Three-Dimensional Diagnostics for Inertial Confinement Fusion Research on OMEGA

Sean Regan, Laboratory for Laser Energetics (LLE)

Friday, November 1, 2019
1:30 p.m.

Hopeman 224

Laser-direct-drive inertial confinement fusion involves the uniform laser irradiation of a plastic spherical shell target containing a thin layer of cryogenic, thermonuclear fuel [i.e., deuterium (D) and tritium (T)] with symmetrically arranged high-intensity overlapping beams to implode the target and form a central hot-spot fusion plasma.  Three-dimensional diagnostics are essential to study multidimensional effects on hot-spot formation caused by target and laser low-mode perturbations of DT cryogenic implosions on the 60-beam, 30-kJ, 351‑nm OMEGA laser.  Nonuniformities in the imploding shell are characterized until the end of the acceleration phase using a four-axis, gated x-ray imaging system. Measured implosion asymmetries during the acceleration phase are related to the stagnation phase. Three-dimensional nuclear and x-ray diagnostics are being developed to infer hot-spot flow velocity, spatial variations in the compressed areal density, electron and ion temperatures, and the shape of the hot spot.  Progress in the diagnosis of low-mode multidimensional effects on hot-spot formation of OMEGA DT cryogenic implosions will be reported. 

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003856, the University of Rochester, and the New York State Energy Research and Development Authority.


  1. P. Regan 1,2, V. N. Goncharov 1,2, T. C. Sangster 1, R. Betti 1,2,3, E. M. Campbell 1, K. A. Bauer 1, M. J. Bonino 1, D. Cao 1, G. W. Collins 1,2,3, T. J. B. Collins 1, R. S. Craxton 1, D. H. Edgell 1, R. Epstein 1, C. J. Forrest 1, J. A. Frenje 4, D. H. Froula 1,3, M. Gatu Johnson 4, V. Yu. Glebov 1, V. Gopalaswamy 1,2, D. R. Harding 1, S. X. Hu 1, I. V. Igumenshchev 1, S. T. Ivancic 1, D. W. Jacobs-Perkins 1, R. T. Janezic 1, T. J. Kessler 1, J. P. Knauer 1, T. Z. Kosc 1, J. Kwiatkowski 1, O. M. Mannion 1,3, J. A. Marozas, 1 F. J. Marshall, 1 P. W. McKenty, 1 Z. Mohamed 1, S. F. B. Morse 1, P. M. Nilson 1, J. P. Palastro 1, D. Patel 1,2, J. L. Peebles 1, R. D. Petrasso 4, P. B. Radha 1, H. G. Rinderknecht 1, M. J. Rosenberg 1, S. Sampat 1, W. Seka 1, R. C. Shah1, J. R. Rygg 1,2, W. T. Shmayda 1, M. J. Shoup III 1, A. Shvydky 1, A. A. Solodov 1, C. Sorce 1, C. Stoeckl 1, W. Theobald 1,2, D. Turnbull 1, J. Ulreich 1, M. D. Wittman 1, and K. M. Woo 1

1: Laboratory for Laser Energetics, University of Rochester, USA

2: Department of Mechanical Engineering, University of Rochester, USA

3: Department of Physics and Astronomy, University of Rochester, USA

4: Plasma Science and Fusion Center, Massachusetts Institute of Technology, USA