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ABSTRACT

Desynchronization vulnerabilities have limited audio watermarking’s success in applications such as digital rights
management (DRM). Our work extends (blind-detection) spread spectrum (SS) watermarking to withstand time
scale desynchronization (insertion/deletions) by applying dynamic programming (DP). Detection uses short SS
watermark blocks with a novel O(N log N) correlation algorithm that provides robustness to time shifts and
the resulting offsets to the watermarking domain transform. To withstand insertion/deletion, DP techniques
then search for sequences of blocks instead of detecting SS watermarks individually. This allows DP techniques
to govern the tradeoff between long/short SS blocks for non-desynchronization/desynchronization robustness.
However, high dimensional searches and short SS blocks both increase false detection rates. Consequently, we
verify detections between multiple, simultaneously embedded watermarks. Embedding multiple watermarks
while considering host interference, compression robustness, and perceptual degradation to the host audio is a
complex problem, solved using a set theoretic embedding framework. Proposed techniques improve performance
by multiple orders of magnitude compared with naive SS schemes. Results also demonstrate the tradeoff between
non-desynchronization/desynchronization robustness.

1. INTRODUCTION

Robust watermarking is a complex problem which has inspired practical and theoretical work in fields ranging
from signal processing and communications to information theory. In applications such as DRM, watermarking
presents a solution to embed traceable signals in digital signals before distribution. To detect copyright infringe-
ment, watermarks must remain detectable after common operations such as MP3 compression. Inadvertent
watermark desynchronization can also occur if portions of watermarked audio are used in musical mash-ups or
crowdsourced into other users content, e.g. www.zooppa.com for advertising jingles. Additionally, adversaries
may attempt to maliciously remove or desynchronize watermarks. Robustness to these attacks is critical for
many watermarking applications. We differentiate non-desynchronization and desynchronization robustness by
how well distortion fits an additive noise model. For example, MP3 compression adaptively quantizes audio in an
adaptive time-frequency transform domain, but does not change the time scale of the original audio (assuming
restoration of any MP3 downsampling). Because quantization in a transform domain is (signal dependent) addi-
tive noise, MP3 compression typifies non-desynchronizing distortion. Desynchronizing perturbations encompass
a wider range of modifications to the watermarked signal, including cases where the original time scale of the
audio is not preserved. This is challenging because many common concepts from communications apply only for
additive distortion or assume prior synchronization.

Two current techniques for robust watermarking rely on exhaustive search for embedded synchronization
marks, or specific invariant features of the original audio that survive desynchronization. Intrinsic features
used previously include musical beats for robustness to TSM (time scale modification),1 and distinct voiced
segments in speech signals.2 However these techniques rely on the presence of specially developed features and
must consider the reliability of those features after desynchronization. Difficulty modeling these concerns partly
explains why theoretical work has concentrated on exhaustive search methods.3,4 The DP technique we propose
in this paper builds on practical exhaustive search methods.5,6 Specifically, the proposed method first uses
correlation detectors for short SS watermark blocks followed by DP techniques to string together sequences of
detections for greater reliability. Performed in a brute force fashion, this search over all possible insertion and
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Figure 1. Transmitter, channel and receiver for the proposed framework. Audio signals are denoted x, y, and z. Watermark
blocks segmented from the SS chip sequences wA, wB and wC , are denoted wi and wj . rj and r′j are correlation signals,
and sj are synchronization points where each watermark block is detected.

deletion permutations is, however, computationally intractable and increases false positive errors; both are issues
that typically hold back exhaustive search methods. The dynamic time warping (DTW) algorithm allows the
proposed scheme to efficiently search over all possible combinations of insertions and deletions. This efficiency
decreases the need to limit the search space, e.g. repeated synchronization codes, which can cause security
vulnerabilities, such as watermark estimation and removal.5 Additionally, our scheme reduces false positives by
cross validating the overlapping structure of multiple embedded watermarks.

In addition to desynchronization, watermark robustness also considers non-desynchronizing perturbations and
host interference. Our scheme balances the conflict between robustness to these operations and perceptual fidelity
by embedding multiple watermarks using a set theoretic framework.7 This framework determines a watermarked
signal as a point in the high dimensional signal space that jointly meets the constraints of acceptable perceptual
quality and detectability for each of the individual watermarks in the presence of MP3 compression. MP3
compression is used as an archetype for non-desynchronizing perturbations because of the large body of research
aimed at encoding at the lowest possible rate (or equivalently, increasing the limit of MP3 quantization noise
that can be introduced) while maintaining perceptual fidelity8 a constraint that generally applies to malicious
attacks.

DTW based synchronization has been previously demonstrated for non-blind watermarks,9,10 where the
original unwatermarked audio signal is assumed to be available at the detector and synchronized with the
received audio based on features of the audio signal, without reference to the watermark. Also in the non-blind
detection category, Ref. 11 proposed embedding of watermarks via modulation of the time scale and detection
by using DTW to align with the original audio. The method presented in this paper, in contrast with these
prior methods, accomplishes synchronization for the blind-detection scenario by integrating DTW with blind SS
detection.

2. INSERTION DELETION ROBUST WATERMARKING

2.1 Framework

To address robustness to both desynchronization and non-desynchronization perturbations, our watermarking
scheme uses the framework shown in Fig. 1. The transmitter embeds three SS watermarks,wA, wB , and wC , into
the original audio x for subsequent cross-validation at the detector. wA, wB , and wC are composed of pseudo
random ±1 chips, and known to both the transmitter and receiver through a shared secret key. The watermarked
audio, produced using the set theoretic framework, is denoted by y.

Because time-frequency resolution is critical to how humans perceive distortion in audio,8 and consequently
influences how MP3 compression distorts signals, watermark embedding occurs in a transform domain. Our
method uses the same PQMF (polyphase quadrature modulated filterbank) as MP3 compression,12 in order to
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leverage well-developed perceptual models as well as better estimate distortion caused by MP3 compression.
The PQMF transform splits the audio into K equal bandwidth subband signals, each downsampled by a factor
K from the original sampling frequency. Subband signals are distinguished by the subscript k that indexes
subbands. The downsampled timescale is indexed by n. A near perfect-reconstruction inverse PQMF filterbank
reconstructs the time domain watermarked audio after the watermark chips are embedded.

The next module, the channel, models desynchronization and non-desynchronizing operations. We choose
insertion, deletion, and MP3 compression as typical challenges of both robustness classes mentioned. Insertion
and deletions desynchronize detection by destroying the correspondence between where watermarks are embedded
in y and the expected detection locations in z. Figure 5 shows one of the more severe sets of insertions and
deletions randomly generated by our prototype channel. After potential desynchronization, the channel applies
MP3 compression to the audio, and a decompressed version z, is passed on to the receiver.

The receiver is shown in Fig. 2. Classical detection of long SS watermarks is inappropriate when desyn-
chronization is a concern. Consequently, before correlation, the receiver segments wA, wB , and wC into short
blocks wj . Correlations are computed efficiently using an FFT method robust to time shifts. Forward backward
reinforcement and DTW counteract decreasing interference rejection of shorter SS blocks by searching for the
appropriate series of detection peaks in the correlation signals rj , to locate the synchronization points, labeled
as sj in Fig. 2.
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Figure 2. DP detection searches correlations (plotted) for a maximal sequence of detection peaks whose indices (circles) are
the synchronization points sj . A conceptual detection window bounded by minimum separation between block detections
tmin,DTW, is shown (dashed lines). Synchronization and feasibility complications within the correlation calculations are
discussed later and not depicted for simplicity.

DTW synchronization motivates our embedding constraints, forward backward reinforcement, and cross
validation. To appreciate the need for these auxiliary steps, DTW is conceptualized as selecting the highest
correlation peak occurring within a detection window for each watermark block, as in Fig. 2. Detection windows
for each sj are bounded by the minimum separation from the neighboring sj of the optimal DTW sub-sequences
in either direction. Errors occur when the correlation score for an embedded watermark block is not the maximum
within its detection window. The set theoretic embedding methods account for this local maximum requirement
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by incorporating watermark SNR constraints into informed embedding. DTW detection also disregards local
information. For example, a detection window for the last genuine watermark block present before an insertion
will span from the previous block detection over the entire inserted segment to the detection of the following block.
To favor expected locations at either end of an insertion where local information suggests a block would fit in
sequence, forward backward reinforcement spreads high correlation scores to rj of nearby blocks at the expected
separation. However, reinforcing expected block spacing degrades cross validation which relies on spacing to
verify genuine detections. To balance this tradeoff between false negatives/positives during detection/verification,
forward-backward reinforcement is performed independently for the multiple watermarks while cross validation
works across all watermarks as in Fig. 4. Validation is critical because DTW will always return a maximum
sequence of detections even for unwatermarked z, as results in Fig. 5(b) show.

2.2 Set Theoretic Embedding

Set theoretic embedding uses convex sets of audio signals, Simperceptible and Sdetectable,i, to enforce perceptual
transparency and watermark robustness, respectively. The following section defines these sets and corresponding
projections onto convex sets (POCS)7 that iteratively produce a watermarked signal, y from the intersection.

Projections onto Simperceptible enforce watermark imperceptibility using a perceptual model13 applied to x.
The model calculates thresholds, βk[n], for each PQMF sample below which distortion is inaudible. These
thresholds define the convex set of perceptually acceptable signals, Simperceptible, as a high dimensional box
around the audio subbands xk, which yk should not breach:

Simperceptible ≡ {y : |yk[n]− xk[n]| ≤ βk[n]} . (1)

Projections onto this box enforce hard limits on embedding distortion to produce:

y′k[n] =


xk[n] + βk[n], if yk[n] > xk[n] + βk[n],
xk[n]− βk[n], if yk[n] < xk[n]− βk[n],
yk[n], otherwise.

(2)

The remaining convex sets, Sdetectable,i segment wA, wB , and wC into I blocks indexed by i to insure water-
marks are detectable throughout a watermarked z. Detectability depends on SNR between genuine correlation
peaks and nearby false positives within detection windows. Correlation∗ for each watermark block wi, are

ri[n] =
1√
BK

K∑
k=1

B∑
m=1

wi,k[m] · ceps {zk[n + m]} . (3)

B is the number of chips in wi,k, in each PQMF subband, and ceps{·} denotes adaptive cepstrum filtering used
to reduce host interference before correlation.5 Cepstrum filtering removes a few strong low cepstral coefficients
which approximately corresponds to and an adaptive whitening filter. Each wi,k is embedded at sample ni,true

such that ri,true = ri [ni,true] is the genuine detection peak. Forward-backward reinforcement is neglected during
embedding because it also depends on SNR such that if ri,true is a local maximum the appropriate neighboring
correlations will be reinforced. Sdetectable,i enforces robustness by considering distributions of ri calculated from
z. ri,true and nearby false positive ri are modeled as uncorrelated†, normally distributed random variables with
means: E {ri,true} and 0, and variances: σ2

i,true and σ2
i,false respectively. The signal amplitude term for the SNR

is the expectation:

E {ri,true} =
1√
BK

K∑
k=1

B∑
m=1

wi,k[m] · ĉeps {yk[ni,true + m]} , (4)

∗Correlations in (3) neglect possible delay in z that can offset the transform producing zk. Therefore, (3) only applies
at the transmitter where the time scale is fixed.

†Forward backward reinforcement introduces correlation in the r′j in Fig. 2 but the random ±1 nature of wi,k results
in no correlation between consecutive ri in (3).
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where ĉeps{·} approximates ceps{·} by fixing the adaptive filter response of ceps{xk[n]} and assuming subsequent
changes on x will have little effect. Neglecting dependence between host interference and MP3 distortion,
variances σ2

i,false and σ2
i,true sum to produce the noise standard deviation for the SNR, σi =

√
σ2

i,false + σ2
i,true.

For informed embedding, host interference only contributes to σ2
i,false, and is approximated,

σ2
host,i =

1
BK

K∑
k=1

B∑
m=1

ĉeps {xk [ni,true + m]}2
. (5)

Distortion from MP3 compression adds variance throughout ri, contributing to both σ2
i,false and σ2

i,true. The
additional variance is estimated as

σ2
MP3,i =

1
BK

K∑
k=1

B∑
m=1

N
K∑

`=1

|Tk [`, ni,true + m]|2 · (ĉeps ·∆k[`])2

12
, (6)

using MP3 quantization step sizes ∆k[`], taken from an MP3 file of x, with ` indexing the MDCT coefficients
from each subband. Tk [`, n] represents the additional modulated discrete cosine transform (MDCT) that MP3
applies after the PQMF and before quantization. Because ĉeps{·} is implemented in the MDCT domain, gains
can be applied directly to ∆k corresponding to the abuse of notation in (6). Combining σ2

i,false and σ2
i,true, the

noise standard deviation for the SNR becomes

σi =
√(

σ2
host,i + σ2

MP3,i

)
+ σ2

MP3,i. (7)

The resulting SNR constraint for each wi is

Sdetectable,i ≡
{

y : 20 log10

E {ri,true}
σi

≥ SNR
}

≡ {y : E {ri,true} ≥ τi} , (8)

where τi = 10
SNR
20 σi is an adaptive threshold that adjusts to varying interference for each wi,k, and E {ri,true}

is given in (4). The resulting detectability projections are found by simplifying (4) to a dot product‡ and
substituting into (8). This reveals that each Sdetectable,i bounds ĉeps {yk} away from the origin to the far side of
a hyperplane, 1

B wT
i,k · ĉeps {yk} = τi. Using ĉeps−1{·} for the inverse frequency response of ĉeps{·}, the resulting

projections for each Sdetectable,i are

y′k =

{
ĉeps−1 {ĉeps {yk}+ wi,k · (τi − E {ri,true})} , if E {ri,true} < τi

yk, otherwise.
(9)

To produce y from the initial audio signal x, each POCS iteration first applies the series of projections, (9) for
all watermark blocks not meeting detectability constraints. Each iteration then applies (2) to enforce perceptual
quality and passes the resulting audio signal to the next iteration.

2.3 Robust Transform Domain Correlations

At the receiver, calculating each correlation rj [t], requires exhaustive search over PQMF transform analysis
window offsets to preserve detection peaks. Our technique uses an auxiliary FFT domain to reduce complexity.
This technique consolidates calculations between both watermark blocks and subbands, and leverages sparsity
of band limited subband signals. Notation uses X[ν] = FN {x[t]} and x[t] = F−1

N {X[ν]} for a N point FFT
and its inverse; ν indexes discrete frequency; W ∗ denotes the complex conjugate of W ; ∗ represents convolution;
and δN {ν} is a unit impulse train defined as 1 for ν (mod N) = 0, and 0 otherwise. Because we leave PQMF
subband oversampled, t from the original audio signal indexes time rather than n.

‡Dot product in (9) assumes wi,k and dceps {yk} are rearranged into column vectors
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Figure 3. Correlations between watermark blocks, wj and z are performed in the FFT domain. Plot 1 shows the 4th
subband extracted from the FFT spectrum of z in (10). Plot 2 shows the frequency domain upsampling of watermark
subbands in (11). Plots 3 and 4 show the correlation score calculation in (12). Cepstrum filtering is omitted.

The first operation shown in Fig. 3 extracts the band limited PQMF subband spectra,

Zk[ν] = FN {ceps {z[t]}} ·HPQMF,k[ν]. (10)

from z, according to frequency responses HPQMF,k[ν], of the K PQMF subbands. Generalizing to other embed-
ding transforms is a matter of updating the frequency responses, HPQMF,k[ν]. The FFT and multiplication with
K responses of N

K points each, is O(N log N).

In the second operation in Fig. 3, all subbands of wj,k[n] are transformed to the FFT domain before correla-
tion. The baseband spectra produced by FFT of the watermark block subbands are shifted up to the respective
frequencies of the PQMF subbands they were embedded in. Shifting also replicates the spectra to account for
aliasing of embedded power outside nominal subband frequencies. Wiener detection requires weighting these
shifted spectra by expected watermark power.§ These operations produce spectra for each watermark block
subband:

Wj,k[ν] =
(
FN

K
{wj,k[n]} ∗ δ N

K

{
ν + N

K (k + 1) (mod 2)
})

· |HPQMF,k[ν]| . (11)

The frequency inversion when (k + 1) (mod 2) 6= 0 is required by the PQMF. Complexity for all N
K point FFTs

in the K subbands and weighting (neglecting out-of-band power) is O
(
N log N

K

)
for each watermark block.

FFT domain correlations, shown third in Fig. 3, are calculated by multiplication:

rj [t] = F−1
N

{
K∑

k=1

W ∗
j,k[ν] · Zk[ν]

}
. (12)

§multiplying by |HPQMF,k[ν]| accounts for the factor HPQMF,k[ν] already present in Zk[ν] to result in overall weighting
by the PSD of each embedded watermark subband. This assumes the interference PSD is white after cepstrum filtering.
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Summing the K band limited subband correlations in the FFT domain is equivalent to summing in the time
domain, but saves computations both from the summation and IFFT. Overall complexity is dominated by the
O(N log N) FFT and IFFT used to extract subband spectra and produce each time domain correlation, rj [t].

2.4 Dynamic Programming Detection

Figure 2 gives an overview of the detection process, showing how DP searches through correlations to find the
maximum sequence of detections. Alignments resulting from these detection sequences are shown in Fig. 5 for
both watermarked and unmarked z.

The first step after FFT domain correlations generate rj , is forward backward reinforcement. Reinforcement
builds detection peaks using local knowledge disregarded by DTW. Two passes move through the watermark
blocks similar to how forward and backward probabilities are tabulated when training hidden Markov models.
Maximum previous and subsequent sequences of correlation peaks are recursively calculated as:

rforw[j, t] = rj [t] + D

(
max

tmin≤t′≤tmax
rforw[j − 3, t− t′]

)
(13)

and,

rback[j, t] = rj [t] + D

(
max

tmin≤t′≤tmax
rback[j + 3, t + t′]

)
(14)

respectively. Each correlation score is reinforced according to these previous and subsequent block sequence
correlations by combining rforw and rback, producing

r′j [t] = rj [t] + D

(
max

tmin≤t′≤tmax
rforw[j − 3, t− t′] + max

tmin≤t′≤tmax
rback[j + 3, t + t′]

)
. (15)

The limits tmin and tmax bound the range of correlation spacings reinforced. This allows robustness to some
tolerance in blocklength. The decay factor D < 1 limits the timescale that reinforcement works over. If
reinforcement persists for too long, errors are likely in cases where insertions or deletions disrupt the assumed
spacing of detections.

To find sj in r′j , detection uses DTW for robustness to insertions and deletions. DTW searches for optimal
alignment between a test and template signal by maximizing a total similarity measure. In the proposed scheme,
the template signal is the sequence of watermark blocks, wj , and the test signal is the received audio, z. The
similarity measure between each wj and z[t] is the reinforced correlation r′j [t]. DTW’s first pass through the
watermark blocks constructs a matrix, Q, of maximum total correlation scores. Each Q[j, t] holds the maximum
total score resulting from optimally aligning watermark blocks 1 to j of the received audio signal up to time t.
To allow dynamic programming, Q is filled recursively:

Q[j, t] = max


Q[j, t− 1] + r′insert[t] (Insertion)
Q[j − 1, t] + r′delete[t] (Deletion)
Q[j − 1, t− tmin,DTW] + r′j [t] (Detection).

(16)

1. Insertion of 1 sample of un-watermarked audio.

2. Deletion of audio where watermark block j was embedded.

3. Detection of watermark block j at sample t in z.

The detection case of (16) makes DTW synchronization especially useful for SS watermarks: adding a current
r′j to the total correlation of previously aligned blocks Q[j − 1, t − tmin], is equivalent to improving detection
SNR through increasing SS chip sequence length without decreasing synchronization robustness. tmin,DTW is the
min number of samples between detections of consecutive watermark block detections. Dummy terms r′insert and
r′delete bias the detection process against declaring weak correlation scores as detections similar to how adjusting
a MAP threshold can balance false positives and false negative errors.
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After the first pass, the last element in Q will hold the maximum correlation score resulting from the optimal
alignment of the entire sequence of watermark blocks. DTW then backtracks through the optimum alignment
in Q starting from the last element to find the times in the received audio where each watermark block was
detected or deleted. These times are the synchronization points, sj , given to the cross validation stage.

The last step at the receiver, cross validation, addresses the high false positive rate typical of advanced search
techniques such as DTW. Cross validation relies on the multiple watermarks embedded with the set theoretic
framework. Because watermarks overlap in both time and frequency, relative positions of nearby watermark
blocks are not disrupted by insertions or deletions. Validation shown in Fig. 4 requires at least 3 sj in sequence
must match expected spacing. Because forward backward reinforcement only favors expected separation within
watermarks (every third sj) it is unlikely that false positive are validated.

4−jw 1−jw +2jw

3−jw jw +3jw

2−jw +4jw+1jw

Aw

Bw

Cw

4−js 3−js 2−js 1−js js +1js +2js +3js +4js

time

alignment detections

Figure 4. The overlapping watermark blocks (segments wj−3,...,j+4) allow cross validation of the DTW synchronization
points (circles). To validate a sequence of detections the 3 separations shown (dotted lines) must match expectations.

3. RESULTS

To demonstrate set theoretic embedding and DP detection, watermarking trials use a small but diverse set
of audio clips ripped from original CDs to 16 bit PCM (pulse code modulated) .wav files at a sampling rate
of 44.1kHz. Trials explore performance tradeoffs over ranges of parameters instead of utilizing individually
optimized values for each operating point. We compare relative performance results against a baseline “naive”
SS scheme that directly uses the block correlations in Fig. 1 in a threshold detector for obtaining receiver
operating characteristics.

For each clip, 30 independent trials are performed. Each trial embeds 3 simultaneous SS watermarks in the
audio. Embedding uses a K = 32 band PQMF, but watermark chips in the lowest 2 subbands are set to 0 to avoid
host interference. Embedding and detection also remove content above 16 kHz to avoid using frequency bands
commonly discarded by compression. Set theoretic embedding constraints use distortion thresholds calculated
by Ref. 13 for perceptibility constraints, and estimate MP3 distortion using quantization step sizes taken from
an MP3 of the original clip produced using LAME version 3.98.4 14 with bitrate 128 kbps and the -h high
quality flag set. Adaptive cepstrum filtering at the receiver and its estimate at the transmitter are applied in
the MP3 MDCT domain which gives short time spectra with 576 frequency lines using all long blocks. As in
Ref. 5, cepstrums are taken by DCT of the short time spectra dB magnitude. The DCT uses a boxcar window
that ignores frequencies above 16 kHz, again to avoid compression cutoff frequencies. Removing the lowest 3
cepstrum coefficients is found to balance whitening host interference with preserving the watermark signals for
detection. Embedding blocks, wi use B = 240 chips per block within each subband, and target SNR = 20
dB for robustness¶. POCS was limited to 200 iterations with the perceptibility projection last to give that
constraint precedence in situations where convergence was not achieved. While watermarked audio sounded
transparent to our untrained ears, adherence to the perceptual model13 provides a more reproducible measure
of audio quality. Parameters for insertion deletion channel are set so lengths of preserved, inserted, and deleted
segments are exponentially distributed with expected lengths of 100,000 samples, 20,000 samples, and 20,000
samples, respectively. After each preserved segment there is a 1

3 chance of deleting a segment of watermarked
audio, 1

3 chance of inserting a segment of unwatermarked audio (randomly taken from the original clip), and 1
3

¶To improve embedding performance in the absence of convergence a slack term was added heuristically the robustness
projections, increasing τ by a factor of 1.5 to project yk into the interior of the set.
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chance of both. Compression in the channel also uses the LAME MP3 encoder14 with -h flag and bitrate of
128 kbps. Detection for all 30 trials was run 18 times, testing 6 detection blocklengths at 3 different warping
tolerances for each watermarked audio clip. Robustness to warping was not tested because correlations were
found to only withstand delay, not time/frequency warping. Figure 7 shows average block error rates over the
30 trials. Detection typically ran 10X slower than real time‖, but less naive DP implementations and removing
overhead due to MATLAB implementation hold significant speedup potential.

Results in Fig. 7 show the proposed DP detection scheme presents a significant improvement over typical
SS detection in the presence of insertions and deletions. To insure the reference naive SS scheme gives a fair
comparison many steps are shared from the proposed scheme, such that any improvement seen can be attributed
to the cross validated DP methods. The naive SS implementation embeds a single sequence of SS chips and
detects watermark blocks directly from correlation scores: no DP or cross validation are used after FFT domain
correlations. To account for the cost of cross validating multiple watermarks the single naive SS watermark is
embedded with the same overall PQMF subband distortion allowance used for the multiple watermarks:

ynaive,k = xk + wA,kβk. (17)

After wA is embedded in ynaive, insertions, deletions, and MP3 compression follow identical procedures as the
DP scheme. The naive scheme receiver uses identical cepstrum filtering and FFT domain correlation procedures
as the DP scheme. Fixing the detection block length between the two schemes provides equivalent watermark
localization and robustness. However, once correlation scores are generated, the naive SS detector simply records
the distributions of correlation peaks where watermark blocks are embedded and the false positive correlations
elsewhere. Using these distributions, given in Fig. 6, thresholds can be applied to produce the naive ROC curves
in Fig. 7.

As in Fig. 7, the tradeoff between robustness and accuracy is governed by DP detection through the choice
of block length and a warping tolerance parameters. Block length B, and warping tolerance γ, determine the

‖Benchmark run on 2.13GHz Core2Duo desktop machine without parallelization.
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Figure 5. Receiver aligns sj in the Rx signal (y-axis), to wj from the Tx signal (x-axis). Waveforms shown for reference
only. Detection is blind. Plots 5(a), 5(b) show detection response to watermarked/unmarked audio. Insertion/deletions
are distinguished (Black). Detections are either correctly aligned (green true positives), lost by deletion or rejected during
validation (brown true negatives), or misaligned and incorrectly validated (red false positives). Missed block detections
are shown in the Tx waveform (yellow false negatives). Detection shown for Jewel clip using blocklenth 36 and warping
tolerance 1%.
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Figure 6. Naive SS correlation score histograms colored by watermark detection block length. Naive watermarks are
embedded using the same overall perceptual thresholds from the set theoretic embedding framework, but only a single
SS watermark sequence is embedded. After correlation calculations (exhaustive search of PQMF offsets), Naive detection
does not use forward-backward reinforcement, DTW detection or cross validation.

forward backward reinforcement limits and minimum DTW separation:

tmin = KB(1− γ), (18)
tmax = KB(1 + γ), (19)

tmin,DTW = K
B

3
(1− γ). (20)

The factor K accounts for upsampling due to exhaustive search of PQMF transform offsets; the factor of 3
accounts for the overlap between blocks in DTW detection. As mentioned, decreasing SS blocklength increases
robustness, but at the cost of increasing error rates. This trend can be seen in Fig. 7 as the naive SS implemen-
tations use shorter watermark blocks and performance suffers. However, as block length varies for DP detection
there is generally a tradeoff between false positive and negative errors rather than a strict loss of performance.
This contradiction between how blocklength effects the naive and DP schemes results from the DP scheme’s
internal tradeoff between detection and validation. This trade-off depends on the tendency of DP detection
to return long regularly spaced sequences of detections that will be validated whether or not they are genuine
detections and is governed by the remaining parameters: forward backward decay D, and DTW dummy terms
r′insert and r′delete. The following definitions were empirically determined to work well for a blocklength of 36 and
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used for all detection trials:

D = .8, (21)

r′insert[t] = 1
tmin,DTW

σr′ [t], r′delete[t] = 1
4σr′ [t], (22)

σr′ [t] =

√√√√ 1
J

J∑
j=1

r′[j, t]2.
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Figure 7. Block error rate in the presence of insertion and deletions shows DP detection significantly improves naive SS
detection. The 6 audio clips show varying watermark detection performance. Error rates are averaged over 30 trials at
each point. Missed detection rate considers all blocks of which two thirds or less of the block duration has been deleted.

4. CONCLUSION

This paper presented an audio watermarking scheme robust to desynchronization (insertion/deletion) and non-
desynchronizing distortion (MP3 compression) using a powerful yet efficient DP search as part of blind detection.
Two typical challenges of advanced searches for watermark detection: feasibility and false positive detections,
are addressed respectively by DTW methods and cross validation of multiple watermarks. Insertion and dele-
tion robustness is an important problem because these operations can desynchronize watermark detection, a
class of attacks many watermarking schemes struggle with. The proposed scheme is motivated by considering
watermark localization and its impact on the tradeoff between desynchronization and non-desynchronization
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robustness. For example, SS techniques provide the ability to reduce non-desynchronizing interference in pro-
portion to blocklength. However, shorter blocks with greater localization, are less likely to be split apart by
insertions or deletions, and more robust to desynchronization. DP detection is shown to govern this robustness
tradeoff. A second dimension, the tradeoff between false positive/negative error rate is controlled by the proposed
cross validation and reinforcement techniques. These detection methods balance characteristics of embedded wa-
termarks between those used to search for optimal detections, preventing missed detections, and those reserved
for validation to prevent false positives.
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