dashed lines. In this illustration, Node 9 is the target Uy = Z Nix’{ (L) -1
node. i=1
9
existing nodes in a neighborhood. Deformable block matching U2 = Z Nia3(i) — a2 (6)
and regularization procedures are executed again to update =1
the estimates. whereN is the Lagrange shape function calculated withe.,

Production of a dense motion field in which motion vector®/(d;, d»), = is the position vector of the target node in the
are obtained for all pixels in the image can be achieved usingdeformed configuration, anf is the nodal position vector
the inverse mapping of a four-node bilinear element [11] émn the deformed configuration.
the surface reconstruction method for sparsely distributed datafhe deformed configuration af is admissible only to a

points [12]. configuration that satisfies internal compatibility. The compat-

In the following, we shall describe the deformable blockility constraint is a nonzero Jacobian of the mesh element,
matching and regularization steps. satisfying.J,,, > 0. This implies that the comparison of match-

ing blocks is restricted to the region marked by dashed lines in

A. Block Matching Using Lagrange Elements Fig. 6, thus, preventing the possibility of mesh degeneration

Deformable block matching is achieved by the use of '8 the comparison frame.

Lagrange shape function capable of representing second-order o
local motions so that an algorithm based on the assumptign Régularization
of rigidity can be extended to the situation of nonrigid motion As speckle tracking is an ill-posed inverse problem, max-
estimation. The first step in deformable block matching is thmum likelihood estimators such as sum squared difference
mapping of an irregular mesh elemdnt, to a regular parent are inadequate for accurate motion estimation. Regularization
elementD,, as illustrated in Fig. 6. The parent element ofnethods [13] are therefore needed. In mesh-based motion
the target noder is mapped from a nine-node macro-elemergstimation, a conservative dynamic system is applied that has
using the Lagrange shape function (see the Appendix). Taepotential energy and boundary conditions. In the dynamic
transformation not only compensates for deformation due meesh structure, changes in the shape or size of a mesh element
local nonrigid motion but also facilitates the manipulation afesulting from an applied “imaging force” are considered to
irregular mesh elements. Since the transformation of the mdsh associated with a strain energy. The imaging force is a
elements in the comparison frame accounts for tissue deformsamilarity measure that preserves the intensity function at each
tion, a normal block matching algorithm can be applied oveinde.
the regular lattice of the parent element. Although the strain energy formulation makes use of the

The parent mesh element is discretized to a4 regular theory of elasticity and involves the use of stress and strain
grid. The intensity value at each grid point is interpolatettnsors, the reader is cautioned against relating these parame-
from the nodal values using (18). The discretization numbtars to the actual elasticity, stress, and strain within the imaged
of the parent element determines the potential sensitivity tisue. In our application, elastic theory is simply a convenient
the motion estimate, with the parent element resembling tbenstruct used to facilitate mesh regularization. Indeed, the
search window in traditional block matching. With a 35 selection of the elastic modulus in our model is completely
matching block at the target node in the reference parembitrary since a separate parameteris used to control
element, the data block is used to compare this with anothiee degree of regularization applied. The possibility of using
block positioned at a grid point in the comparison paremictual tissue elasticity for mesh regularization, perhaps using
element. The search procedure seeks an optimal solutionabgynamic iterative approach in which elasticity is calculated
minimizing the sum of the squared difference between the ddtam the measured displacements and then used to refine the
blocks in the reference elemett,, ;(s) and the comparison displacement values, is an intriguing one that is beyond the
element®,,, x11(s) scope of this paper.

L 2 If the system is assumed to be conservative so that the

& =3 fém (q)nuk+1(3 +d) - ‘Pm:k(s)) Jm ds, Ym €M aeq0ciated work depends only on the difference between the
(5) undeformed and deformed configurations, the total potential

whereB,, is the matching block is the image frame number,energy of the dynamic mesh system can be expressed as

s is the index of discretized grid of the parent element and E=E1+ & @)



950 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 17, NO. 6, DECEMBER 1998

where&, is the affinity energy based on the similarity measuttgas zeros everywhere except that the diagonal elements corre-
of matching data blocks anfl. is the deformation energy of sponding to the normal nodes are set to one. The equilibrium
the mesh structure. The boundary conditions are the prescrilbedfiguration is found from the stationary value of the total
values of the nodes. Since the potential energy is computeatential energy
using a nine-node macro-element (Lagrange element), the .
nodes at the boundary of the mesh are assigned with pre- dE = ([K]U— U) du = 0. (14)
scribed motion vectors obtained by traditional block matching
methods.

The affinity energyé, has the form

When the configuration of nodes is in equilibrium, the total
potential energy in (13) is at minimum for a stable system. Al-
though the optimal configuration can be calculated by solving
&y = % (um(x) — @m(x)f Ym € M (8) thelinear equations of (14), the computation is formidable for a
large number of nodes. Iterative methods should, therefore, be
where i, (z is the motion vector estimated by deformablgsed instead. Many gradient descent algorithms can be used to
block matching at the normal nodes (denoted.bf). The minimize the energy function. The conjugate gradient descent
deformation energy. is given by (CGD) algorithm [15] is particularly well suited because of its
AT 1 T effectiveness in using the gradient information of a quadratic
fe=yU KU =5 fp, e Belnds, ¥meM, 7 (9) equation such as (13). The gradients£pfand&. in (7) have
wheree is the strain K, is the stiffness matrix is a matrix the form

of regularization parameters, arfl is the set of all floating 08y . v M 15
nodes (the strain energy constraint is applied to both normal O Umn(&) = Gm(2), Vm € (15)
and floating nodes). The values of strain are computed from
the nodal displacements using the strain-displacement relat
— ixB is 0i &, &,
e = Bu. The matrixB is given as e o :/ ¢EBJ, ds, ¥mc M,F. (16)
U Tm Dm

B=TDy (10)
Readers are referred to [15] for a more complete explanation
wherel is the inverse of the Jacobian matrix ab; consists of the CGD algorithm.

of the derivatives of the shape function of the Lagrange ele-
ment (see the Appendix). Since the external load of similarity
matching is applied over the 2-D imaging plane, an isotropic

plane stress model can be used in formulating the marix In order to provide a suitable test of the reliability of the
algorithm for speckle tracking, experiments were performed

IV. EXPERIMENTS AND RESULTS

oE L v 0 using synthetic images, computer-simulated rotation and com-
E= 1.2 v 1 1 0 v (11) pression, phantom experiments of translation and compression,
0 0 5 and ultrasound images of muscle contraction. In the exper-

iments that used synthetic images and computer simulations,

where « is a regullarlzgnon ’parameteE IS the Young’; the performance of the proposed algorithm with different types
modulus [14], and- is Poisson’s ratio. For soft tissues, whlcr'bf nonrigid motion was tested. In the experiments in the

are nearly incompressible, Poisson’s ratio approaches 0.5 ntom, the robustness of the algorithm in handling speckle

hhence, Itl seems reasonable to apply thde Sz;;r_ne \(Ialue here. |S orrelation was demonstrated through the application simple
the regularization parametaris assigned arbitrarily to CONrol - ojied motions. Thén vivo experiments involving muscle

the degree of mesh deformation, the Young’s modulus does 'EBEtraction evaluated the performance of the algorithm in a
need to be determined for a homogeneous mesh structure ‘Wgre realistic, although less controlled situation

uniform stiffness. In the case of plane stress, strain has three

components A. Simulation of Nonrigid Vibration
Ouy In the ideal case the accuracy of the speckle tracking
€, UL 1 g?‘l algorithm should be tested in a situation in which the actual
e=| e, | = U2 2 = 8“2 . (12) motion is known. Because of the difficulty in producing known
Yoy o Ut,2 + U2,1 o, *2 o, nonrigid motion fields in biological tissues and of accurately
3 -+ 3 . measuring internal displacements by other means, we chose
o 1

instead to simulate motion fields using finite element methods.
C. Minimization Algorithm Fig. 7 illustrates a 2-D inhomogeneous simulated tissue
phantom consisting of a hard inclusion embedded within
a softer homogeneous material. The hard inclusion has a
E=lUKU - UU + ¢ (13) Young's modulus [14] of 40-k Pa and is embedded in a media
with a Young’s modulus of 10-k Pa. The dimension of the
where[K] = [K.]+1, U contains the nodal motion estimatesissue phantom is 10 cs10 cm. The inclusion is a square-
by deformable block matching at the normal nodes only, andshaped region of dimension 2 ca2 cm. A sinusoidal force
contains the constant terms. The matfjxhe identity matrix, was applied along the plane of symmetry and a finite element

The total potential energy in (7) can be written as
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' 30 Hz sinusoidal
force function
1
]
1
1
1
1
1

E,;=10KPa
E ,=40KPa 2 cm 10 cm
1 cm

-~

5 cm

Plane of Symmetry

Fig. 7. Parameters used in the FEM simulation of tissue motion.

Schwendler Corp., Los Angeles, CA) was used to simulatg’
the nonrigid tissue motion [16]. : s
Ultrasound image sequences of speckle patterns were sim-
ulated using Rayleigh statistics. A second speckle image was : 5

mapped from the first image using the tissue motion at a (e)
finite time delay, simulated by the finite element analysﬁg. 8. Surface plots of the motion components showing mesh-based motion
software. Warping of speckle pattern rather than the tisstig&king results of FEM simulation data: (a) actual motien, (b) actual

scattering function, however, eliminates the effects of speckgtion u2, (c) reconstructed dense motion field, (d) reconstructed dense
motion fieldus, (e) reconstructed dense motion field based on noisy images

dec_orrelat'on' ) (SNR = 10 dB), and (f) reconstructed dense motion fieldbased on noisy
Fig. 8 shows the surface plots of the horizontal and images (SNR= 10 dB). TheZ axis represents motion amplitude, whilé

vertical u; components of the motion vector field. Surfacedd}” axes represent the spatial coordinates.

plots (a) and (b) are the actual motion components generated

by the finite element analysis software. Plots (c) and (d) are th@dulus £ have a profound effect on the smoothness of the
dense motion field reconstructed from (a) and (b), respectiveﬁﬁltimatEd motion field. While the degree of smoothness in the
To evaluate the performance of the algorithm in the presencefrd inclusion seems to be adequate, the motion field in the
noise, the two image pairs were corrupted with Gaussian nofft surrounding region is over-constrained.

(SNR= 10 dB) and the motion vectors were then recomputed,A variable parameter adaptive to the elastic properties of
as shown in plots (e) and (f). the tissues may be useful to control the degree of smoothness
From the results, it is demonstrated that the speckle trackilfy different physical regions. However, this is beyond the
algorithm successfully tracked the nonrigid motion field, evetfope of this paper. For an homogeneous tissue medium,

under noisy conditions. The mean squared tracking errdté€scribedts need not be computed sinceis a user-supplied

[8] in pixels for noise-free and noisy images were 0.73 arﬁpntrol parameter. Increasing the valuexairould be expected .
1.23, respectively. These errors were small compared to {Qeincrease motion smoothness at the expense of motion
maximum motion amplitude (6.2 pixels). It can be noted thafetail, whereas decreasimgcan be expected to increase the
although the basic form of the estimated motion matches thelihood of incorrect estimates.

of the actual motion, the algorithm does not track motion as ) ) )

accurately along the image boundary as in the center. ThisBis Simulation of Rotation and Compression

due to two reasons. First, the nodal motion vectors along theBoth rotational (8 clockwise) and compressional (10%
image boundary have prescribed values obtained by traditiomattical compression and 10% horizontal expansion) motion
block matching which does not take tissue deformation infeelds were used to test the performance of the mesh-based
account. Second, the regularization paramet@nd Young's speckle tracking algorithm. Ultrasound image sequences were
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Fig. 9. Dense motion vector field of mesh-tracking results of simulated (a) rotation and (b) compression.
created by warping a Rayleigh-governed envelope-detectgd
speckle image into another image frame using the simulated 8 Extend o Data .l
motion fields. The ultrasonic frequency in the simulation &
model is 5 MHz and the pixel to meter ratio is 6800. The i
region of interest of the rotational motion field was 9395 6! Control
pixels (2.87x 2.87 cnf) and that of the compressional motion| &
field was 120x 120 (1.76x 1.76 cn?). H o o
. . . . i - Storage
Fig. 9 shows the motion vector diagrams of the trackingommercia1 us scanner
results. The tracking errors in pixels are 0.70 and 0.62 for %
rotation and compression, respectively. linear—array
US transducer
0 0 :
||
C. Phantom Experiments coupling gel ———»c—
. . i Soft-tissue 3D sitd
Translation and compression experiments were performed mimicking posThRenes
using a gelatin-based tissue-mimicking phantom of dimension phanton /

14.5cmx 9.8 cmx 5.6 cm. Fig. 10 illustrates th_e experimental;, 1o Diagram of the experimental setup.
setup. Ultrasonic echo data was collected using a GE LOGI
700 scanner with the Extend package. The Extend package
transferred 8-b B-mode digital ultrasound data directly from -
the commercial scanner LOGIQ 700 console to an on-board
computer for later transfer to an SGL @vorkstation (Silicon
Graphics, Inc., Mountain View, CA). A linear-array ultrasound Z =
transducer (5 MHz), fixed firmly to a 3-D manipulator, was i
placed on the top of the phantom. A 4 cn8 cm imaging s
region, corresponding to 300200 pixels, was selected. S

1) Translation: In the translation experiment, the trans- | =
ducer was linearly translated in 5 mmt (0.1 mm) lateral
increments. Each increment of translation corresponded to 3.7/6 o
pixels. A mesh, with a size of 128128 pixels and a total of z
256 nodes, was imposed onto the image frames for motion
tracking.

Fig. 11 shows the 2-D dense motion field tracking resuft
The mean-squared tracking error and PSNR were 0.141 pixels
(0.1302 pixels ins; motion component and 0.011 pixelstig 2) Compression:In this experiment, an homogeneous
component) and 71.98 dB, respectively. For translation mtissue-mimicking gelatin phantom was placed between two
tion, the tracking accuracy reaches 96.28% in this experimeplates. The top plate acted as a tissue compressor. The degree

ig. 11. Dense motion vector field resulting from the translation experiment.
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Fig. 13. Plot of vertical motion component of phantom compression using
feature adaptive mesh (mesh), full-scale (FS), multilevel (ML), and smooth
motion (SM) block matching (BM) methods.
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Fig. 12. Dense motion vector field resulting from the compression expe
ment.

of compression was controlled using a 3-D manipulator.
each compression step, the top plate moved downward by
mm. A transducer was placed within an opening in the bottc
plate underneath the phantom. The top plate was restorei L =t
its original position when it could move down no further. _ -
A 240x 240 mesh (640 nodes) was used for mesh-ba:
tracking. A dense motion vector field of the phantom cor
pression results is shown in Fig. 12. Fig. 13 plots the
motion component (averaged over ten-pixel columns along-
center) versus depth. The resulting curve, roughly a straiyric
line, agrees with the expectation of constant strain caused by @ )
a uniformly distributed stress in an homogeneous mediufiig. 14. lllustration of two image frames of a muscle contraction sequence
The expected displacement curve is plotted as a Solid straigferTeesec Wih (<) eformed and () indeformed mesh sctres The
line. For comparison, the displacement curves of previoushe ditferent regions, can be found in [8]. At first, no motion may be evident to
used block-based algorithms [8] derived from the same imatfje reader because the motions are small and quantized to integer pixel values.
ames are s guen. The mean Sauared acking errorifoca ot orsenson Tove, bty ony b st balars
pixels of the mesh-based tracking result is 0.005, while those
of block-based algorithms (FSBM, MLBM, and SMBM) are
0.034, 0.047, and 0.031, respectively. From the displacemafigw, CA) at a frame rate of 16 Hz. The resulting image
curves, the quantization effect is obvious for the block-basékig. 14) demonstrates a bright region at the bottom uthe,
algorithms. In this experiment, the mesh-based tracking algen top of which are the forearm flexor muscles, blood vessels
rithm significantly outperformed the block-based algorithmsand nerves. Two groups of muscles, the flexbgitorum
superficialisat the top right and théexor digitorum profundus
D. Muscle Contraction Experiment in the middle right are of interest in this experiment, as these

In order to evaluate the algorithm in living tissue, a compleX'® the muscles responsible for finger flexion. The subject
muscle motion experiment was performed. Although it was nb@as asked to bend his middle finger against resistance so as
possible to measure the true motion of the muscles indepép-contract these two muscles to a greater degree than the
dently of speckle tracking, we felt that the data obtained cou$girrounding musculature.
provide important insights into the ability of the algorithm to Two frames of the muscle contraction sequence, upon which
handle nonrigid motion fields from clinical data. the mesh structures have been superimposed, are illustrated in

The ultrasound image sequence was obtained by scannfiig. 14. It was observed that the mesh nodes migrated to the
the forearm from a single subject in cross-section usingl@cations of more structural speckle patterns and the vicinities
7-MHz linear array ultrasound scanner (Acuson, Mountaiof differentiated tissue structures were packed more densely
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____________________________ o mation method based on a deformable mesh that takes image
R NN gradient information into account. A closed-form technique
S SN has been suggested by Altunbasak and Tekalp [19] to compute
A AN the optimal motion vector at each node while preserving mesh
A PPN connectivity constraints.
S S s Our mesh-based speckle tracking algorithm differs from
A RS S these methods in many different ways. First, both mesh
SN design and motion estimation in our algorithm are specifically
N S I S S5 555 R designed for speckle tracking. The mesh serves as a superior
N IS idsss e s s ssstuphtt framework for ultrasonic speckle tracking in that mesh nodes
N M s s S 5 5 SR are allocated adaptively to anticipated stable speckle patterns.
NN LIl T Second, the ability of an algorithm to describe higher-order
S‘S N S S S E : olllIiliI Zizgijﬁ/////%//jjjjiﬁ local motion is ultimately limited by the type of mesh elements

N pemT T T YT e e ke 4/ e H H H
NN SIS SRR/ Y //ff///// used in m_esh tracking. We employe_d a nme-nod_e Lagrange
NN AR ERY Y1 ////jj element with deformable block matching to approximate local
NS A {l /M/////// motion to the second order. Finally, for the matching-based
NN O SN i”éﬂﬁﬁ methods, search procedures for optimal motion estimation
..................... - N _
...................... NSRS \H XEEEAY) within irregular mesh elements are cumbersome to implement.
...................... sy .
...................... R R R R AR We implemented a search process over the regular parent
A NN S S S S R A O '
...‘,........».,..v'..;;'lsx:::\:\:\\\xx elements, aSOppOSGdtOthe|rregu|armeShe|ementS-
......................... RN NN \ _ i o
L iiiiiiiniiiiiiiaaaaaaaaaan The extension of a block matching algorithm to nonrigid
A NN motion estimation is an important contribution of this paper.
"""""""""""""""" Ty The preference of using the Lagrange element over other

higher-order elements is due to its simplicity as an extension
Fig. 15. Dense motion vector field of muscle contraction. of the four-node bilinear element and its ability to exhibit all
possible deformations of a quadratic element. Elements that

with nodes. The dense motion vector field is plotted in Fig. 1 re higher than second-order could describe nonrigid motion
elds better still, but at the expense of increased complexity.

From the motion vector field, it is easy to differentiate amoné h ; fani lar el it | tel
the muscle groups involved in finger contraction. Although the € mapping of an irregular element to a reguiar parent ele-
nt offers many advantages in motion tracking. In traditional

actual displacements in various regions of the image are . . . . .
available, the estimated motion field is in agreement with tIJ.P ock ma_tchlng, Spr'Xel. motlon. es'ulmat.e; are qbtalned by
expected anatomical changes. m_terpola_tlon. Howev_er, this te_chmq_ut_e is difficult to implement
with an irregular lattice. By discretizing the parent elements,
finer motion estimates can be obtained by discretizing to
V. SUMMARY AND DISCUSSION a finer grid. Moreover, instead of checking for degenerate
In this paper an adaptive mesh has been proposed ¢ases in irregular elements, it is much easier to impose the
nonrigid tissue motion estimation from ultrasound image seempatibility constraint by restricting nodal movement in the
guences. A deformable blocking matching algorithm has begggular parent element.
developed which takes into consideration both similarity mea- Implementation of the algorithm in an hierarchic scheme
sures and strain energy caused by mesh deformation. &fers a solution to problems related to measurement of local
partitioning an image domain into polygonal elements, thHissue motion. A multilevel block matching algorithm for
mesh constitutes an efficient representation of image intenssfyeckle tracking that has previously been introduced [8] is
information. The treatment of speckle tracking using a mesidapted to the hierarchic structure of the mesh implementation.
structure has distinct merit in visualizing tissue motion. MaFhe nodal motion vectors from each hierarchic level are
nipulation of irregular mesh elements is aided by a wealth pfissed on to the successive levels such that the final estimates
well-established mathematical tools in finite element analysigill consist of the sums of the motion estimates from all
Recently, mesh-based motion modeling has also been slésels. The algorithm estimates coarse motion fields using
cessfully applied in digital video processing. A multiresolutiotarge mesh elements in the initial level and successively
representation called the quadtree spline has been proposasses the result to the subsequent levels, each of which
by Szeliski and Shum [17] to describe the motion field aswses smaller mesh elements than the previous level. This
collection of connected patches of varying sizes adaptive strategy helps to reduce the problems of motion ambiguities
the complexity of the motion. A preconditioned conjugatednd spatial aliasing in speckle tracking. Since each level has
gradient is used to solve for the motion estimates, regulatadfiner grid spacing than the last, initial estimates of the
by the smooth function of a coarse-to-fine spline contreldditional nodes are interpolated from the existing nodes in the
grid. Toklu et al. [18] proposed a mesh-based motion modalurrounding neighborhood, helping to accelerate convergence
under the mild deformation assumption to track the motiasf the minimization process.
of deformable objects such as a flying flag. Wang and LeelLast but not the least, the connectivity of the mesh and
[11] used an iterative gradient-based nodal motion vector edtie strain energy constraint effectively reduce the effect of
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Fig. 16. lllustration of (a) nine-node Lagrange parent element and (b) Gauss point locations in the Lagrange element.

speckle decorrelation caused by nonuniform movement of N3 = % (14 s1)(1+s2) — %NG — %N7 + %Ng
scatterers and out-of-plane motion. This strategy also handles  n, — L1—s)(14+s52)— LN — LN+ 11N

the problem of low SNR in ultrasound images by aligning the = l(1— ) (1 s)— LN

local data of weak estimates to those of strong estimates. One ° i 51 3; i 9

potential disadvantage of using the strain energy constraintis Ve =3 (1 +s1)(1 —s3) — 3 No

a blurring effect at motion boundaries. Fortunately, motion ~ N; =1 (1—s2)(1+s;) — 1 Ny

cc_Jnt|nL_J|ty_|s still val!d even at the boundaries Qf tl_ssues Ny = % (1—s1)(1—s2) — %Ng

with differing properties because the stress function is also B 9 9

continuous. In the experiment of a simulated motion field in No =(1—s7)(1 - 53) a7)

an inhomogeneous medium, the tissue motion was continuous L . .

across the boundary of the hard inclusion and its surroundiff§€res: ands: are intrinsic coordinates in the parent element.

soft medium. However, motion fields may be discontinuoys'€ Shape function has a value of unity at the node to which
at the boundaries under conditions of slip. This is the caldS related. It also has the property that the sum at any point
at the boundaries of different groups of muscles. Furth#thin an element is equal to unity. The efficiency of any

investigation is needed into discontinuity-adaptive methods fBrticular element type will depend on how well the shape
motion tracking of biological tissues. function is capable of representing the local displacement field.

The shape function of the Lagrange element is capable of
representing second-order nonrigid motion.
APPENDIX The initial step in finite element analysis is the unique de-
FINITE ELEMENT ANALYSIS scription of an unknown function within each irregular element

This section gives an overview of FEA techniques employé'a terrns of the var:u.es oflth|s lfuncuon at the no?\al p%'nti of
in the formulation of the proposed algorithm. Readers uan]e element. Each irregular elemed,,, can be thought o

miliar with FEA techniques are referred to [20]. Our approac?\S being deformed from a regular parent elemBpt. Both

involves making use of the shape function obtained fromtge displacements a_md coordinates can be ir_lterpolated_ from
finite element representation of an irregular mesh grid. AG€ nodal values using the same shape function. Coordinates
such, our method differs from more conventional approachis @nd«2 within an irregular elemenb,,, are defined by
in which FEA is used to represent a system of equations to 9 9
calculate the displacements resulting from an applied external . _ Z N, (i) and x5 = Z N, (). (18)
load (forward problem) or to derive the underlying tissue P} Pt
properties from known displacements (inverse problem).
The mesh is designed to approximate a function overSamilarly, displacements; andwu, are given by
continuous domain. The function within each mesh element o o
is interpolated from its nodal values. Such interpolation is L L.
denoted by a shape functioN. The shape function of a = Z Nita(i) and up = Z Niua(i) — (19)
nine-node Lagrange element, illustrated in Fig. 16(a), is given =t =t

by wherew; and, are displacements in the parent element.
L L L L The forward transformation of an arbitrary irregular element
Ny =z(1=s1)(1—-52)—5N5—5Ns+ 3 No into a regular one is important in manipulating the mesh
No=2(1+s1)(1—5)—3N;—2Ns+1Ny elements. The properties of the transformation are investigated
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by its Jacobian matrix/

g | 2| 2 Nis@a(0)
Jo1 22 > Nisy@1(4)

> Nijs, T2(i)
E Ni75l‘i’2(i)

(1]

(20)
[2]
which contains the derivatives of the shape function. The

derivative matrix of the shape function is given by 3]

— N1781 N2781 N3781 N4781 N5751
N1752 N2751 N3752 N4752 N5752

N7751 N8751 N9781:|

N7,52 NS,Sz N9752
The determinant of the Jacobian matfix= det[J] is regarded
as a scale factor that is the ratio of the adeadzs t0 ds;dss. o]
The coordinate transformation is unique and invertible if ancg
only if its Jacobian is nonzero everywhere. The Jacobian musfl
be positive for every mesh element. The inverse mdirisf
J22

J is given by
L
J|—J2 '

The determinant of the Jacobian matrix plays an importaﬁb]
role in the numerical integration of integrals. In finite element
analysis, an integral is evaluated numerically based on the
Gauss quadraturenethod, rather than analytically. The inte!?
gration over an arbitrary element can be accomplished over

Dy
[4]
(21)
[5]

(8]

_J12

r=J1!'=
Ji1

(22) 9

the regular parent element by a change of variables, as  [12]
[13]
I= / / fm(z) dzy dzs
Do [14]
1 1
= / / fnl(S)Jrn dSl dSQ. (23) [15]
- [16]

The right-hand side of (23) is calculated using the Gauss

guadrature rule which states that, for a functibhnumeric [17]
integration can be approximated as
(18]
25 40
—7%8—1((/)1+¢2+¢3+¢4)+8—1(¢5+¢6+¢7+¢8)
64
= 19
+ 57 %o (24) 19

where the functionp = ¢(s1,s2) is estimated at one of the 120]
Gauss points illustrated in Fig. 16(b).

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 17, NO. 6, DECEMBER 1998

REFERENCES

I. A. Hein and W. D. O’'Brien, “Current time-domain methods for
assessing tissue motion by analysis from reflected ultrasound echoes—A
review,” IEEE Trans. Ultrason., Ferroelect., Freq. Control. 40, pp.
84-102, 1993.

G. E. Mailloux, F. Langlois, P. Y. Simard, and M. Bertrand, “Restoration
of the velocity field of the heart from two-dimensional echocardio-
grams,”|EEE Trans. Med. Imagvol. 8, pp. 143-153, Apr. 1989.

G. E. Trahey, S. M. Hubbard, and O. T. von Ramm, “Angle independent
ultrasonic blood flow detection by frame-to-frame correlation of b-mode
images,”Ultrason., Ferroelect., Freq. Contrvol. 35, no. 1, pp. 34-44,
1988.

S. F. Levinson, F. Yeung, W. Walker, and G. E. Trahey, “A sonoelas-
ticity imaging display for 2-d speckle trackingUltrason. Imag, vol.

16, pp. 38, 1994.

F. Kallel, M. Bertrand, and J. Meunier, “Speckle motion artifact under
tissue rotation,”IEEE Trans. Ultrason., Ferroelect., Freq. Control.

41, pp. 105-122, Jan. 1994.

K. K. Shung, M. B. Smith, and B. TsuPRrinciples of Medical Imaging
New York: Academic, 1992.

R. F. Wagner, S. W. Smith, J. M. Sandrik, and H. Lopez, “Statistics
of speckle in ultrasound b-scandEEE Trans. Sonics Ultrasonvol.
SU-30, pp. 156-163, May 1983.

F. Yeung, S. F. Levinson, and K. J. Parker, “Multi-level and motion
model-based ultrasonic speckle tracking algorithmdjtrasound in
Med. Biol, vol. 24, no. 3, pp. 427-441, 1998.

A. C. Bovik, M. Clark, and W. S. Geisler, “Multichannel texture analysis
using localized spatial filters,IEEE Trans. Pattern Anal. Machine
Intell., pp. 55-73, Dec. 1990.

E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeper,
“Shiftable multi-scale transforms,JEEE Trans. Inform. Theoryvol.

38, pp. 587-607, Mar. 1992.

Y. Wang and O. Lee, “Use of two-dimensional deformable mesh
structures for video codingfEEE Trans. Circuits Syst. Video Technol
vol. 6, pp. 636-659, Dec. 1996.

F. Yeung, “Motion estimation and analysis of ultrasound image se-
quences,” Ph.D. dissertation, Univ. Rochester, Rochester, NY 1998.
T. Poggio, V. Torre, and C. Koch, “Computational vision and regular-
ization theory,”Nature vol. 317, no. 26, pp. 314-319, 1985.

Y. C. Fung,First Course in Continuum Mechanic3d ed. Englewood
Cliffs, NJ: Prentice-Hall, 1994.

G. H. Golub and C. F. van LoanMatrix Computations 3rd ed.
Baltimore, MD: Johns Hopkins Univ. Press, 1996.

K. Blakely, MSC/NASTRAN Basic Dynamic Analysis: User's Guide.
Los Angeles, CA: MacNeal-Schwendler, 1993.

R. Szeliski and H. Shum, “Motion estimation with quadtree splines,”
IEEE Trans. Pattern Anal. Machine Intelkol. 18, pp. 1199-1210, Dec.
1996.

C. Toklu, A. T. Erdem, M. |. Sezen, and A. M. Tekalp, “Tracking
motion and intensity variations using hierarchical 2-D mesh modeling
for synthetic object transfiguration@raph. Models, Image Processing
vol. 58, no. 6, pp. 553-573, Nov. 1996.

Y. Altunbasak and A. M. Tekalp, “Occlusion-adaptive, content-based
mesh design and forward trackindEEE Trans. Image Processingol.

6, pp. 1270-1280, Sept. 1997.

R. D. Cook, D. S. Malkus, and M. E. Plesi@gncepts and Applications
of Finite Element Analysis. New York: Wiley, 1989.



