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Improved measurement of multimode squeezed light via an eigenmode approach
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We analyze the output of a degenerate optical parametric amplifier using a different approach to understand-
ing and characterizing multimode squeezed light. This approach is based on the concept of eigenmodes of the
squeezing and predicts the mode structure of the local oscillator that should be used in order to measure the
smallest quadrature noise. Although the importance of mode matching is well known, we find that typical
experimental setups are suboptimal and we predict that in such cases squeezed light measurements stand to be
improved noticeably with appropriate shapifig space and/or timyeof the local oscillator field in accordance
with the results of the theory. Under conditions of negligible or small phase mismatch, the optimal local
oscillator pulse duration is found to be approximately equal to the geometric mean of the pump pulse duration
and nonlinear response time. Also, we find that the effective number of squeezed modes can be altered by
varying the pump pulse duration and/or phase-matching parameters.
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It is well established that optical parametric amplificationtemporal modulation of particular functional forms and de-
produces nonclassical light. In the limit of very small para-termined the parameters which yield the best squeezing mea-
metric gain, the quantum state of the output light approxi-surements. _
mates an entangled two-photon state and has prompted ex- In this paper we present a general, systematic approach to
citing avenues of research including quantum imadiny ~ the analysis of multimode squeezed light produced by para-
quantum teleportatiofi2], and quantum lithographfg]. In metric downconversion. This approach involves finding the

the regime of modest or large parametric gain, the Superpoe_igenvectors of a matrifor the eigenfunctions of a continu-

sition of the signal and idler fields shows reduced varianc@US two-argument funct|c)nNh|ch_|s_d|rectIy related to the
(compared to the standard quantum lingitong one axis of parametric gain. We note that similar approaches based on

its phase spadet,5]. Such light[6,7] has come to be known the use of eigenbases have been developed by Shapiro and

as squeezed ligh8] and has shown promise in applications Shakeel[20] and, most recently, by Opatrngt al. [21)

h ltra] . 10 and mi While our approach identifies the optimal local oscillator
such as ultra-low-noise spectroscdi®y10] and microscopy mode, it alsa(i) gives a physical interpretation to the eigen-

[11] and noiseless image amplificatipi?,13. Most studies  4des(ji) provides insight into the correlations which exist

of multimode squeezed lightsee Ref.[14] for a review i, myltimode squeezed fieldéii) simplifies the calculation
have implicitly assumed that in the parametric process thgs the field statistics, andv) indicates how the pump field
signal and idler photons are emitted into separate pairs Qfarameters and phase-matching conditions of the parametric
modes. This assumption, however, is generally invalid ininteraction affect the number of squeezed modes and their
conventional bases. For example, pump fields are oftedegrees of squeezing. After developing a general formalism,
pulsed andor) focused in order to achieve desired downcon-we will present analytical and numerical results for the case
version efficiencies. The spread of frequencies and transvergd a single-spatial mode optical parametric amplifi©PA)
momenta in the pump field cause each signal mode of defpumped by a short pulse. We find that typical setups for
nite frequency and transverse momentum to be entangleshueezed light measuremdfig. 1) do not optimally probe
with many idler modes, and vice versa. In the small gainthe squeezed field and that shaping the local oscillator in
(entangled photonregime, Lawet al. [15] have found that accordance with the predictions of our theory could increase
this cross-modal coupling affects the entropy of entanglethe measured amount of squeezing in such experiments by at
ment of the output light. In the context of squeezing, it hageast several dB.

been recognized that the cross-modal coupling affects the \We model the action of an OPA on a set(ofthonormal
measured amount of squeezing. La Porta and Sluyst&r quantized field modes with slowly-varying operates(z)
showed that when the squeezed light produced by a mondy the Hamiltonian

chromatic, focused Gaussian beam is measured with a ® 20 ®
Gaussian local oscillator, the measurable amount of squeez- OPA N
ing is bounded. Kim and Kumad 7] demonstrated that mea- N
surements of squeezing can be improved by using a local
oscillator generated in the same medium as the squeezed
field rather than a Gaussian local oscillator. Oth&rg.,
Refs.[18,19) have proposed the use of spectral filters or

FIG. 1. Atypical experimental setup to measure squeezing pro-
*Electronic address: bennink@optics.rochester.edu duced by parametric downconversion.
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. ihC . 2 a ) a canonical basis for the field which diagonalidésin this
H=—- % Gpa@pagexp —iKpgz) +H.c.. (1) pasis the expressions for the output field operators reduce to
the particularly simple form

HereG, is the parametric gain coefficient of the wave mix-
ing between mode® and g, K,g=k(wp+wg)—k(wy)

—k(wg) is the longitudinal wave vector mismatch, aag is ] ] ) ]
the frequency of mod@. When the modes are monochro- Where v, is the pth eigenvalue of". If U is the unitary
matic and planarG,, is given (in the Gaussian system of matrix that transforms the field to this eigenba$i],

a=a/coshy,—a;'sinhy,, 7

units) by Goy=—i(4m/c) mx(z)(w 0)E(w i.e., the matrix whose columns are the eigenvectord of
Pq p®q p:¥q p vy Do A
+ wq) exflik(wy+ wg)z] where x? is the second-order opti- then  @;.a;, ...)"=U"e'®(@,(0).a,(0),...)" and

cal susceptibility andE(z,t)=3,E(w,)exdik(o)z—iot]  (a}.a5, ...)"=U"(a1(2),a5(2), ...)". When the input
+c.c. is the real, classical pump field. More generally, thefig|g operatorsép(O) refer to coherent stategsuch as the

thdeS may havedany s]:platial or temporal form, as 'g”g afacuum statg the form of Eq.(7) guarantees that the output
they are eigenmodes of linear-optic propagat_(nnt to be perators”, describe canonical single-mode squeezed states.
confused with the eigenmodes of the squeezing, Intrc’(jl“:&ihat is topsaythe eigenvectors of' define the squeezed
below). For convenience we have assumed that the pum J . .

' . . : odes of the field and the corresponding eigenvalues are the
field remains undepletgd. In the_ sIowa-varymg amplItUdFesqueeze parameterg/e call such ?nodesgthegeigenmodes of
approximation, the spatial evolution of the field operators IS he squeezing, and the eigenvalues of the squeezing
governed by The squeeze eigenmodes are fundamental in that they de-

fine the basis in which the squeezing is maximum. §:€g)

ia :'_[g,é ]. (2)  be the field of a classical local oscillator, whereepresents
dz'? fic . the relevant spatial anfor) spectral coordinates, and let
. ¢p(s) be the field of thepth eigenmode Withf¢>§ $qds
The field at the plane can then be expressed as =5, In balanced homodyne or heterodyne detection
- A - A schemes the difference photocurré@tontains only the in-
ap(z)=exfi(z)]ap(0)exd —iQ(2)], (3 terference terms and can be written as
where)(z) is in general a complicated function involving N N
nested commutators of integrals [df[22]. Nevertheless() 'docEp |OplEp(argOy), (8)
will be quadratic in the field operators and the transformation
may be written[23] as whereO,= [ 4* ¢,dsis the overlap between the local oscil-
o lator and modep over the domain of the detector and
exp(—iQ)=SI)F(P) 4 Ey(0)=€’aj+e a)’ is the projection ofaj onto the

) ) . ) quadrature with phas@. The photocurrent variance is
for some symmetric matrik' and some Hermitian matrisb,

where .
(AT9y= > |0, e 27co(argO,) + e?psir?(argO,)].
P

. 1 - - - -
S(r):exp[E % (r;qap(O)aq(O)—rpqag(O)ag(O))}, ©)

(5) That is, the photocurrent variance is a weighted sum of
quadrature variancgsome perhaps squeezed, some perhaps
antisqueezedf all modes which overlap the local oscillator.

: (6)  If the local oscillator overlaps multiple eigenmodes the pho-
tocurrent may not show variance below the standard quan-
. . ) ) ~tum limit for any phase of the local oscillator. The smallest
F is a unitary operator which merely changes the input fielqyhotocurrent variance is obtained when the mode of the local
basis, whileS is a multimode squeezing operator which ac-oscillator is chosen to match the eigenmode with the largest
counts for parametric coupling between all possible pairs ogqueeze parameter.
modes. The elements of the matilixplay the role that the If the squeezing has more than one nonzero eigenvalue,
squeeze parameter plays in single-mode squeezing, with thiken in principle multiple photocurrents with reduced noise
diagonal elements promoting single-mode squeezing and th@ay be measured simultaneously. Ideally, each eigenmode is
off-diagonal elements promoting pairwise squeezing. In therojected onto a different detector and exhibits a photocur-
case of perfect phase matching(;=0) one hasb=0and rent noise determined by the corresponding eigenvalue. To
I'pq=Gpgl, wherelL is the length of the OPA. Since each accomplish this one must be able to physically separate the
mode is influenced by many different elementsIgf the  various eigenmode&via lossless spatial, temporal, or spec-
effect of any single element on the statistics of the mode igral filtering) and direct them to separate detectors. The pho-
usually not simple. However, we find that there always existsocurrent at thgth detector will be given by Eq9), where

ﬁ((b):eXp(iE ®,4al(0)ag(0)
PQa
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O, is replaced byO;,, the overlap between eigenmoge r
and the local oscillator field over thgh detector. Pn()=Hy(t/7), yn=9gL
As the eigenvalues of a matrix are unchanged by linear

unitary transformations, the squeeze eigenvalues are Ulhere H,(t) is the Hermite-Gauss function of ordey =

changed either by propagation through a lossless linear opti- o7 7~ Candr=+T.. JT.. That is, the eigenmodes
cal system or by paraxial diffraction. For this reason, 10-¢ ¢ Félz]mtije)ézing are Hermite-Gauss functions o%]‘ time with a
gether with the fact that the statistics of any field mode Calharacteristic width equalwithin a small numerical factor

be expressed in terms of the squeeze eigenvalues, we vi W the geometric mean of the pump pulse duration and non-
the distribution of eigenvalues as a fundamental property of g, response time. The eigenvalues form a geometric se-

multimode squeezed field. Together, the squeeze eigenvaluaaence and we may define the effective number of squeezed
and eigenmodes contain all there is to know about the quaniodes as

tum statistics of the field. A significant advantage of this

r—l

) , (13

r+r -\ r+r?t

approach is that it separates the quantum aspects of the field A I

. . . : pump™ ' x
(the squeezingfrom the classical aspectsliffraction and N,=|1- = . (14)
imaging. r+rt 2Ty

To illustrate this approach, we have performed an eigen- . .
PP b g The lowest-order moden(=0) is Gaussian and has the larg-

mode analysis of the light produced by a frequency- T ; .
degenerate OPA. For clarity of discussion, the field modes ofSt squeeze parameter. In the limit of either instantaneous

Eq. (1) will be assumed to differ only in frequencgThis ~ Mmaterial responseT(,—0) or monochromatic PUM pymp
assumption is applicable either if the pump and medium have”>): the maximum squeeze eigenvalyg approaches the
no transverse spatial dependence, or if the medium is A8t Peak parametric gaigL and the effective number of
waveguide which allows only a single-spatial mode at eaclsdueezed modes become.s infinite. For mstantaneogs materlal
frequency. We consider the pump field to be of the form "€SPonse =0 and the eigenmodes are pointlike in time,
Epump(t)=Epumdo)exd—%(t/Tpump)z] where Epnd0) is while fgr a monochromatlc.pump=o§ and the agenmodes
such that the parametriamplitude gain at the peak of the _have _smusmdal envelopéblchr_omgtm modes In the I|m|t'
pulse isg. For the case of arbitrary phase mismatch and" which thg pump pulse duration is as shprt as the nqnllnear
nonlinear response function, numerical methods must be enf€Sponse timer— Ty,npy2 andr —1. In this limit the first
ployed to determine the structure of the squeeze matrix; thE'ode i=0), whose squeeze parametegls/2, is the only
results of such computations will follow. But first, an ana- Squeezed modeNy=1). S
lytical study of a slightly more restricted system will provide ~ The presence of phase velocity mismafch., wave vec-
considerable insight. tor mismatch at the carrier frequencies of the pump and
We assume for the moment that the nonlinear susceptibidownconverted pulsgsloes not alter the eigenmodes. This
ity has a Gaussian temporal response and that the pump af@n be seen by noting that K,,=Ak=const, then the
downconverted pulses are phasematched to all orders of dit@r{:msformationapeape"Ak’2 transforms the Hamiltonian
persion. Analysis is performed in the time domain using a(1) to
continuous parametric gain functic@(t,t’) in favor of a

discrete matrixG(t,t’) is the parametric coupling between . A_k ata |h_c x5 oa ~fat
the downconverted fields at timeésndt’. Under the condi- H=he zp 22T 3 % (Cpa@paa ~ Coadpls)
tions stated above, the squeeze funcligh,t’) (the continu-
ous analog of the squeeze matfix has the form which is diagonalized by the same transformation that diago-
nalizesG. The output field operators for the eigenmodes be-
L(t,t)=G(t,t')L (10  come
an o IAKL : “/TYP :
(t41)2  (1—t')2 ap—ap| coshf,— g—smhgp —a, g—smhgp, (15
P P
exg — -
4T2 4T 5 : : :
=gL pump X - (1)  where{,= \/yzp— (AkL)“ andvy, is thepth eigenvalue in the
T,V2m absence of the phase mismatch. By comparing(Eg). with

Eq. (7), the new squeeze eigenvalue of {ith eigenmode is

whereL is the length of the nonlinear medium afig is the ~ S€en to be sini[(y,/¢;)sinh{,], which is smaller thary,.
response time of the nonlinearity. The temporal functionThe smallery,, the larger the relative decrease in the

#q(t) of thenth eigenmode of the squeezing obeys the inte-Squeezing. Thus the net result of phase velocity mismatch
gral eigenvalue equation between the pump and downconverted pulses is to reduce the

squeeze parameters of all eigenmodes, but especially of the
higher-order eigenmodes, so that the effective number of
f T(t,t")p,(t")dt’ = y,,(1) (12) squeezed modes is also reduced.
We now present the results of numerical studies of more
realistic cases involving a causal nonlinear susceptibility and
which is satisfied by the possibility of group-velocity mismatch as well as
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FIG. 2. The ten largest eigenval_ues of the squeez_ing forapump FiG. 3. The temporal envelopes of the first three eigenmodes of
pulse long compared to the nonlinear response tiMgnl/T,  the squeezingsolid lines and of a local oscillator derived from the

=10), and with an intensity such that the gain-length product at thgame pulse as the puntgashed ling The conditions are those of
peak of the pulse is 4. For the case of phase velocity mismatchpe phase-matched case of Fig. 2.

AkL=27 and ATga~=0. For the case of group-velocity mis-

match, AkL=0 andATgeiay=5T pump- phase-matched case was 0.99, even though the difference in

. . . roup delay between the pump and downconverted fields
phase velocity mismatch. For these studies the squee as five times the pump duration.

eigenmodes were obtained by expressing the parametric gain A “common sense” way to setup a squeezed light experi-

as a function of freq_uency, discr_etizing _this function, ime'ment is to derive the local oscillator from the same pulse as
grating Eq.(2) numerically, and diagonalizing the resulting the pump (Fig. 1. Such a pulse, however, is not well

squeeze matrix. The parametric gain was taken to have tn%atched to any of the eigenmodes of the squeetfiig 3)

form For typical parameters the overlap of ti@aussiah local
1 oscillator with the most-squeezed eigenmode is only 70%,
ex;{ _ T2 { S+ Sw')? with the result that the measured amount of noise reduction
g 2 pum could be many dB smaller than the squeezing of this eigen-
Tpump\/z (1-iT,80)(1—iT Sw’) ' mode (Fig. 4). Another_ “common sgnse“ expenmental_ ap-
(16) proach when the OPA is seeded with a coherent state input is
to match the local oscillator to the mode of the coherent

where 5w,50" are detunings from the center frequency of portion of the output, that is, to maximize the fringe contrast.

the downconverted field. The spectral continuum was apBut the shape of this mode is a function of the amplitudes of

proximated by 300 modes spanning a bandwidth ©f 8. me input modes, vx:jhta;rea; thg shlapt()as tﬁf the eigepmod??hof
Phase mismatch was incorporated by expanding) in two € squeezing are determined only by the parameters ot the

power series about the carrier frequencies of the pump an,[I aTr'II;OQ'i%l&ﬁ)?jﬂgﬁ;ggj:”gﬁﬁeior_}t;aeztedﬁﬁjir?oé 'gjn_'
downconverted fields and retaining the two lowest terms in P . : gs sug-
Fzst that, even though the importance of mode matching is

each series. The phase mismatch was then written in terms gf . . ?
the mode detunings dwy,dw, as AK,.L=AkL widely recognized, previous measurements of squeezed light
pr9Wq pq-—

— AT eiaf S+ dwrg), where Ak is the longitudinal wave may not have used the optimal mode for the local oscillator,

vector mismatch at the carrier frequencies @, is the and that in some experimental setups the measured noise

difference in group delay between the pump and OIOWncon[eduction stands to be improved significantly by shaping the

verted pulses.

G(dw,dw’)=

Figure 2 shows the ten largest squeeze eigenvalues for a & 25
moderately short pumpTgym/ T, =10) and moderate gain %20
(gL=4). Comparison of the phase-matched and phase- S
mismatched cases confirms that phase velocity mismatch & 15 -
both reduces the maximum degree of squeezing and the ef- g 10 =Tz -
fective number of squeezed modes. Group-velocity mis- 3 -
match also decreases the maximum degree of squeezing, but 2 5 Lz
tends to increase the number of squeezed modes. The eigen- g 7
modes were found to be very similar to the Hermite-Gauss 00 5 1'0 1'5 2'0 o5

modes predicted by the analytical study abdet Fig. 3),
even though a very different response function was used for
the nonlinear susceptibility. As expected, the eigenmodes F|G. 4. The decrease in the amount of squeezing measured
were unaffected by the addition of phase velocity mismatchwhen the local oscillator of Fig. 3 is used instead of that which
Surprisingly, the eigenmodes were also not changed signifimatches the most-squeezed eigenmode. Solid Tigg,,/T, = 10;
cantly by a moderately large group-velocity mismatch: thedashed lineT yumy/T,=2. The dotted line has a slope of unity and
overlap of the first eigenmode in this case with that of theis included as a guide to the eye.

actual squeezing (dB)

053815-4



IMPROVED MEASUREMENT OF MULTIMODE SQUEEZED. .. PHYSICAL REVIEW &6, 053815 (2002

local oscillator to match the most-squeezed eigenmode. Fdistics and the eigenvalues are the corresponding squeeze pa-
the case shown in Fig. 3, the reshaping could be achieved bymeters. To observe the most noise reduction, one should
controlled spectral broadening of the seed pulse via selfmatch the mode of the local oscillator to the eigenmode with
phase modulation followed by passive linear filtering in thethe largest squeeze parameter. For a pump having a Gaussian
spectral domairiakin to what is commonly done in chirped temporal profile the squeeze eigenmodes are very nearly
pulse amplificationto shorten the local oscillator pulse. In Hermite-Gauss modes in both the time and frequency do-
the spatial analog of this problem, reshaping could bemains; but in general none of these matches the mode of any
achieved with a telescope and combination of phase and angpherent-state field produced in a typical squeezing experi-
plitude masks. ment. Hence the levels of squeezing which have been ob-
In conclusion, we have presented an approach to analyzerved to date may yet be increased by appropriate shaping

ing multimode squeezed light which addresses the fact thajt the local oscillator field based on the theory presented
squeezed light sources based on parametric downconversiggre.

produce fields which generally contain correlations between

multiple, overlapping pairs of modes. This approach is based

on our _observatlon that the ‘matrix WhICh characterizes the ACKNOWLEDGMENTS

squeezing can always be diagonalized by a change of the
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