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Second- and Higher-Order Harmonic
Generation

Robert W. Boyd

6.1 INTRODUCTION

Second-harmonic generation is the prototypical nonlinear optical process. Its discovery
by Franken et al. (1961) is often taken as the birth of the field of nonlinear optics. Even
today, this process is extremely important for various applications, including shifting
the output frequency of lasers, as a diagnostic tool to determine the surface properties
of various materials, and for use in nonlinear optical microscopy.

The process of second-harmonic generation is illustrated in Figure 6.1. A laser beam
at frequency o illuminates a nonlinear optical material and a beam of light at frequency
2w is created. Under proper circumstances, the efficiency of this process can exceed
50% (Seka et al., 1980). The transfer of energy from the input field to the output field
can be visualized in terms of the energy-level diagram shown on the right-hand side
of the figure. One visualizes the process as one in which two photons from the input
beam are lost and one photon in the output beam is created. The process of second-
harmonic generation generalizes straightforwardly to direct third- and higher-order
harmonic generation. The process of N-th harmonic generation, for arbitrary order N,
is illustrated in Figure 6.2. Here N photons are lost to the input beam and one photon
at frequency Nw is created. These intuitive descriptions of the nature of harmonic
generation can be justified more formally by means of the Manley-Rowe relations
(Manley & Rowe, 1959).
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Figure 6.1. The process of second-harmonic generation.
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Figure 6.2. The process of direct N-th harmonic generation.

6.2 THEORY OF THE NONLINEAR OPTICAL SUSCEPTIBILITY

Theoretical treatments of harmonic generation can be found both in the early research
papers (Armstrong et al. 1962) and in various textbook accounts (Boyd, 2003; Butcher
& Cotter, 1990; Shen, 1984; Zernike & Midwinter, 1973). These treatments usually
begin by considering how the response of the material medium, specified by means of
the polarization P (dipole moment per unit volume), depends on the amplitude E of
the electric field of the applied optical wave. Under the simplest circumstances, this
relationship can be expressed in the time domain as

P(1) = € [x”’E(z) + xPE2(1) + xPE3 (1) + - - ] . 6.1)

where the presence of a tilde over a quantity indicates that that quantity is a rapidly
varying function of time. Here x (!) is the linear susceptibility, x ) is the second-order
susceptibility, x ® is the third-order susceptibility, etc.

Second-harmonic generation occurs as a result of the second-order response
described by x ). A slight variant of this process is sum-frequency generation, which
is illustrated in Figure 6.3. The situation is a bit more complicated for third-harmonic
generation, which can occur either directly as a consequence of the third-order response
x ), or indirectly as a two-step process involving two second-order processes. In this
latter case, the first step involves second-harmonic generation involving x® and the
second step involves sum-frequency mixing, also involving x ) of frequencies w and
2w to produce 3w. This circumstance is illustrated in Figure 6.4. In well-designed optical
systems, the sequential process can be far more efficient than the direct process, although
in situations involving biological materials the direct process usually dominates. Similar
considerations regarding direct and indirect processes apply to higher-order harmonic
generation.

A more complete description of the nonlinear response requires that the vector nature
of the electric field and polarization be taken into account. Also, if the various orders
of the nonlinear susceptibility are frequency dependent, the relationship between the
electric field and polarization is best expressed in the frequency domain. For example,
the second-order polarization can be expressed more generally as:

, 2
Pi(wn + op) = €0 E E X,:(/Z)(wn + Wi Ony Om) Ej(@n) Ex (). (6.2)
Jjk (nm)
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Figure 6.3. The process of sum-frequency generation.
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Figure 6.4. (a) Direct third-harmonic generation. (b) The process of sequential

third-harmonic generation.
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Here i, j, and k represent various cartesian components of the field vectors and the
notation (n, m) implies that the expression is to be summed over w, and w,, but only
those contributions that lead to the particular frequency , + @, given in the argu-
ment on the left-hand side of the equation are to be retained. Likewise, the third-order
polarization can be expressed as:

(3)
Pi(wo + wp + wm) = €0 Z Z Xijki (w0 + Wy + Oy Vo, Ony W)
Jjkl (mno)

X Ej(wo)Ek (@n)Er(wm). (6.3)

These relations generalize in obvious ways to higher-order contributions to the nonlinear
polarization. '

The values of the nonlinear susceptibility elements can be obtained either by mea-
surement or, in principle, by calculation. Extensive tables of values of the nonlinear
susceptibility can be found in the scientific literature (Cleveland Crystals, 2005; Smith,
2005: Sutherland, 1996). Even when explicit calculation of the nonlinear susceptibility
is hopelessly difficult, as it is for many biological materials, theoretical models of the
nonlinear response are still very useful as they provide insight into the nature of the
nonlinear response and show how the magnitude of the response depends on physical
properties of the material system.

6.3 SIMPLE MODEL OF THE NONLINEAR SUSCEPTIBILITY

Considerable insight can be obtained by considering the form of the potential energy
function that binds the electron to the atomic core. Two different possibilities are shown
in Figure 6.5. According to linear reponse theory. the potential well would have the
form of a perfect parabola, and the restoring force would be described by Hooke’s
law. In a real material, the force law need not obey Hooke’s law and the potential well
need not be a parabola. For a material that possesses a center of inversion symmetry,
illustrated on the right-hand side of the figure, the potential well must be a symmetric
function of the displacement x. Such a nonlinear response can produce only even
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Figure 6.5. (a) The potential well for a material that lacks a center of inversion
symmetry. Both even- and odd-order nonlinearities can occur for such a material. (b)
The potential well for a material that possesses a center of inversion symmetry. Only
even-order nonlinearities can occur for such a material.
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harmonics of the applied optical frequency. However, a material that lacks a center
of inversion symmetry will have a potential function of the sort shown on the left-
hand side of the figure. A potential function of this form can produce both even and
odd harmonics of an applied field frequency. This argument leads to the important
conclusion that second-harmonic generation can occur only in materials that lack a
center of inversion symmetry. Most biological materials lack a center of inversion and
thus in principle can produce second-harmonic generation. But it should be noted that a
material must be non-centrosymmetric over macroscopic distances in order to produce
appreciable radiation at the second-harmonic frequency. Thus, for example, a liquid
sample of biological molecules, each of which lacks a center of inversion symmetry,
cannot produce second-harmonic generation.

6.4 QUANTUM MECHANICAL TREATMENT OF THE NONLINEAR
SUSCEPTIBILITY*

More exacting models of the nonlinear optical response are provided by quantum
mechanical calculation (Armstrong et al., 1962; Boyd, 2003; Butcher & Cotter, 1990;
Hanna et al., 1979; Shen, 1984; Zernike & Midwinter, 1973). For example, for the case
of usual interest in which the applied and generated fields are detuned by at least several
line widths from the closest material resonance, the second-order susceptibility can be
expressed as:

ik
2) N l‘l'gn“)lmumg
Xi (Wo, 0g, Wp) = —=PF ; (6.4)
- eoh” Z (wng — we ) (Wmg — Wp)

mn
where wy =), + wy, N is the number density of molecules, (hm Tepresents the j-th
cartesian component of the electric-dipole moment matrix element connecting levels n
and m, and @y is the energy separation of levels m and g divided by h. The symbol
Pr is the full permutation operator, defined such that the expression that follows it is
to be summed over all permutations of the frequencies wp, wg, and —wg .

The cartesian indices are to be permuted along with the related frequencies, and
the final result is to be divided by the number of distinct permutations of the input
frequencies @, and w,. In the general case in which w), and e, are distinct, this equation
thus expands to six separate terms. Three of these six terms are illustrated in Figure 6.6;
the other six terms result from simply interchanging ), and e, in these figures.
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Figure 6.6. Various quantum-mechanical contributions to the second-order nonlinear
optical response.
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Figure 6.7. Various quantum-mechanical contributions to the third-order nonlinear
optical response.

g

Similarly, the expression for the third-order susceptibility can be expressed in the
limit of nonresonant interaction as:

. h
ug vu\’"umn“mg
Wyg — wa)(wng — Wg — wp)(wmg = wp)

(6.5)

3) — N
Xiin (@ » Ors g, Wp) = E()?PF 2, (

mnv

where w, = @) + g + ;.

When expanded, this expression represents 24 separate terms. Four of these terms
are represented in the diagrams shown in Figure 6.7. The other terms can be found
from the six interchanges of the frequencies w), @y, and ,. The quantum mechanical
expressions given here describe the nonlinear response of bound electrons. Even free
electrons can produce a nonlinear response, for instance, by means of relativistic effects
(Park et al., 2002). Also, it has been found that extremely large harmonic orders can
be generated under conditions such that the laser field is sufficiently large to nearly
remove the electron from the atomic core. For example, harmonic orders as large as
221 have been observed by Chang et al. (1997).

6.5 WAVE EQUATION DESCRIPTION OF HARMONIC GENERATION*

The intensity of the radiation emitted in the harmonic generation process can be
predicted by means of a propagation calculation. We begin with the wave equation
in the form:

V2 n? 9%E B gAphiL ©6.6)
2P Koo 3> .
where 11 denotes the magnetic permeability of free space.
For the present, we take the fundamental- and second-harmonic waves to be plane
waves of the form:

Ei(z,t) = Ej@)e™" " + c.c. = Aj(z)e' b+ + e (6.7)

where j = 1,2, with | = @ and ) = 2w, and where c.c. stands for complex conjugate.
Here E;(z) represents the complex amplitude of field j, and A; (z) represents the spatially
slowly varying field amplitude of this wave.
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to obtain:

Ak <0,
(6.17)

Os
In(Ak,20,2) =3 p 271 bAk
E(N—z)!( 2

Ve

N-=2
> e~ bAK2 Ak > 0.

This result shows that harmonic generation vanishes whenever Ak is negative, which
it is for the usual case of normal dispersion. The vanishing of the harmonic generation
is a result of destructive interference between the contributions to the harmonic field
from both sides of the beam waist.

6.8 SURFACE NONLINEAR OPTICS

One important application of second-harmonic generation is as an exacting diagnostic of
the surface properties of optical materials. As noted above, second-harmonic generation
is a forbidden process for a material that possesses a center of inversion symmetry.
The surface of a material clearly lacks inversion symmetry, and thus second-harmonic
generation can occur at the surface of a material of any symmetry. For the same reason,
the intensity and angular distribution of surface second-harmonic generation depends
critically on the morphology of a surface and on the presence of impurities on the
surface of the material. Good reviews of the early work in this area are given by Shen
(1985, 1989), and procedures for calculating the intensity of the second-harmonic light
are given by Mizrahi and Sipe (1988).

6.9 NONLINEAR OPTICAL MICROSCOPY

Another application of harmonic generation is its use in nonlinear microscopy. Since this
topic is developed in considerable detail in succeeding chapters, only a few comments
of a general nature will be made here. One motivation for using nonlinear effects and
in particular harmonic generation in microscopy is to provide enhanced transverse
and longitudinal resolution. The resolution is enhanced because nonlinear effects are
excited most efficiently only in the region of maximum intensity of a focused laser
beam. Microscopy based on harmonic generation also offers the advantage that the
signal is far removed in frequency from the unwanted background light that results
from linear scattering of the incident laser beam. Also, light at a wavelength sufficiently
long that it will not damage biological materials can be used to achieve a resolution that
would normally require a much shorter wavelength. Harmonic-generation microscopy
can either make use of the intrinsic nonlinear response of biological materials or can
be used with materials that are labeled with nonlinear optical chromophores. Also,
harmonic-generation microscopy can be used to form images of transparent (phase)
objects, because the phase-matching condition of nonlinear optics depends sensitively
on the refractive index variation within the sample being imaged (Muller et al., 1998).

Gao et al. (1997) have used tomography based on second-harmonic generation to
characterize biological materials. Gauderon et al. (1998) have demonstrated three-
dimensional imaging based on second-harmonic generation with fs laser pulses.
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The nonlinear polarization is then given by:
Py(z,1) = Pa(z)e! @720 f e, (6.8)

where P> =P(w) =eox PE f represents the complex amplitude of the nonlinear
polarization.
If these expressions are introduced into the wave equation (6.6), we find that:

d*A, _dA,
—dzz + 2iky &

” L
Rw)"n3
C2

— kjA; — Ay = —Qw)*eopox PAT 2T (6.9)
This expression can be simplified by omitting the first term on the basis of the argument
that it is much smaller than the second term. This simplification is known as the slowly
varying amplitude approximation. We also see that the third and fourth terms cancel
exactly. We are thus left with the equation:

dA> _ 21'61)X<3)A% o Cki—ka)z (6.10)
dz nxc

Under the assumption that A is not appreciably modified by the nonlinear interaction,
we can take A; to be a constant and solve this equation by direct integration. We find
that after propagation through a distance L the amplitude of the second-harmonic field
is given by:

?_in(Z)AZ o8k
As(L) = 1 . 6.11
2(8) nyc iAKL (ouLlg

where Ak =2k; — k».
. . . . ~ . 9
Since the intensity is related to the field strength according to I =2n+/€o/ 0 |A]”,
we find that the intensity of the generated radiation is given by:

L(L) = 0

P)
€0 ninac?

[x PPIEL? [sinc*(Ak L/2)]. (6.12)

The condition Ak =0 is known as the condition of perfect phase matching and is a
requirement for efficient gereration of second-harmonic radiation. When this condition
is fulfilled, the last factor in this equation is equal to unity, and one sees that the intensity
of the second-harmonic radiation scales with the square of the length L of the interaction
region. For technological applications of nonlinear optics, the phase-matching condition
is often fulfilled by making use of a birefringent material. When using such a material,
the fundamental and harmonic fields are chosen to have orthogonal polarizations, and
the difference in refractive index for the two polarization directions can compensate
for the intrinsic wavelength dependence of the refractive index. The phase-matching
condition can also be mimicked by using quasi—phase-matching in structured materials,
in which a periodic variation of the sign of x ) is used to compensate for wave vector
mismatch (Lim et al., 1989). Furthermore, structured materials in the form of photonic
crystals and photonic bandgap materials can lead to phase matching by means of the
large contribution to the refractive index associated with the periodic arrangement of
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constituent particles (Markowicz etal.,2004). However, these methods are generally not
suitable for utilization with most biological materials, and harmonic generation must
therefore occur in the presence of a large wave vector mismatch, leading to greatly
reduced efficiency of the harmonic generation process. Nonetheless, the conversion
efficiency is typically sufficiently large to produce a measurable signal at the harmonic
frequency, and thus harmonic generation is useful as a method to study certain biological
structures such as collagen fibrils.

6.6 N-TH HARMONIC GENERATION*

For definiteness. the discussion of the previous paragraph was restricted to the case of
second-harmonic generation, but this discussion is readily extended to direct harmonic
generation of arbitrary order N. In this case, the amplitude of the nonlinear polarization
is givenby Py =P(Nw) = eox‘N’Ell\' and equation (6.11) is replaced by:

Zin(N)A/IV P
nye iAk L

Ay(L) = (6.13)

Also, equation (6.14) for the intensity of the emitted radiated intensity is replaced by:
JN-1)/2 N'o?

T - [x ™12 IVL? [sinc®(AkL/2)].  (6.14)
] ANe”

IN(L) = (jo/€0

In this case. the wave vector mismatch is given by Ak = Nkj —ky.

6.7 HARMONIC GENERATION WITH FOCUSED LASER BEAMS*

Harmonic generation can display quite different behavior when excited by a focused
laser beam. In such a situation, the peak amplitude Ay (that is, the amplitude on axis at
the beam waist) of the generated N -th harmonic wave is related to the peak amplitude
A, of the fundamental wave by:

INw
An(2) = Wx‘N)A'.VJNmk,zO,:), (6.15)

where Jy (Ak, zo, z) represents the integral

Z ei Akz dz’

In(Ak,z0.2) = T R
N 05 2) = (]—|—2i:’/b)N_l

(6.16)

Here zg represents the value of z at the entrance to the nonlinear medium, b =27 w(z) /A1
is the confocal parameter of the fundamental laser beam, and wo is its beam radius
measured to the 1/e amplitude point.

For the case of a beam that is tightly focused into the bulk of the interaction region,
the limits of integration can be replaced by 400, and the integral can be evaluated
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They used this method to characterize the microcrystal structure of lithium triborate.
Campagnola et al. (1999) have used second-harmonic generation to produce images of
live cells. Moreaux et al. (2000) have used styrl dyes as labels to image membranes
using second-harmonic generation microscopy.

Third-harmonic generation has also been used for imaging applications. Muller et al.
(1998) have demonstrated imaging of transparent objects using microscopy based on
third-harmonic generation. Yelin and Silbenberg (1999) have constructed a scanning
microscope based on third-harmonic generation and have used it for the imaging of
biological materials.

6.10 HARMONIC GENERATION AS A PROBE OF MEMBRANE POTENTIALS

Second-harmonic generation can also be used to probe potential differences across
biological membranes. Bouevitch et al. (1993) observed that the second-harmonic sig-
nal shows a pronounced dependence on this potential difference. Styrl dyes imbedded
into membranes also show a strong dependence on the potential difference (Millard
et al., 2004). Similar effects have been observed in mammalian brain tissue (Dombeck
et al., 2005).

In summary, harmonic generation is a well-established physical process that holds
considerable promise for applications in nonlinear microscopy.
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