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ABSTRACT

In this paper, we evaluate the performance of error
trapping decoding when used to protect data over a
mobile radio channel. The channel is represented by
the Gilbert-Elliott(GE) model, with its parameters re-
lated to the physical quantities determining the fading
statistics. Simulations are used to evaluate codeword
and bit error probabilities for three different error cor-
recting codes for a number of scenarios. Using simply-
ing assumptions, analytical expressions are derived for
the codeword error probabilities and these are shown
to be in excellent agreement with simulation results.

1. INTRODUCTION

The received signal envelope in a mobile digital cellu-
lar system is known to display Rayleigh statistics. This
Rayleigh fading is characterized in the digital domain
by a channel having burst errors. The Gilbert-Elliott
model [3, 4] provides a useful discrete model for such
a channel where the parameters of the model can be
readily related to the statistics of the fade [1, 6]. The
simplicity of the model makes it attractive for analyzing
the performance of error control codes through simula-
tions or through exact/approximate analysis. Analyti-
cal expressions for error probabilities were first derived
in [3, 4] and more recently in [8, 9] for a simplified
versions of the GE model. However, all the analytical
expressions were aimed at determining codeword error
performance for random error correcting codes and bit
error statistics and burst error correcting codes were
not considered. In this paper, we consider the perfor-
mance of three binary codes: the (23,12) Golay Code
and a (14,6) cyclic burst error correcting code (BECC)
with burst correcting capability (BCC) of 4, and a
(23,13) shortened cyclic code with BCC of 5. The per-
formance of the three codes on a Gilbert-Elliott chan-
nel are compared through simulations for BPSK and
DPSK modulation schemes. We also present a simpli-
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fied analysis for a restricted range of model parameters
and compare the theoretical results with simulations.

2. CHANNEL MODEL

The Gilbert-Elliott(GE) model [3, 4] was chosen to
model the fading channel in the simulations. In the
model, the channel is a binary symmetric channel (BSC)
with memory determined by a two state Markov chain.
This model is shown schematically in Fig. 1. A channel
has two states, a good (G) state and a bad (B) state
with transition probabilities a and § as shown in the
figure. In either state the channel is represented as a
binary symmetric channel (BSC) with the probability
of bit error given by p, in the good state and p; in the
bad state.
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Figure 1: The Gilbert-Elliott Channel Model.

Assuming that the channel fades slowly with respect
to a bit interval the parameters of the model can be re-
lated to various physical quantities. To obtain such
a relation, note that Rayleigh fading results in an ex-
ponentially distributed multiplicative distortion of the
signal. As a result, the probability density function of
the signal-to-noise ratio (SNR),\, is given by [1, 6]
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where )\ is the average SNR.

The channel is said to be in the good(G) state while
the SNR is above a threshold A7 and once the SNR falls
below Ar the channel goes into the bad(B) state. Using
the level crossing rate and the SNR density function,
the transition probabilities can be found in terms of
physical quantities as follows [1, 6]:
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where T' is the symbol interval, I' = §—€ and fy is the
maximum Doppler speed given by
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where v is the vehicle speed, f. is the carrier frequency,
and c is the speed of light (3 x 103m/s). The symbol
interval is usually specified in terms of the symbol rate
R, =1

The bit error rates in each state are determined for
a given modulation scheme by appropriately averag-
ing the BER for an AWGN expressed as a function of
SNR. Thus if E()\) is the BER for an Additive White
Gaussian Noise (AWGN) channel with SNR of A for
the given modulation scheme then,
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We shall concentrate on two modulation schemes
BPSK and DPSK. Simplified expressions for p; and p,
for these modulation schemes are provided in [6].

3. SIMULATION METHODOLOGY

Three linear block codes were chosen for performance
evaluation!. The first is the cyclic Golay (23,12) code
with a minimum distance of 7 which has the generator
polynomial, g;(z) = 2! + 210 + 2% + 25 + 2 + 22 + 1.
The other two codes chosen were burst error correct-
ing codes with redundancy and block length similar to
the Golay code. The second code is a cyclic (14,6)
burst error correcting code from [2, pp. 152] capa-
ble of correcting all error bursts having burst length
4 or less. The generator polynomial for this code is
g2(z) = 28+2%+2*+1. The third code chosen for study

INote that for the study of linear block codes an iid bit-stream
generator is unnecessary for simulations.

was a (23,13) code obtained by shortening a (341,331)
cyclic burst error correcting code with burst correct-
ing capability of 5, having the generator polynomial
g3(x) =20+ a8 + 2" +2d + 2t + 2% + 1

Systematic encoding was used for all codes. Decod-
ing for the Golay code was performed using the Meg-
gitt decoder obtained by modifying an error trapping
decoder [2]. Since the Golay code is a perfect code
this corresponds to complete decoding and hence there
were no uncorrectable error events detected. For the
burst error correcting codes error trapping decoders
were used. For the (14,6) cyclic burst error correct-
ing code (BECC) the error trapping decoder corrects
all bursts of cyclic length 4 or less. Since the shortened
(23,13) code is not cyclic, it is capable of correcting
only non-cyclic bursts with burst length 5 or less. For
both the burst error correcting codes, the error trap-
ping decoder performs incomplete decoding and there
are error events detected that cannot be corrected. In
these cases, the codeword was declared to be in error
and the information bits were passed on for computa-
tion of bit error statistics without any correction.

4. SIMPLIFIED ANALYSIS

For typical vehicle velocities and symbol rates for Amer-
ican Digital Cellular and GSM, it can be seen that
the channel parameters o and § in (2) and (3) are
extremely small in relation to the inverse of typical
codeword block lengths. As a result, for these scenar-
ios the transitions between states are extremely infre-
quent, and one may assume that for the duration of a
codeword the channel remains in the state in which the
codeword began. With this approximation, the prob-
ability of codeword error on the GE channel is readily
obtained as

Py, = 7rGPC(pg) + 7rBPC(pb) (6)

where 7 = a/(a+ 8) and 7 = /(o + B) are the
steady state probabilities of being in the good and bad
state, respectively, and P.(p) represents the probability
of codeword error on a BSC with symbol error proba-
bility p.

For an (n,k) random error correcting code capable
of correcting ¢ random errors,
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The corresponding expression for a BECC capable of
correcting all cyclic bursts with burst length (BL) <
is obtained from,

P.(p) = PIPFY
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Since on a BSC all error patterns with ¢ errors are equi-
probable
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from which it follows that,
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In a similar fashion, it can be shown that for a non-
cyclic BEC with BCC of [,
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5. SIMULATION RESULTS

Using the channel model, Monte-Carlo simulations were
performed. The threshold I' was set to 0.1 so that
an SNR 10 dB below the average SNR represents the
transition to the bad state. In order to represent a
wide range of mobile communication environments, the
product f4T was considered as an independent param-
eter and simulations were performed for fyT = 1073,
0.01, 0.05, and 0.1. These values encompass the whole
gamut of mobile communication environments rang-
ing from cellular telephony to PCS. Two modulation
schemes, BPSK and DPSK, were considered in the
simulations. For each combination of these parame-
ters simulations were performed for an average SNR
varying from 0 dB to 26dB in steps of 2 dB and code-
word and bit error rates were estimated. For extremely
small values of o and (8 channel transitions may be-
come extremely rare events, hence the simulations de-
termined the codeword error and bit error probabilities
for codewords beginning in a given state. These were
then weighted by the steady state probability of the
corresponding state and added to obtain the overall
codeword and bit error probabilities.

T
fd T=0.010

Error Probability

CER DPSK

CER BPSK N

BER DPSK AN
BER BPSK

7 I I

L
0 5 10 15 20
Mean SNR (dB)

Figure 2: CER and BER estimates for the Golay code
with BPSK and DPSK.

We first consider the difference in performance of
the BPSK and DPSK modulation schemes. Figure 2
contains a plot of the average SNR vs. estimated bit
error rate (BER) and codeword error rate (CER) for
the Golay code for f;T = 0.01, for BPSK and DPSK
modulation schemes. From the graphs one can see that
over the moderate and high SNR region BPSK is 3dB
better than DPSK. This result is in agreement with the
uncoded bit error probabilities for BPSK and DPSK
on a fading channel [7, pp. 718]. The results for other
codes and parameter values have similar characteris-
tics. Hence, in the subsequent discussion results are
presented only for BPSK modulation. One can also
see from the plots that the codeword and bit error rates
show identical trends and hence we shall use only the
BER estimates in most of the following discussion.

Next we consider the impact of the parameter f;T
on each of the codes. Figure 3 contains plots of the es-
timated bit error rate (BER) vs. average SNR for the
Golay code with BPSK modulation, for f;T° = 1073,
0.01, 0.05, and 0.1 and Fig. 4 and 5 contain the corre-
sponding plots for the (14,6) cyclic burst error correct-
ing code and the (23,13) burst error correcting code,
respectively. From the figures, it is clear that an in-
crease in fyT improves the performance of the Golay
code significantly whereas it leads to only marginal im-
provement in the performance of the two burst error
correcting codes. These results agree with the intu-
ition that the errors tend to be more random as the
channel parameters a and 3 increase. Since the Golay
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Figure 3: BER for the Golay code with BPSK.

code is capable of correcting random errors it benefits
significantly from the increase in randomness whereas
the burst error correcting codes make only marginal
gains.

We now compare the performance of the different
codes. Figure 6 contains a plot of the BER vs. av-
erage SNR for the three codes for BPSK modulation
and fy7 = 0.01. From the plots one can see that for
these parameter values the performance of the three
codes is similar for values of the average SNR below
12 dB. Above 12 dB the performance of the two burst
error correcting codes is similar while that of the Go-
lay code is significantly better. For the channel model
that we are considering, at high SNR’s the probabil-
ity of error in both the good state and the bad state
decreases. As a consequence, the errors at high SNR’s
are less correlated. This works once again to the ad-
vantage of the Golay code capable of correcting ran-
dom errors, whereas the burst error correcting codes
only make marginal gains due to the decreased number
of symbol errors. Since bursts of length 4 and 5 will
rarely have more than 3 symbol errors the Golay code
performs better or as well as the burst error correcting
codes in most scenarios. In this regard, it is worth not-
ing that a burst error correcting code will give optimum
performance over a channel producing bursts close to
its burst correcting capability, whereas a random error
correcting code is more robust to channel parameter
variations.

Finally, we investigate the validity and accuracy of
the simplified expressions for codeword error rates de-
rived in section 4. Figure 7 contains plots of compar-
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Figure 4: BER for the (14,6) BECC code with BPSK.
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Figure 5: BER for the (23,13) BECC code with BPSK.
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Figure 6: BER for the three codes with BPSK and
faT = 0.01.

isons of simulations and the simplified theoretical ex-
pressions for the three codes with BPSK modulation
and for fyT' = 0.001. For this case, a ~ 0.0754 and
G =~ 0.00079 and hence the assumption that the chan-
nel rarely changes state in the middle of a codeword
is valid and therefore the theoretical results agree ex-
tremely well with the simulations. However, for higher
values of f47 = 0.01 the assumption is no longer valid
and hence the simulation results deviate significantly
from the simplified theoretical expressions.

6. CONCLUSIONS

In this paper, we simulated the performance of three
linear block codes on a fading channel modeled by the
Gilbert-Elliott model and considered the impact of sev-
eral parameters on the performance of the codes. The
relative performance for different modulation schemes
was seen to be in agreement with their uncoded bit er-
ror rates. For the parameters considered the random
error correcting Golay code performed better than the
burst error correcting codes. For some channel param-
eter values of our interest, analytical expressions for
codeword error probability were derived and found to
be in excellent agreement with the simulations.

7. REFERENCES

[1] L. Ahlin, “Coding Methods for the mobile radio
channel,” Nordic Seminar on Digital Land Mobile
Communication, Feb. 1985, Espoo, Finland.

*
x fd T =0.001000
2 * y Modulation BPSK
[e)
107 TR K E
K Q x
° %
, X *
- ]
5107 * E
i x°
kel © *
5 X
210° E
8 o *
e * x (23,13) BECC “ ]
T ©o  (14,6)BECC 3
X
X X (23,12) Golay
10°F Theoretical Curves % E
10° . ‘ ‘ ‘ :
0 5 10 15 20 25
Mean SNR (dB)

Figure 7: Comparison of theoretical CER estimates
with simulations.

[2] R.E. Blahut, Theory and Practice of Error Control
Codes, Addison-Wesley, Menlo Park, California,
1983.

[3] E.N. Gilbert, “Capacity of a burst noise channel,”
Bell Syst. Tech. J., vol. 39, pp. 1253-1266, Sept.
1960.

[4] E.O. Elliott, “Estimates of error rates for codes on
burst-noise channels,” Bell Syst. Tech. J., vol. 42,
pp. 1977-1997, Sept. 1963.

[5] S.Lin and D.J. Cosetllo,Jr., Error Control Coding:
Fundamentals and Applications, Prentice Hall,
NJ, 1983.

[6] R. Krishnamurthi, An Analytical Study of Block
Codes in a Portable Digital Cellular System, Ph.D.
Thesis, SMU, 1990.

[7] J.G. Proakis, Digital Communications, 2nd ed.,
McGraw Hill, 1989.

[8] B. Wong and C. Leung, “On computing unde-
tected error probabilities on the Gilbert channel,”
IEEE Trans. Comm., vol. 43, no. 11, pp. 2657-
2661, Nov. 1995.

[9] J.R. Yee and E.J. Weldon, Jr., “Evaluation of the
performance of error correcting codes on a Gilbert
channel,” IEEFE Trans. Comm., vol. 43, no. 8, pp.
2316-2323, Aug. 1995.



