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Project Goal —~

Goal: Develop a discrete, entanglement-based quantum
key distribution (QKD) system to meet program objectives

Mode to Bob Turbulence mitigation

Low deadtime,
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single-photon-
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FSQC Concept

Use hyperentanglement to achieve many bits/photon (bpp)
and high secure-key rate: QUANTUM DATA HYPERCUBE

Use polarization, time-bin, spatial mode degrees-of-freedom
Multiplex many independent channels
=) 1 spatial mode per channel (e.g., orbital angular

momentum states (OAM))

Single channel: create mutually-unbaised bases (MUBSs) only
In polarization, use time bins to achieve bpp




InPho: FSQC

Single Channel TS

Encode in time, verify security in polarization

Classical comm channel
2 bits per code length
(+error correction

+ privacy amplification)

) o (HH)+| V)R (1.8,) +|22) +]|6.8) +...+|8,2,))
Bin spacing: At At ~ 130 ps
Code “length”. ~NAt

# bits/photon ~log, N = N~ 1,024
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Predicted performance
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Produced pairs per second per channel Produced pairs per second per channel

Trade-off between high count rate and high bits per photon (bpp).
* highest bpp: only send 1 photon per day = ~49 bits/click (but only 1 click/day!)
* highest rate: send at near maximum detector saturation rate - only ~1 bpp
__* we can simultaneously satisfy 1Gb/s and 10 bpp, by using multiple channels
& (10-30, depending on SPDC rate, efficiency, and BER)
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Task 1: QKD Milestones

Year 1 Year 2 Year 3

4 bpp 4 bpp 10 bpp

10 Mbps E> 100 Mbps E> 1 Gbps
single channel single channel

Book keeping of classical channel?
Need to divide bits per photon by ~1007?

~1.1 using InPho Classical Com results?

Kwiat and everyone else! 6
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Task 2: Source Development

Year 1 Year 2 Year 3
4 bpp 4 bpp 10 bpp
10 Mbps 100 Mbps 1 Gbps

L} L} L}

| 2x10° pairs/s
Bl_BO More rate multiplication 20 ch - |
High P 108 pairs/s 130 o8
Rate multiplier At =150 ps
At~1ns
107 pairs/s &
H V H |
Nl 00 g
U9 U9
HWP, HWP,5
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Task 3: Mode Multiplexers/Sorters

Year 1 Year 2 Year 3
4 bpp 4 bpp 10 bpp
10 Mbps 100 Mbps 1 Gbps
- Demonstrate sorting ﬁ

low-rate QKD testbed I:> - High efficiency sorter

- Thick holograms, other - Fundamental limits E> - Integrate into high

- 32 modes, >80% eff. bit rate QKD system
approaches i - 64 modes, 70% eff.

- 8 modes

o

Boyd, Miller, Padgett, White




Task 4: Detector Development

InPho: FSQC

Year 1

4 bpp
10 Mbps

%

- switching fabric

w/ high QE detectors E>

< 20 ns deadtime
4-8 detectors

- SiPMTs

- < 250 ps jitter,
10 element arrays
>15% QE

Gauthier, Kwiat

Year 2 Year 3
4 bpp 10 bpp
100 Mbps 1 Gbps
-100 element array - <130 ps jitter
- >35% QE E) - additional arrays

- < 250 ps jitter

Voo
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Task 5: Turbulence Mitigation

Year 1 Year 2 Year 3
4 bpp 4 bpp 10 bpp
10 Mbps 100 Mbps 1 Gbps

- ldentify minimum - Investigate spatial - Test in low-rate
energy loss states entanglement QKD
) testbed w/
- G_eperate - Pre@storted MUBs | turbulence cells
minimum energy - Optimum aperture sizes
loss states - State-dependent loss

- Test in low-rate
QKD testbed, > 5 bpp

minimum energy

Boyd, Tyler loss states
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Task 6: Theoretical analysis of security

Year 1 Year 2 Year 3
4 bpp 4 bpp 10 bpp
10 Mbps 100 Mbps 1 Gbps
- Optimum error - Optimum Hilbert - Identify system
correction space dimension, with absolute
method for large E> # MUBs security
Hilbert space - Trade space of - Decoy states to
- What attacks security, bbp, bps improve security
will break us? - Security

compromised by
state-dependent
loss?

Barnett, Calderbank, Kwiat, Lutkenhaus, Milburn, Tyler 1
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Summary Overview

mode sorters

fast, efficient /10 bpp
detectors \leps/ sources

theory of high
bpp, bps
turbulence system
mitigation

entangled

12




T I t t. InPho: FSQC
eam interactions | e
BST

Interactions via Social Media

Hourly
Tweets

22 You

13
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System Details & Components

1. Central concept, expanded

2. Laser and pulse multiplexer

3. Down-conversion source

4. Detectors

- switched, optimized APDs

- array detectors
Multi-channels = spatial multiplexing
AOM mode sorters, turbulence
Eavesdropping, security
Open theoretical questions

o N O

14
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Central Concept: Encode in time, verify in polarization B’

Version 1
H V H
] ]
L L
HWP,.. HWP,..
/ /

Alice and Bob use which time bin they detect a photon in to generate
multiple bits per click.* Get extra bpp from BB84 with polarization.
They can constantly check for an eavesdropper using the D/A polarization

basis (assuming no QND capability for Eve).
Perform standard error detection/correctiont and privacy amp.

*Ali-Khan, Broadbent, Howell, Phys. Rev. Lett. 98, 060503 (2007)
T Modified CASCADE

15
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Central Concept: Encode in time, verify in polarization et

Version 2
H V H
] []
L] | |
HWP,.. HWP,.
/

) o< (|t ) +]08 )+t
) +|rr )+ |02 ® (| HE) - [77)

Advantages: No pump power lost, ?harder? to eavesdrop
Disadvantages: Error checking depends on time bin, ???

NOTE: Active basis choice (PC) can be replaced by BS and
twice as many detectors. 16
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Pump Laser Source 23

Paladin Compact 355-4000 by Coherent

e« 4W @ 355 nm (x10 over our past pump, 10°° photons/sec)
e 120 MHz mode-locked laser
e 15 ps pulse width*

At = 8.3 ns between pulses
Min detection interval ~50 ns

=>/0g,(50/8.3) < 3 bpp
Need more time bins...

*In principle, if our
detectors could resolve
this, we could get up
to 6 more bits/photon

17
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Pump Pulse Multiplexer

I
4
o
4 N
g 7
\ =L )/
. Horizontal \7//
. Verticle
O Anti-diagonal
. Diagonal

24 = 16 system shown*; cycles 1-2 and 3-4 perfect “doubles”
120 MHz (Pump rep rate) x 26 = 7.7 GHz (130-ps time bins)

*Phase 1-2 implementations; Phase 3: add two more cycles 1
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Wp = Ws + Wj
Type-I H-polarized
phase-matching (from #1) fp _ iR
V-polarized

‘t‘ e = = i S o Al (from #2)

PGK et al., PRA 60, R773 (1999) ly) = —(|H) |HY, + |V} |V}, )

Maximally entangled state

Spatial-compensation: all pairs have same phase ¢

We detected 2x10° pairs/s, with >99%-fidelity entanglement.
- implied production rate > 2 x 10’s!
Now: BiBO (3x BBO), up to 10x power = > 108 production rate

Opt. Exp. 13, 8951 (2005)
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Detectors: Overview gy

What we want/need:

« High efficiency (coincidence rate °<1?)

o Excellent timing jitter (<130 ps, ideally < 15 ps)

« Low deadtime/high saturation rate (< 10 ns/>50 MH:z)

What we (traditionally) get:

8-channel SPAD module
| itter: 70 ps FWHM
0" (€ J Deadtime: 50 ns

- Max count rate > 5 MHz
Efficiency < 35%

50k -
SPCM S0k
Jitter: 250 ps FWHM ¥ 40k — ! |€—FWHM Timing Resokution 40ps
(long tail) § 30K
Deadtime: 45 ns 20K
Max count rate > 5 MHz 10K J \
EfﬁCienCy < 65% 00.0 05 10 15 20 25 30 20

=

Time Insl



M. Wayne (UIUC) " npno: Fsac
Increasing Count Rates in Thick Si SPADs A Restell

J.C. Bienfang

- Afterpulsing is reduced by minimizing the total avalanche charge through diode.
- High-speed electronics to promptly quench & reset Si SPADs.

Typlcal active quenchmg m Charge through d|ode

40
Ov=25Y, Vb 4OOV
C =10pF
.is actually mostly passive R0l i =10p
30 L quenChIn 250 | Rioad =1 MQ
(8)
200 + J
Lo | avalanch reset - C =5 pF
[72) i oY)
2 begins Ll
> 5
10 - = C =2pF
5 100 + -
1« 2
C =1pF
) quench 50 | Ll 30
applied
-10 1 1 1 1 O L I I I 1 1 L 4
0 20 40 60 80 0 2 4 6 8 10 12 14 &
—
Time (ns) J Time (ns) 20 L
Want to apply quench here

15

Active reset
Passive reset

) 5F i

-Requires both short signal delays and fast edges
-Gb/s electronics provide < 200 ps delays
-RF power amplifiers provide large slew rates (> 40V/ns

- Virtex-V FPGA provides nanosecond pulse control ol
_ Probe-limited rise & fg
- Afterpulse experiment underway il fl‘“‘"""J times shown here are|

Goal: Reduce 40-ns deadtime =2 <20 ns

10 -

Volts
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Detectors: How to run APDs faster...

Sequential detection scheme:

Reduced deadtime and higher rate photon-counting

High rate High-speed, Pool of detection using a multiplexed detector array
of incoming photons low-Joss switch detectors *
-
e AAAR > e ) . S. A. CASTELLETTO%, I .P. DEGIOVANNIH,
AN V. SCHETTINI and A. L. MIGDALL*}
Journal of Modern Optics

Vol. 54, Nos. 2-3, 20 January-15 February 2007, 337-352

_I-I_—I—L -
(h) 200
Do much better because no : 1o -
photons go to detector k while £
it is recovering. Detector e
Hard to implement with low loss ) e m

1
2 4 6 8 10 2

(need fast “FSO” switch network)... P

!



Detectors: How to run APDs faster...

InPho: FSQC

Solution: Periodic sequential detection scheme

Periodic switching

IS much easier to
implement (i.e., no logic).

(How much) does it help? 19r=

[assuming 8 detectors,10 bpp,
T 4024=40 ns, and At = 130ps] °#

It hurts! Why?

Because to get 10 bpp,
average time
between detections =
210 x 130 ps = 133 ns
> 3 x 40-ns deadtime

Detected/Incident

o
[

Preliminary conclusion: Passive ‘beamsplitter tree’ is optimal...

Low-loss EO
beam-deflector

Passive tree

SWitChe‘(-j‘ T SR

Theory by
lvo Degiovanni



SiPMTs

Voxtel “Silicon Photomultiplier”

TE Cooled: SQBF-EKOA (comes in chip form too)

PDE (%)

35

30

25

20

15

10

InPho: FSQC

BT

Eraerds et al. (2007)
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Photon # resolving

~10° dcps room temp
~1,000 dcps TEC cooled
~0.1 dcps LN2 cooled

>50% QE soon available (?)

24
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Initial Results with Voxtel Detectors

Vbias

50 kom v . (high-speed layout not used)

1 microF

. , - to scope
0.1 microF

<. 10.5 kOhm

single-photon event

N
P

Cooled -90°C below
ambient

guesstimate 5,000 dcps

2
Y
iU
iU ~1.9ns
11
J1
141
i

] T RO B
. . - i | Scales |
2 nS/d IV 2 I I IV/d IV Delete Source Vertical Scale Offset Horizontal Scale Position
y All channel 1 2.00 mV/div 6.0 mV 2.00000 ns/div 0.0 s




SiPMTs: Demonstrated Characteristics (by InPho: FSQC

different groups) o

~ 30-ps timing resolution
(Buzhan, Dolgoshein et al. ICFA Instrumentation Bulletin)

) 200 ns
40 O
o SiPM 0104 dt=23ns @

T 304
= —
E O > 0.05 -
S 20 O 5 -
o op =
= A o 100
O JAY
2 10- = E
Q A < 1
© ] A

(96 JAN -0.05 4

0 — 1 T T T T T T T T T T T T T 7T J ' : ' ! ' !
0 5 10 15 20 25 30 35 40 4 80E-007 5 40E-007 6.00E-007 6.60E-007

time [s]

Eraerds, et al. (2007). 2



System Details & Components Maias

Central concept, expanded
Laser and pulse multiplexer
Down-conversion source
Detectors

- switched, optimized APDs

- array detectors
Multi-channels = spatial multiplexing
AOM mode sorters, turbulence
Eavesdropping, security
Open theoretical questions

N~

o N O

27
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Predicted performance p——
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Produced pairs per second per channel Produced pairs per second per channel

Trade-off between high count rate and high bits per photon (bpp).
* highest bpp: only send 1 photon per day - ~49 bits/click (but only 1 click/day!)
* highest rate: send at near maximum detector saturation rate - only ~1 bpp
_+ we can simultaneously satisfy 1Gb/s and 10 bpp, by using multiple
&3 channels (10-30, depending on SPDC rate, efficiency, and BER)
28
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Use spatial modes as independent channels

irises & |
collimation

Convert different spatial (gaussian) modes into overlapping
OAM-type modes (optimized for turbulence robustness).
Advantages:
 Potentially simpler optical transmission system
* Bob can polarization analyze them all using same setup

29
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Use spatial modes as independent channels

Mode to Bob
converter
B1.
g S2e
irises & [ B3¢
collimation EN
\ \:‘:‘\:\:\* ~~~~~~ Alice
\\ Bob
L~ I eea
> Mode converter N
& » Mk Z *k D
» "5 PBS D
o Hi
‘ o0 \ HWP /

Potential problem: turbulence may ‘mix’ the channels, i.e.,
causing crosstalk (?less problematic than if info was
encoded using the spatial modes?)

Solutions: - choose crosstalk-robust states

- use non-degenerate frequencies for ‘adjacent’
spatial modes, to further reduce state overlap

30
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Bob Boyd on AOM sorters, turbulence...

31



Quantum state sorters and spatial mode InPho: FSQC

converters

Need for quantum state sorters and spatial mode converters

One approach to high-capacity QKD is to encode in the transverse degree
of freedom (DoF) of the photon, using, for example states that carry
orbital-angular momentum (OAM) such as the Laguerre-Gauss (LG)
states.

Crucial Comment: This approach is NOT the baseline approach for our
InPho team.

Nonetheless, transverse DOF relevant in two ways:
(1) Use to transmit many quantum channels through the same aperture

(2) Constitutes an alternative approach that might be exploited in future.




What Are the OAM States of Light?

e Light can carry spin angular momentum (SAM) by means of its circular
polarization.

e Light can also carry orbital angular momentum (OAM) by means of the
phase winding of the optical wavefront.

e A well-known example are the Laguerre-Gauss modes. These modes
contain a phase factor of exp(il¢) and carry angular momentum of (A per
photon. (Here ¢ is the azimuthal coordinate.)




Laguerre-Gauss Modes

The paraxial approximation to the Helmholtz equation (V2 + k?)E(k) = 0 gives
the paraxial wave equation which is written in the cartesian coordinate system as

0* 82 o

The paraxial wave equation is satisfied by the Laguerre-Gaussian modes, a family
of orthogonal modes that have a well defined orbital angular momentum. The field
amplitude LGé(p, ¢, z) of a normalized Laguerre-Gaussian modes is given by

2p! 1 [\/ﬁp

|1]
[ 2
AWl [wi)| [uﬁ(z)]

2 7.2 2
p ik*p°z : -1 [~ —il¢
X exp [_w2—(z)] exp [—m] exXp [Z(2p+ |l‘ + l)tan (5)] e s (2)
where k is the wave-vector magnitude of the field, zp the Rayleigh range, w(z) the
radius of the beam at z, [ is the azimuthal quantum number, and p is the radial

LGl (p, ¢, 2) =

quantum number. Lé is the associated Laguerre polynomial.



Basic idea (assuming OAM modes for InPho: FSQC

definiteness) e e

Alice's encoding makes use of OAM

(Generating single photons in an OAM state, if not easy, is at least
straightforward)

Bob needs a sorter to separate each input OAM mode into a different
output channel

Because Bob has only one photon, he can perform only one
measurement in determining what state he has.

How to do this?




State Generation (d=5)
Basis 1 (LGS)

Theory Experiment

Basis 2

Experiment

—
>
@
o]
=
<



Basic idea (assuming OAM modes for InPho: FSQC

definiteness)

Alice's encoding makes use of OAM

(Generating single photons in an OAM state, if not easy, is at least
straightforward)

Bob needs a sorter to separate each input OAM mode into a different
output channel

Because Bob has only one photon, he can perform only one
measurement in determining what state he has.

How to do this?
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How to build a quantum state sorter?

1. Use a thin hologram (widely believed that this will not work)

2. Use a thick hologram (seems plausible, but no one has yet made this
work)

3. Use a cascade of (d-1) interferometers, each containing a Dove prism

4. Use a diffractive optical element (DOE); inverse problem; what
structure?

5. Mode reformatter (Padgett group, PRL in press)
It works! What are its limitations?

|-_ ..I_ [ o T—— Transmitter Recerver
~ LT e T J-“‘: -_-_ -_]_ . L Volume hologrars '.;/_, Viohime holograms
__.::_: - I e Y -1
= [Xwe prism - 'l
- - - T 4 b | — [
.l = ) - S L= i : \ ‘\ \
Ax > A \ N\

Channel detectors

A =4 [mnges Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space
optical link, J. A. Anguita, M. A. Neifeld, and B. V. Vasic, Applied Optics 47, 2414 (2008).
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We “unwrap” the azimuthal phase distrubution to form a linear mapping.

Linear maps are easily sorted just using an ordinary lens.
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Proof of concept experiment

It works!:

OAM generator

Phase
corrector
plane

°

» )
>

— EmmmEEm m

Modelled
detector

Observed
detector
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» )
| >

— EEEEEEw m
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Fundamental limits to mode converters

* Miller’s limit theorem

— provides general limits to the performance of linear
optical components based on modal analysis (JOSA 88888888888826'5

PO0OOO0O00000O00OO0 0000000000000

POOOCOO0OO0O0O00OO00O0 0000000000000

E;:z“ l\1 (2"D(r7)) OOOOOOOOOUOO0.0 0000000000000
H DOOOO0O0OO0OO00O0OO0OO0 2 0000000000000
POOOOOOOO0OO0O0OO O0000000000000

-
* Previous work € 3500000000000
o 0000000000000
OC@00000000000000

— Explicit limits for 1D optical structures for e gansaeanac R RRENNG. o ocoeEnaatnne

- Pulse dispersive devices, Slow light b 2292992 3002092292920 229392 39230
— Existence proof design of compact mode converters St i rs

0000000000000 0
0000000000000 O o 000000000000 00

- -
* Overall work planned on this program includes b2 00000000000000 oM gho00e000030000
0 )
PCOO00000000000, 0O

— extending previous work to get explicit results for 2D n..m
and 3D structures e #2cos0sscocaocs
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POOCO000000OCO00 0N, O 0000000000000 00
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» explicit limits for monochromatic mode converters IS INNNSNSNNNS
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— e.g., limits to thin and thick “holograms”

0000000000000 0000O000C0000O0O00O000OO00O0
POOOO0OO00000O00000000000000000000000O0
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* Future directions include
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b0o00O00O0OD00O0OOOO 0 000000000000 00O
. pooooo0O0O0OODOOOOOO O 0000000000000 0
— Multiple wavelength systems 2D and 3D systems TONER R
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 More restrictive limits for materials that are not 283232828882355{

PO0OOOOO0O00OO0OOM
POOOOOO0O0O00OO00OC0

| ] | ]
themselves dispersive 8888828288838822888288888828288888

POOOO0OOO0O00000O00000000000000O0000O00OO0
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» Possible pulsed field mode and pulse converters




Influence of Atmospheric Turbulence on Quantum
Communications: Project Overview

e Near term research concerned with:
— Baseline Protocol (elementary propagation effects — polarization, dispersion, etc.)
— Optimum transmission efficiency with minimum energy loss states
— Entropy and information content associated with a free space propagation link
— Reduced information content in presence of turbulence
— Turbulence characteristics associated with horizontal path (SOR 2 mile site)
— Scintillation and fading probability
e Advanced concepts
— Preconditioned MUB states with minimum energy loss bases
— Adaptive Optics (used only if required to sustain link channel capacity)
— Filament exploitation in deep turbulence
e Experimental considerations
— Laboratory experiments at U of R, Duke with support from tOSC

— Field experiments when program is sufficiently mature (tOSC with support from
team)

e Our present understanding supports conclusion that 256 time bins and 6 spatial parallel
channels (through a single aperture) leads to more than 10 bits per photon in even
presence of horizontal path turbulence (without AO)

e Continuing research will address added margin required for security and additional
turbulence variability (fading, time varying statistics)



Protocol: Transmit Minimum Energy Loss States
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e The minimum energy loss states have the functional form, F (r,¢)=f .(r) exp(img), where the functional
form of is controlled to minimize the energy loss for a propagation link defined by Fresnel number N=(/4)
D, D,/(Az)
e The left hand figure illustrates the amplitudes associated with the lowest loss states for each designated m
and N;
e The propagation efficiencies are illustrated in the right figure
e These states have interesting properties
—  They automatically self image as they propagate from transmitter to receiver
— They are also eigenmodes of a resonator with phase conjugate mirrors
— Inthe limit of a large Fresnel number they asymptote to Laguerre Gauss functions
— Inthe limit of a small Fresnel number they asymptote to Prolate Spheroidal wave functions

e \We also have developed Preconditioned MUB States that use these states as their basis

he
BC-1931R ptical
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Normalized Transverse Channel Capacity Significantly
Reduced by Atmospheric Turbulence

Normalized Channel Capacity
[for various r, Fresnel numbers, N,=(7/4)r,2/(Az)]

== NO=Infinity
= N0=100
NO=30

=>¢=N0=10

Bits per Transmitted Photon

N0=3.91

2 NO=1

1 10 100

Propagation Fresnel Number, (t/4)D?/(Az)

° I(:[\cl)g)vacuum propagation the normalized channel capacity is (approximately) equal to log,
f
e The number of parallel channels supported by a propagation link is N

e In the presence of turbulence the effective diameter is r, which can significantly limit the
information content of the propagation link

e If one attempts to increase the diameter significantly beyond this value, turbulence induced
aberrations dominate and further degrade the link

e For a case of interest, consider the SOR Two Mile Site (r,=0.1m, A=0.8um, z=3200m,
Ny=3.91)

e The optimum occurs at N.=5.5 (D=0.12m) resulting in a normalized channel capacity of 2.3,
bits per transmitted photon or four parallel channels

ptical
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The SOR Two Mile Site Provides a Typical Example of a
Horizontal Path with Well Known Characteristics

C,2 1 2 5 10 20 50 x10%>
Mo 12.7 835 482 318 210 1.21 cm
U, 12.4 820 473 3.12 206 119 urad

Rytov  0.0365 0.0731 0.183 0.365 0.731 1.83
jitter 2.59 3.77 6.11 873 124 19.7 urad

f 304 46 80 121 183 318 Hz
fre 519 7.56 123 175 249 395 Hz
D 0.132 0.111 0.095 0.089 0.086 0.084 m

opt

Dos/fo 1.04 133 197 280 409 697
C 266 164 0.744 0.369 0.172 0.059 bits/photon

opt

e DARPA has expressed an interest in assessing quantum communication over a
horizontal path

e As an example we consider the SOR Two Mile Site

e The C 2 varies from almost as low as 10-'® to almost as high as 10-'® depending upon
time day and time of year

e The above table illustrates the important turbulence parameters for conditions spanning
this range (assuming A=0.8um, z=3200m)

e We note that as the Rytov number approaches 0.2|1 we experience Branch Points|Deep
Turbulence

e \We also illustrate the optimum diameter and channel capacity for these conditions %
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Advanced Concepts: Preconditioned
MUB States

Transmitted Preconditioned MUB States Received MUB States

Q

-
4 Y
JRAEME NN

e We are developing a new protocol involving Preconditioned MUB States that use the
minimum energy loss states as their basis states

e The initial functional form of these state is chosen so that upon propagation the states
have the desired MUB character in the receiver plane

e The above figures pertain to a Fresnel number of one and a dimension of five

e For high dimensions and low Fresnel numbers (N~=1, d=5, b=6), the preconditioned
MUB states look quite similar except for the fundamental basis

e Forlow Fresnel Numbers the transmitted and received fields are quite different
e The basis vectors are unaffected because they are already a minimum energy loss state
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. m InPho: FSQC
Butis it secure?

GDSE

Eve does not have a QND measurement:

« Eve has to absorb the photon to measure its timeslot.

« She can send Bob a fresh photon in the correct timeslot*, but she
cannot mimic the QM correlations of the expected Bell state.

« Standard QKD error correction + priv. amplification should apply.®

Eve does have a QND measurementt:
« Need to measure in an appropriate MUB

N
‘8m>=N_1/2EeXp(in9m)‘tn> 0 =0 + 23;}’% i

n=0 m=0

« Optimal implementation still under consideration...

* This requires extremely fast processing on her end, to avoid delay...
§ We will need to account for info. released to identify pol. correlations (~1 bit)

T Needs to be polarization-preserving QND! .




InPho: FSQC

Temporal MUB measurement Yo

PC

Version 1: prP@(n:zz,s AF+VV : HWP @ 22.5

(going left and right) |
from CW pump

m 1 i HWP @ 45

Measure
superpositions of
adjacent time bins:

{61+t

N
HWP @ 22.5

~
HWP @ 22.5

) - “Franson” interference (PGK et al. PRA ’90, '93, '96)
- ~easy to implement; by induction all time bins coherent
- probably not very eavesdropper sensitive

Version 2:

Measure superposition s
of all time bins: e

N
—1/2 . . l!ori.zomal
‘ 0 > = N E eXp ( ln 0 ) ‘ t > !. \\crl.lcll.c' y
m m n nti-diagona
‘ n=0

- £
. Diagonal




InPho: FSQC

Security concerns
d 2SE

Benefits of time-encoding/polarization checking
« Polarization checking is easy,; can even check Bell inequalities;
typical error rates quite low, e.qg., F > 99%.
« Every photon can be used to check for Eve (cf. Ekert protocol)
« Every photon contributes to key (cf. BB84 [1/2] or SSP [1/3])
« Non-polarization sensitive QND far from realization (best QND
measurements to date on microwave photons [Haroche, Martinis])
e Errors in time-bin not assumed to be from Eve—her measurements
needn’t disrupt timing at all [if she can implement an unnoticed
delay; likely hard in FSO path (since system is timed to <150 ps)]
- Do not have to account for x5 overhead to account for Priv.
Amp. (due to timing errors).
- Just need usual classical error detection/correction
e But one pol. error means Eve could know all bits for that photon
< -€.0., 1% BER 2 Eve looked at ~4% of the photons (and knows
¥ their bits completely) =2 input to Privacy Amplification. 2




InPho: FSQC

Security concerns: ‘Bit-forcing’

If we only verify polarization, we may be susceptible to “bit-forcing”:
Eve blocks the channel for some time bins
- eliminates possible bit choices, gains information

But the cost to Eve is high:
To force m of N possible bits (2N bins), Eve must block N(1— 0.5™)
E.g., to determine 1 bit out of 10, she must block half of the bins
to determine 5 bits out of 10, she must block 97%.

This intrusion can certainly be detected, e.qg., using decoy* pulses

with different amplitudes.

Open questions:
 What’s the most efficient (per photon) decoy encoding?
 Whatis the optimal implementation of temporal MUB?
 Whatis the impact of hyper-entanglement on security?
 Whatis the optimal encoding in DOFs (q-dits vs channels)?

*H.-K. Lo, X. Ma, and K. Chen. PRL 94, 230504 (2005) 35





