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ABSTRACT

An algorithm for the reconstructions of ISO-resolution volumetric MR data sets from two standard orthogonal MR
scans having anisotropic resolution has been developed. The reconstruction algorithm starts by registering a pair of
orthogonal volumetric MR data sets. The registration is done by maximizing the correlation between the gradient
magnitude using a simple translation-rotation model in a multi-resolution approach. Then algorithm assumes that
the individual voxels on the MR data are an average of the magnetic resonance properties of an elongated imaging
volume. Then, the process is modeled as the projection of MR properties into a single sensor. This model allows
the derivation of a set of linear equations that can be used to recover the MR properties of every single voxel in the
ISO-resolution volume given only two orthogonal MR scans. Projections on convex sets (POCS) was used to solve
the set of linear equations. Experimental results show the advantage of having a ISO-resolution reconstructions for
the visualization and analysis of small and thin muscular structures.

Keywords: MRI, ISO-resolution reconstruction, Filtered back-projection, POCS

1. INTRODUCTION

For many clinical applications standard Magnetic Resonance Imaging (MRI) provides excellent images for a trained
human eye. This technology can generate images with high contrast among various soft tissues and organs. As a
result, MRI has become the modality of choice in many diagnostic studies of the head, spine, and joints.! But
for an automatic joint-motion analysis an autonomous system has to be able to segment several small and similar
structures. To improve the structure to structure contrast for improved brain segmentation several algorithms have
been developed which fuse two or more same plane brain MR imaging data sets.2® Although these multi-parameter
data sets improve the tissue contrast, they however do not improve the resolution. Based on our experience the
segmentation of musculoskeletal structures on MR images cannot be accomplished unless the resolution is improved.*:
The existing in-plane resolution with 300-400 micron pixel size is sufficient; however, the slice thickness of 1 mm
or higher is too large. Decrease in signal to noise ratio and limitations of gradient strength have hindered the use
of thinner slices. However if two orthogonal data sets are registered and fused that will result in a 3-dimensional
data set where voxel size and the thickness of the reformatted slices will correspond to the in-plane resolution of the
original images. Therefore we developed an algorithm which registers and fuses two orthogonal 3D musculoskeletal
imaging data sets and creates 3D isotropic volume data set. Goshtasby® proposed the fusion of long axis and short
axis images of the heart to enhance the image resolution. Here we propose a similar approach but with general
applications on MR images. In this paper we validate registration and fusion of the algorithm by comparing the
resolution in the fused data set to the original data set.

2. ORTHOGONAL IMAGE FUSION

The low inter-slice resolution inherent in MRI imaging is overcome by using two volumetric data sets. The scanning
directions of the data sets has to be orthogonal to each other, and then the data can be fused together in a single
high-resolution image. Figure 1 shows different MRI slices of two volumes of the shoulder taken at two different
orthogonal scanning planes. Although the fusion of the two volumes seems to be trivial, there are two issues that
have to be taken into account 1) the registration among volumes scanned at different time and 2) the overlapping of
sampling voxel volumes.
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Figure 1. (a) axial, (b) sagittal, (c) coronal views of the original MRI sagittal scan (left images) and axial scan
(central images) and the fused image (right images) of a human shoulder.
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Figure 2. Supporting region of the blurring function.

2.1. Image Registration

Remember that the goal is to create a high resolution 3D image from the fusion of the two data sets. Therefore, the
registration of both volumes has to be as accurate as the in-plane resolution. A lot of research has been done in the
area of medical image registration

;710 which is designed to register misaligned data set. Although these techniques can be used to register

orthogonal data sets, most of them are very complex. In this research it is proposed a very simple technique
developed to register two very similar orthogonal MRI images. This registration is done by assuming a simple
translation-rotation model; thus, a fair model for small and involuntary human motion between scans. We developed
an unsupervised registration algorithm that finds the point (z,y, z) where the correlation between the two data sets
is maximum which, by Schwartz inequality we know that is the point where they match. Assuming a translation
model, and given two functions u(z,y, z) and v(z,y, z) the correlation is given by:

r(z,y, 2) = u(z,y,2) xv(z,y,2) = ///u(a,ﬁ, Yv(z + a,y + B,z + v)dadBdy. (1)

If u(z,y, 2) is just a displaced version of v(z,y, 2), u(z,y,2) = v(z + Az,y + Ay, z + Az), then the maximum is at
(—Az,—Ay,—Az), the displacement between both functions. For MRI we have to remember that every voxel in the
magnetic resonance image is observing the average magnetization of an ensemble of protons at a small volume. We
can model this as the correlation of the continuous image by a small 3D window. Let us call g1(z,y, 2) and g2(z,y, 2)
the sampled volumes at two orthogonal directions and given by:

gl(zayaz) = f($;yaz)*w1($7y:z)*n($7y:z) (2)
g?(zayaz) = f(Z-l-AZL’,y-I-Ay,Z-I-AZ)*’I,UQ(.’L‘,y,Z)*Pi(IE,y,Z), (3)
where wi (z,y, z) and wy(z,y,2) are the 3D windows for the two orthogonal scanning directions, (Az, AyAz) is a

small displacement, and II(z,y, 2) is the sampling function. Therefore, the correlation of the two sampled volumes
is

91(1?, Y, Z) ) 92(1:7 Y, Z) (4)
= f(l? + All,y + Ay7z + AZ) * f(:c,y,z) * w1($7y72) * U&(IE,y,Z) * H(zayaz)'

Il

r(z,y,2)

This is just a blurred version of the original correlation, the exact location of the maxima is shaped by the blurring
function h(z,y,z) = wi(z,y, z) *wa(x,y, z). That is, the correlation is distorted by the function of h(z,y, z). Figure
2 shows an idealized window function for w; (z,y,2) and wa(z,y,z) and its corresponding supporting region of the
blurring function, h(z,y,z). Finding the displacement using the above procedure works fine for noise-free data;
but noise makes this search more difficult. Let g1(z,y,2) = (f(z,v,2) + ni1(z,y,2)) * wi(z,y, 2) and g2(z,y,2) =
(flz + Az,y + Ay, z + Az) + na(z,y,2)) * wa(z,y,2) be the corresponding noisy volumes, where n;(z,y, z) and
n(zx,y, z) are two uncorrelated noise sources. Thus, the correlation of g; and gs is given by

T(z’y;z) = gl(mayaz)*QQ(zayaz)
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= [fz+Az,y+ Ay,z + Az) x f(z,y,2) +
flz+ Az,y + Ay, z + Az) *ni(z,y,2) +
f(mayvz) *nQ(xayvz)] * h(:l:,y,z) *H(a:,y,z), (5)

and the maximum is no longer guaranteed to be given by the displacement, especially for functions with smooth
autocorrelation functions like standard MRI. The smooth autocorrelation functions makes the error bound to be
function of the noise power. Autocorrelation functions whose shapes are closer to a Dirac delta function é(z,y, z),
are less sensitive to noise. The former is the reason that many registration algorithms work with edges.® The
autocorrelation function of the gradient magnitude of standard MRI is closer to a Dirac delta function. Therefore,
the registration of the gradient is less sensitive to noise. Figure 3 shows a 1D example of the effect of the derivative
on the autocorrelation function of a band-limited signal. For this example a smooth derivative operator was used to
reduce the noise level. Therefore, our automatic registration was based on finding the maximum on the correlation
among the magnitude gradient of the two magnetic resonance images:

(A, Ay,Az) = Arg max / / / Vg1 (0, B, DIV a(Az + a, Ay + B, Az + )| dadBi, (6)

(Az,Ay,Az)

where in sampled images the gradient V can be approximated by finite differences.

199(2,9, 2)l| = /o (2,5, 2)2 + dy (2,9, 2)? + de(3,, 2)?, (7)
where

l(z,y,2) * g(x + 0z,y,2) — l(z,y,2) x g(x — dx,y, 2
dz(.z',y,z)z( y,2) * g( y )26z( Y,2) *9( y,2) ()

z,y,2z) x g(z,y + oy, 2z) = l(z,y,2) xg(z,y — dy, 2
dy(z,y,z):( y,2) *g(z,y + by )25( y,2)*g(z,y — by )’ ©)

Y

l(z,y,2)*xg(z,y,z + 62z) — l(z,y,2) * g(x,y,z — 0z

da(z,y,2) = (z,y,2) xg(z,y )%z( y,2) *g(z,y ), (10)

where dz, dy, §z are the sampling rates, and I(z,y, z) is a low pass filter used to remove noise from the images and
to compensate the differences between in-slice sampling and inter-slice sampling. The maximization of Equation 6
can be done using any standard maximization technique. We chose to use a simple hill-climbing technique, due to
the fact that we are dealing with small displacements. The hill-climbing technique evaluates the correlation at the
six orthogonal directions: up, down, left, right, front and back. The direction that has the biggest evaluation was
chosen as the next position. This simple technique works well for the registration of two orthogonal data sets, as
the one expected for involuntary motion during scans. To avoid being trapped in local maxima and to speed up the
process, we used a multi-resolution approach. This multi-resolution approach consisted in selecting the hill-climbing
step as half the size of the previous step. Five different resolutions were used. The coarser resolution selected was
twice the in-plane resolution of the system, and the smallest size was just 25 percent of the in-plane resolution. Even
though we used a very simple optimization approach the computation of the correlation of the whole data set can
be time consuming; therefore, the registration of two images can take time. To speed up the correlation of the two
data sets, we selected just a small subsample of the points with very high gradient, then those points were the ones
used in the correlation process.

Some images suffer from a small rotation. In this case we extended the algorithm to search for the image rotation.
The same hill-climbing technique was used to find the rotation between images; but instead of doing the search in
a three-dimensional space, the algorithm has to look at a six-dimensional space. This search space included the
three displacements and three rotations along each axis. At each step the rotation matrix was updated and used to
compensate for the small rotation between images. Figure 4 shows the fusion of two orthogonal images of the knee
data set, before and after registration.

2.2. Image Fusion

Once we registered the two images, we preceded to create an isotropic high resolution image from them. Due to the
different shape between voxel sampling volumes (ws(z,y,2) and w(z,y, z)), one has to be careful when estimating
every high resolution voxel value from the input data. Assume from our input pair that the first image has been
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Figure 3. Correlation of a 1D function. (a} Original Signal f(x) (b) Smooth estimate of the derivative magnitude
[gx)=|f(z)*[-1 —1000 1 1]}. (c) Correlation: (-)f*f, (+) g*g.
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(c)

Figure 4. Image registration and fusion. (a) Axial, sagittal and coronal slices of simple fusion without registration,
(b) simple fusion after registration, and (c) complete image fusion. The simple fusion is g(z,y, z) = 0.5g1(z,y, 2) +
0.5g2(z,y,2) and the complete fusion g¢(z,y,2) = hi(z,y,2) + ha(z,y, 2), where hy, hs are the two functions that
minimize the reconstruction error.
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Figure 5. (a) 4 to 1 voxel shapes. (b) 2D representation of the known values in a 4x4 window for 4 to 1 aspect
ratio voxels.

scanned in the x-direction and the other has been scanned in the y-direction. Therefore, there is high-resolution
information at the z-direction in both images. Figure 5a shows the voxel shapes of the two input images, where the
in-slice resolution is equal, and the inter-slice resolution is four times lower. Given this configuration, the problem
of filling the high-resolution volume is a 2D problem. If we concentrate in a single 4x4-voxel window of the high
resolution image, as seen in Figure 5b, then for every 16 high-resolution voxels there are only 8 known low-resolution
voxels; therefore, this is an ill posed problem. To address this problem, assume that every high-resolution voxel is
just a linear combination of the two low-resolution functions:

g(ac,y,z) :hl(m/schyvz)+h2(x’y/5d3z)a (11)

where hy, he are two functions that are back projected in such a way that

g](m/sdayvz): Z g(iE,y,Z) (12)
Veew

92(93ay/5daz)= Z g(m,y,z) (13)
Vycws

This represents a linear system with the same number of knows as unknowns. The known values are the observed
image voxels, while we estimate the values to back-project that match the observation. Noise and inhomogeneous
sampling make the problem a little bit harder; but this linear system can efficiently be solved using projection on
convex sets (POCS).!! Although, in theory, all the components have to be orthogonally projected, it can be shown,
that the following projecting scheme also works in this problem:

h,l€+l(w/sd7y7z) = hllc(m/sd7y,z)_

(nh}(2/50.9,2)4 ), ¢, h(@.:v/50,2) =01 (2/54.9,2)n (14)
« n2+m
hs*'(z,y/sa,2) = B5(2,y/54,2)—
(mh5(2.9/50,)+3 ¢, hE(2/50:0,2)=92(3.9/52,2))m (15)
« n+m? )

where 0 < @ <1, n = 3uicus M = Dvrcw,s M(2,Y,2) = g(z,y,2) and h(z,y,2) = g2(x,y,2) are the initial
guesses for the estimation of back-projected functions. The advantage of this approach over standard orthogonal
projection is that its equations are simpler, and they can be implemented efficiently on the computer.

3. EXPERIMENTAL RESULTS

At least two MRI data sets, acquired in orthogonal planes to each other are needed to reconstruct a high resolution
isotropic volume. The reconstruction is done after registering the mutually orthogonal sequences as those seen in
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Figure 6. Left, fusion of unregistered volumes. Right, fusion after registration

Original Axial slice

After fusion:
Multiple Slices.

Figure 7. Shoulder fusion: One original slice and the four corresponding reconstructed slices from the fusion of two
orthogonal sets.
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Figure 8. Improved definition and contrast of the fused shoulder image.

Figure 1. The registration is done by assuming a simple translation-rotation model and by maximizing the correlation
between the magnitude of image gradient. The maximization was done using a very simple hill-climbing algorithm.
Figure 6 shows the result of fusing a data set with and without registration. Once both orthogonal sets have been
registered to each other, we proceed to fuse them into a single isotropic volume. A back projection model is used to
reconstruct the isotropic image. This model allows the use of projection on convex sets (POCS) to solve the set of
linear equations that minimize the reconstruction error from the two original MRI sets. To validate the algorithm
one volunteers shoulder and four volunteers knees and one wrist were MR imaged on a 1.5 T Signa Horizon (GE,
Milwaukee) clinical imager. The shoulder images were acquired in coronal and axial, the knee and the wrist in
coronal and sagittal plane using 10 or 11 cm FOV, 7 cm for the wrist, 256 x 256 matrix, and 1.5 mm slice thickness
except 1 mm slice thickness for the wrist and 2 mm for the shoulder. The images were acquired using a 3D GRE
sequence with TE adjusted to produce T1 or T2 *-weighted information. For shoulder and knee at least one of the
data sets was also fat suppressed. Image data sets were then transferred to a Silicon Graphics Octane workstation
for data fusion and segmentation. To validate the registration and fusion algorithm the registered and fused data
sets were reformatted to produce two orthogonal 3D imaging series to correspond to the original images. Further the
fused and non-fused image data sets were reformatted to produce nonorthogonal planes. All these series as well as
the original image series were evaluated in the following way. The visualization and the borders of menisci, articular
cartilage, synovium, subchondral bone plates, cortex, muscle in knee and labrum, bone, subchondral bone plate,
capsule, muscles in the shoulder and cartilage, subchondral bone plates and cortex in the wrist were evaluated. After
that, the results were compared. To evaluate the effect of the fusion to the image segmentation both the fused data
sets and the fat suppressed original data sets were segmented using our segmentation algorithm. Then the segmented
2D images and 3D image data sets were evaluated in the following way. In the knee the segmentation of both menisci,
that of the articular cartilage of lateral and medial condyles in fused 2D and 3D image sets were compared to the
segmentation from the original data sets. In the shoulder the segmentation of labri and cartilage was evaluated in
the same way.

In the fused image sets the reformatted slices had a slice thickness which corresponded to the in-plane resolution
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Figure 9. Improved definition and contrast: Knee fusion

of the original data sets. Therefore the number of reformatted 2D images at least tripled in the fused data sets.
The increased number of slices allowed evaluation of the structures in more slices than the original data sets as seen
in Figure 7. In some cases the joint had changed its position between the acquisition of two data sets6. Since the
algorithm registered the second data set along the first data set the anatomic structures in the fused reformatted
slices did not orient exactly in the same way as they did in the original images. Therefore, when the images were
compared to each other several images from the fused data set needed to be compared to one of the original data sets.
When the visualization of the borders of anatomic structures were compared to each other, the anatomic structures
in the knee, shoulder and wrist fused images were better defined than in the original images. Cortical bone as well
as the subchondral bone plates appeared thinner in the fused images. This difference was especially clear in the
nonorthogonal images. Figure 8 and 9 show the improved definition of these features on the fused images.

4. CONCLUSION

This study showed that our registration and fusion algorithm can register and fuse orthogonal 3D GRE images even if
there is slight motion between the acquired image series. It also showed that the fused data sets with ISO-resolution
improved structure detection and definition. The isotropic volumes created allows high resolution evaluation of the
structures in arbitrary planes. This will improve the detection of those anatomic structures whose anatomic direction
does not allow their visualization in a routine orthogonal imaging plane. This study also showed that improved
resolution improved the segmentation of small anatomic structures of the joints including cartilage and menisci in
the knee and cartilage and labri in the shoulder. The chemical shift artifact in the fused orthogonal images however
causes blurring of the images. Therefore is preferred that the fused sequences should be fat suppressed. If water
only/ fat only sequence, which eliminates the chemical shift artifact, is used for image acquisition, misregistration,
however, can be avoided.
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