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Improved measurement of multimode squeezed light via an eigenmode approach

Ryan S. Bennink* and Robert W. Boyd
The Institute of Optics, University of Rochester, Rochester, New York 14627

~Received 20 December 2001; published 22 November 2002!

We analyze the output of a degenerate optical parametric amplifier using a different approach to understand-
ing and characterizing multimode squeezed light. This approach is based on the concept of eigenmodes of the
squeezing and predicts the mode structure of the local oscillator that should be used in order to measure the
smallest quadrature noise. Although the importance of mode matching is well known, we find that typical
experimental setups are suboptimal and we predict that in such cases squeezed light measurements stand to be
improved noticeably with appropriate shaping~in space and/or time! of the local oscillator field in accordance
with the results of the theory. Under conditions of negligible or small phase mismatch, the optimal local
oscillator pulse duration is found to be approximately equal to the geometric mean of the pump pulse duration
and nonlinear response time. Also, we find that the effective number of squeezed modes can be altered by
varying the pump pulse duration and/or phase-matching parameters.
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It is well established that optical parametric amplificati
produces nonclassical light. In the limit of very small par
metric gain, the quantum state of the output light appro
mates an entangled two-photon state and has prompted
citing avenues of research including quantum imaging@1#,
quantum teleportation@2#, and quantum lithography@3#. In
the regime of modest or large parametric gain, the supe
sition of the signal and idler fields shows reduced varia
~compared to the standard quantum limit! along one axis of
its phase space@4,5#. Such light@6,7# has come to be known
as squeezed light@8# and has shown promise in applicatio
such as ultra-low-noise spectroscopy@9,10# and microscopy
@11# and noiseless image amplification@12,13#. Most studies
of multimode squeezed light~see Ref.@14# for a review!
have implicitly assumed that in the parametric process
signal and idler photons are emitted into separate pair
modes. This assumption, however, is generally invalid
conventional bases. For example, pump fields are o
pulsed and~or! focused in order to achieve desired downco
version efficiencies. The spread of frequencies and transv
momenta in the pump field cause each signal mode of d
nite frequency and transverse momentum to be entan
with many idler modes, and vice versa. In the small g
~entangled photon! regime, Lawet al. @15# have found that
this cross-modal coupling affects the entropy of entang
ment of the output light. In the context of squeezing, it h
been recognized that the cross-modal coupling affects
measured amount of squeezing. La Porta and Slusher@16#
showed that when the squeezed light produced by a mo
chromatic, focused Gaussian beam is measured wit
Gaussian local oscillator, the measurable amount of squ
ing is bounded. Kim and Kumar@17# demonstrated that mea
surements of squeezing can be improved by using a l
oscillator generated in the same medium as the sque
field rather than a Gaussian local oscillator. Others~e.g.,
Refs. @18,19#! have proposed the use of spectral filters
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temporal modulation of particular functional forms and d
termined the parameters which yield the best squeezing m
surements.

In this paper we present a general, systematic approac
the analysis of multimode squeezed light produced by pa
metric downconversion. This approach involves finding t
eigenvectors of a matrix~or the eigenfunctions of a continu
ous two-argument function! which is directly related to the
parametric gain. We note that similar approaches based
the use of eigenbases have been developed by Shapiro
Shakeel @20# and, most recently, by Opatrny´ et al. @21#.
While our approach identifies the optimal local oscillat
mode, it also~i! gives a physical interpretation to the eige
modes,~ii ! provides insight into the correlations which exi
in multimode squeezed fields,~iii ! simplifies the calculation
of the field statistics, and~iv! indicates how the pump field
parameters and phase-matching conditions of the param
interaction affect the number of squeezed modes and t
degrees of squeezing. After developing a general formali
we will present analytical and numerical results for the ca
of a single-spatial mode optical parametric amplifier~OPA!
pumped by a short pulse. We find that typical setups
squeezed light measurement~Fig. 1! do not optimally probe
the squeezed field and that shaping the local oscillato
accordance with the predictions of our theory could incre
the measured amount of squeezing in such experiments b
least several dB.

We model the action of an OPA on a set of~orthonormal!
quantized field modes with slowly-varying operatorsâp(z)
by the Hamiltonian

FIG. 1. A typical experimental setup to measure squeezing p
duced by parametric downconversion.
©2002 The American Physical Society15-1
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Ĥ5
i\c

2 (
pq

Gpq* âpâqexp~2 iK pqz!1H.c.. ~1!

HereGpq is the parametric gain coefficient of the wave mi
ing between modesp and q, Kpq5k(vp1vq)2k(vp)
2k(vq) is the longitudinal wave vector mismatch, andvp is
the frequency of modep. When the modes are monochr
matic and planar,Gpq is given ~in the Gaussian system o
units! by Gpq52 i (4p/c)Avpvqx (2)(vp ,vq)E(vp
1vq)exp@ik(vp1vq)z# wherex (2) is the second-order opti
cal susceptibility andE(z,t)5( rE(v r)exp@ik(vr)z2ivrt#
1c.c. is the real, classical pump field. More generally,
modes may have any spatial or temporal form, as long
they are eigenmodes of linear-optic propagation~not to be
confused with the eigenmodes of the squeezing, introdu
below!. For convenience we have assumed that the pu
field remains undepleted. In the slowly-varying amplitu
approximation, the spatial evolution of the field operators
governed by

d

dz
âp5

i

\c
@Ĥ,âp#. ~2!

The field at the planez can then be expressed as

âp~z!5exp@ i V̂~z!#âp~0!exp@2 i V̂~z!#, ~3!

whereV̂(z) is in general a complicated function involvin
nested commutators of integrals ofĤ @22#. Nevertheless,V̂
will be quadratic in the field operators and the transformat
may be written@23# as

exp~2 i V̂!5Ŝ~G!F̂~F! ~4!

for some symmetric matrixG and some Hermitian matrixF,
where

Ŝ~G!5expF1

2 (
pq

„Gpq* âp~0!âq~0!2Gpqâp
†~0!âq

†~0!…G ,
~5!

F̂~F!5expS i(
pq

Fpqap
†~0!aq~0! D . ~6!

F̂ is a unitary operator which merely changes the input fi
basis, whileŜ is a multimode squeezing operator which a
counts for parametric coupling between all possible pairs
modes. The elements of the matrixG play the role that the
squeeze parameter plays in single-mode squeezing, with
diagonal elements promoting single-mode squeezing and
off-diagonal elements promoting pairwise squeezing. In
case of perfect phase matching (Kpq50) one hasF50 and
Gpq5GpqL, whereL is the length of the OPA. Since eac
mode is influenced by many different elements ofG, the
effect of any single element on the statistics of the mode
usually not simple. However, we find that there always ex
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a canonical basis for the field which diagonalizesG. In this
basis the expressions for the output field operators reduc
the particularly simple form

âp95âp8coshgp2âp8
†sinhgp , ~7!

where gp is the pth eigenvalue ofG. If U is the unitary
matrix that transforms the field to this eigenbasis@24#,
i.e., the matrix whose columns are the eigenvectors ofG,
then (â18 ,â28 , . . . )T5U†ei F

„â1(0),â2(0), . . . )T and

(â19 ,â29 , . . . )T5U†
„â1(z),â2(z), . . . …T. When the input

field operatorsâp(0) refer to coherent states~such as the
vacuum state!, the form of Eq.~7! guarantees that the outpu
operatorsâp9 describe canonical single-mode squeezed sta
That is to say,the eigenvectors ofG define the squeeze
modes of the field and the corresponding eigenvalues are
squeeze parameters. We call such modes the eigenmodes
the squeezing, and the eigenvalues of the squeezing.

The squeeze eigenmodes are fundamental in that they
fine the basis in which the squeezing is maximum. Letc(s)
be the field of a classical local oscillator, wheres represents
the relevant spatial and~or! spectral coordinates, and le
fp(s) be the field of thepth eigenmode with*fp* fq ds
5dpq . In balanced homodyne or heterodyne detect
schemes the difference photocurrentî d contains only the in-
terference terms and can be written as

î d}(
p

uOpuÊp~argOp!, ~8!

whereOp5*c* fpds is the overlap between the local osc
lator and modep over the domain of the detector an
Êp(u)5eiuâp91e2 iuâp9

† is the projection ofâp9 onto the
quadrature with phaseu. The photocurrent variance is

^D î d
2&}(

p
uOpu2@e22gpcos2~argOp!1e2gpsin2~argOp!#.

~9!

That is, the photocurrent variance is a weighted sum
quadrature variances~some perhaps squeezed, some perh
antisqueezed! of all modes which overlap the local oscillato
If the local oscillator overlaps multiple eigenmodes the ph
tocurrent may not show variance below the standard qu
tum limit for any phase of the local oscillator. The smalle
photocurrent variance is obtained when the mode of the lo
oscillator is chosen to match the eigenmode with the larg
squeeze parameter.

If the squeezing has more than one nonzero eigenva
then in principle multiple photocurrents with reduced no
may be measured simultaneously. Ideally, each eigenmod
projected onto a different detector and exhibits a photoc
rent noise determined by the corresponding eigenvalue
accomplish this one must be able to physically separate
various eigenmodes~via lossless spatial, temporal, or spe
tral filtering! and direct them to separate detectors. The p
tocurrent at thej th detector will be given by Eq.~9!, where
5-2
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IMPROVED MEASUREMENT OF MULTIMODE SQUEEZED . . . PHYSICAL REVIEW A66, 053815 ~2002!
Op is replaced byOjp , the overlap between eigenmodep
and the local oscillator field over thej th detector.

As the eigenvalues of a matrix are unchanged by lin
unitary transformations, the squeeze eigenvalues are
changed either by propagation through a lossless linear o
cal system or by paraxial diffraction. For this reason,
gether with the fact that the statistics of any field mode c
be expressed in terms of the squeeze eigenvalues, we
the distribution of eigenvalues as a fundamental property
multimode squeezed field. Together, the squeeze eigenva
and eigenmodes contain all there is to know about the qu
tum statistics of the field. A significant advantage of th
approach is that it separates the quantum aspects of the
~the squeezing! from the classical aspects~diffraction and
imaging!.

To illustrate this approach, we have performed an eig
mode analysis of the light produced by a frequen
degenerate OPA. For clarity of discussion, the field mode
Eq. ~1! will be assumed to differ only in frequency.~This
assumption is applicable either if the pump and medium h
no transverse spatial dependence, or if the medium
waveguide which allows only a single-spatial mode at e
frequency.! We consider the pump field to be of the for
Epump(t)5Epump(0)exp@21

2(t/Tpump)
2# where Epump(0) is

such that the parametric~amplitude! gain at the peak of the
pulse is g. For the case of arbitrary phase mismatch a
nonlinear response function, numerical methods must be
ployed to determine the structure of the squeeze matrix;
results of such computations will follow. But first, an an
lytical study of a slightly more restricted system will provid
considerable insight.

We assume for the moment that the nonlinear suscept
ity has a Gaussian temporal response and that the pump
downconverted pulses are phasematched to all orders of
persion. Analysis is performed in the time domain using
continuous parametric gain functionG(t,t8) in favor of a
discrete matrix.G(t,t8) is the parametric coupling betwee
the downconverted fields at timest andt8. Under the condi-
tions stated above, the squeeze functionG(t,t8) ~the continu-
ous analog of the squeeze matrixG) has the form

G~ t,t8!5G~ t,t8!L ~10!

5gL

expF2
~ t1t8!2

4Tpump
2

2
~ t2t8!2

4Tx
2 G

TxA2p
, ~11!

whereL is the length of the nonlinear medium andTx is the
response time of the nonlinearity. The temporal funct
fn(t) of thenth eigenmode of the squeezing obeys the in
gral eigenvalue equation

E G~ t,t8!fn~ t8!dt85gnfn~ t ! ~12!

which is satisfied by
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fn~ t !5Hn~ t/t!, gn5gL
r

r 1r 21 S r 2r 21

r 1r 21D n

, ~13!

where Hn(t) is the Hermite-Gauss function of ordern, t
5A2TpumpTx, and r 5ATpump/Tx. That is, the eigenmode
of the squeezing are Hermite-Gauss functions of time wit
characteristic width equal~within a small numerical factor!
to the geometric mean of the pump pulse duration and n
linear response time. The eigenvalues form a geometric
quence and we may define the effective number of squee
modes as

Nl[S 12
r 2r 21

r 1r 21D 21

5
Tpump1Tx

2Tx
. ~14!

The lowest-order mode (n50) is Gaussian and has the lar
est squeeze parameter. In the limit of either instantane
material response (Tx→0) or monochromatic pumpTpump
→`), the maximum squeeze eigenvalueg0 approaches the
net peak parametric gaingL and the effective number o
squeezed modes becomes infinite. For instantaneous ma
response,t50 and the eigenmodes are pointlike in tim
while for a monochromatic pumpt5` and the eigenmode
have sinusoidal envelopes~bichromatic modes!. In the limit
in which the pump pulse duration is as short as the nonlin
response time,t→TpumpA2 andr→1. In this limit the first
mode (n50), whose squeeze parameter isgL/2, is the only
squeezed mode (Nl51).

The presence of phase velocity mismatch~i.e., wave vec-
tor mismatch at the carrier frequencies of the pump a
downconverted pulses! does not alter the eigenmodes. Th
can be seen by noting that ifKpq5Dk5const, then the
transformationâp→âpe2 iDk/2 transforms the Hamiltonian
~1! to

Ĥ→\c
Dk

2 (
p

âp
†âp1

i\c

2 (
pq

~Gpq* âpâq2Gpqâp
†âq

†!

which is diagonalized by the same transformation that dia
nalizesG. The output field operators for the eigenmodes b
come

âp9→âp8S coshzp2
iDkL

zp
sinhzpD2âp8

† gp

zp
sinhzp , ~15!

wherezp5Agp
22(DkL)2 andgp is thepth eigenvalue in the

absence of the phase mismatch. By comparing Eq.~15! with
Eq. ~7!, the new squeeze eigenvalue of thepth eigenmode is
seen to be sinh21@(gp /zp)sinhzp#, which is smaller thangp .
The smaller gp , the larger the relative decrease in th
squeezing. Thus the net result of phase velocity misma
between the pump and downconverted pulses is to reduce
squeeze parameters of all eigenmodes, but especially o
higher-order eigenmodes, so that the effective number
squeezed modes is also reduced.

We now present the results of numerical studies of m
realistic cases involving a causal nonlinear susceptibility a
the possibility of group-velocity mismatch as well a
5-3
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phase velocity mismatch. For these studies the sque
eigenmodes were obtained by expressing the parametric
as a function of frequency, discretizing this function, in
grating Eq.~2! numerically, and diagonalizing the resultin
squeeze matrix. The parametric gain was taken to have
form

G~dv,dv8!5
g

TpumpA2p

expF2
1

2
Tpump

2 ~dv1dv8!2G
~12 iTxdv!~12 iTxdv8!

,

~16!

wheredv,dv8 are detunings from the center frequency
the downconverted field. The spectral continuum was
proximated by 300 modes spanning a bandwidth of 8Tx

21 .
Phase mismatch was incorporated by expandingk(v) in two
power series about the carrier frequencies of the pump
downconverted fields and retaining the two lowest terms
each series. The phase mismatch was then written in term
the mode detunings dvp ,dvq as DKpqL5DkL
2DTdelay(dvp1dvq), where Dk is the longitudinal wave
vector mismatch at the carrier frequencies andDTdelay is the
difference in group delay between the pump and downc
verted pulses.

Figure 2 shows the ten largest squeeze eigenvalues
moderately short pump (Tpump/Tx510) and moderate gain
(gL54). Comparison of the phase-matched and pha
mismatched cases confirms that phase velocity mism
both reduces the maximum degree of squeezing and the
fective number of squeezed modes. Group-velocity m
match also decreases the maximum degree of squeezing
tends to increase the number of squeezed modes. The e
modes were found to be very similar to the Hermite-Ga
modes predicted by the analytical study above~cf. Fig. 3!,
even though a very different response function was used
the nonlinear susceptibility. As expected, the eigenmo
were unaffected by the addition of phase velocity mismat
Surprisingly, the eigenmodes were also not changed sig
cantly by a moderately large group-velocity mismatch:
overlap of the first eigenmode in this case with that of

FIG. 2. The ten largest eigenvalues of the squeezing for a p
pulse long compared to the nonlinear response time (Tpump/Tx

510), and with an intensity such that the gain-length product at
peak of the pulse is 4. For the case of phase velocity misma
DkL52p and DTdelay50. For the case of group-velocity mis
match,DkL50 andDTdelay55Tpump.
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phase-matched case was 0.99, even though the differen
group delay between the pump and downconverted fie
was five times the pump duration.

A ‘‘common sense’’ way to setup a squeezed light expe
ment is to derive the local oscillator from the same pulse
the pump ~Fig. 1!. Such a pulse, however, is not we
matched to any of the eigenmodes of the squeezing~Fig. 3!.
For typical parameters the overlap of the~Gaussian! local
oscillator with the most-squeezed eigenmode is only 70
with the result that the measured amount of noise reduc
could be many dB smaller than the squeezing of this eig
mode ~Fig. 4!. Another ‘‘common sense’’ experimental ap
proach when the OPA is seeded with a coherent state inp
to match the local oscillator to the mode of the coher
portion of the output, that is, to maximize the fringe contra
But the shape of this mode is a function of the amplitudes
the input modes, whereas the shapes of the eigenmode
the squeezing are determined only by the parameters of
Hamiltonian. Thus maximizing fringe contrast does not ide
tify the optimum local oscillator, either. These findings su
gest that, even though the importance of mode matchin
widely recognized, previous measurements of squeezed
may not have used the optimal mode for the local oscilla
and that in some experimental setups the measured n
reduction stands to be improved significantly by shaping

p

e
h,

FIG. 3. The temporal envelopes of the first three eigenmode
the squeezing~solid lines! and of a local oscillator derived from th
same pulse as the pump~dashed line!. The conditions are those o
the phase-matched case of Fig. 2.

FIG. 4. The decrease in the amount of squeezing meas
when the local oscillator of Fig. 3 is used instead of that wh
matches the most-squeezed eigenmode. Solid line,Tpump/Tx510;
dashed line,Tpump/Tx52. The dotted line has a slope of unity an
is included as a guide to the eye.
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local oscillator to match the most-squeezed eigenmode.
the case shown in Fig. 3, the reshaping could be achieve
controlled spectral broadening of the seed pulse via s
phase modulation followed by passive linear filtering in t
spectral domain~akin to what is commonly done in chirpe
pulse amplification! to shorten the local oscillator pulse. I
the spatial analog of this problem, reshaping could
achieved with a telescope and combination of phase and
plitude masks.

In conclusion, we have presented an approach to ana
ing multimode squeezed light which addresses the fact
squeezed light sources based on parametric downconve
produce fields which generally contain correlations betw
multiple, overlapping pairs of modes. This approach is ba
on our observation that the matrix which characterizes
squeezing can always be diagonalized by a change of
field basis. The eigenvectors of the squeeze matrix define
modes of the field which exhibit single-mode squeezed
.

r,

ll-

t.

p

05381
or
by
lf-

e
m-

z-
at
ion
n
d
e
he
he
a-

tistics and the eigenvalues are the corresponding squeez
rameters. To observe the most noise reduction, one sh
match the mode of the local oscillator to the eigenmode w
the largest squeeze parameter. For a pump having a Gau
temporal profile the squeeze eigenmodes are very ne
Hermite-Gauss modes in both the time and frequency
mains; but in general none of these matches the mode of
coherent-state field produced in a typical squeezing exp
ment. Hence the levels of squeezing which have been
served to date may yet be increased by appropriate sha
of the local oscillator field based on the theory presen
here.
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