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Abstract.  We develop simple mathematical models that lead to order-of-
magnitude predictions of the sizes of the electronic, nuclear, and electrostrictive
contributions to the nonlinear optical susceptibility. We find that all three of
these processes make comparable contributions to the third-order susceptibil-
ity, even though the optical-frequency linear susceptibility is dominated by the
electronic response. We also find that when the mathematical expressions
describing these contributions to the third-order susceptibility are written in
terms of fundamental physical constants, they are identical to within numerical
factors of the order of unity and are given in Gaussian units by x¥ =
78 [8m*el® = 4.25 % 10710 cm?s~! V2,

1. Introduction

The intent of the present paper is to provide simple order-of-magnitude
estimates of the nonlinear optical response resulting from several different physical
processes, namely, electronic polarization, nuclear (i.e. Raman) response, and
electrostriction. Of course, the arguments leading to such predictions are well
known for the case of the electronic response, dating back to the very earliest
research papers on nonlinear optics [1]. However, arguments of this sort seem to
be much less well established for the nuclear response and electrostriction. One of
the motivations for the present paper is to develop mathematical descriptions for
all three of these physical processes in a consistent manner, both to allow
comparison of the nature of these processes and to make predictions of their
expected strengths.

Another motivation for the present study is that several recent investigations
have demonstrated that the contributions to the third-order susceptibility result-
ing from these physical processes often are of comparable size [2-8] and in special
cases are in fact equal [9]. This conclusion at first sight appears surprising, because
the three physical processes depend on different degrees of freedom of the material
system. The intent of the present paper is to present an elementary mathematical
description of these physical processes and to predict the sizes of their contribu-
tions to the nonlinear optical susceptibility in terms of fundamental physical
constants. We find that in fact all three of these contributions depend in exactly
the same manner on the fundamental physical constants, and that the magnitudes
of these contributions are in fact equal to within numerical factors of the order of
unity.
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2. Electronic response

The linear optical properties of materials typically are dominated by the
electronic contribution to the optical response. Moreover, since the electronic
response is essentially instantanteous, it is the dominant contribution to the
nonlinear optical response when measured using ultrashort laser pulses. In this
section, we present a simple description of these electronic properties.

Let us begin by estimating the optical properties of an atomic system. For
simplicity, we model the system as a collection of hydrogen atoms. Of course,
Schrodinger’s equation can be solved exactly for the hydrogen atom, but for our
present purposes it suffices to present an estimate of its electronic properties. We
adopt the model shown in figure 1(a), in which a nucleus of charge +e is
surrounded by an electron cloud of characteristic dimension @ and total charge
—e. We use the gaussian system of units in this paper. The appendix to this paper
presents a brief description of how to express nonlinear optical quantities in
different systems of units. The Hamiltonian of the system

2
H_—é#’— (1)

can be estimated to order of magnitude by replacing r by the characteristic size a
and by replacing p by #i /a, which follows from the Heisenberg uncertainty relation
AXAp >4h. One then finds that

e

H=_%
+Zma2

(2)

The value of a that minimizes this expression is found by setting dH /da = 0

leading to the result ,
h

ayg=—
me?’

3)

which is the standard expression for the first Bohr radius. Numerically we find that
ap = 0.5 A=0.5x10"8cm. When this expression is substituted back into

characteristic size a

(a)
nucleus, charge +e

electron cloud

(b) — =k

X

Figure 1.  (a) Simple model of the hydrogen atom. (b) Displacement of the electron cloud
in the presence of an applied static electric field.
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m, -e

Figure 2. The Lorentz model of the atom. The atom is treated as a simple harmonic
oscillator.

equation (2), one finds that the ground state energy of the hydrogen atom is
given by
—me* 1&

Hy=—r=—5,-="R (4)
where R is conventionally known as the Rydberg unit of energy and has the value
R=13.6eV =217 x 10" erg.

We next estimate the linear static polarizability of the atom. If an electric field
E is applied to the atom (see figure 1(b)) the electron cloud will be displaced
slightly to the left by an amount —x, leading to a dipole moment of size p = —ex.
(For simplicity and to very high accuracy, we are here considering the position of
the nucleus to remain fixed. We examine the consequences of a nuclear motion in
more detail in section 3.) To determine the displacement x, we note that the
electron cloud will experience a force —eE due to the applied field and a force of
order of magnitude €x/aj due to the field of the nucleus. This latter force is
calculated by assuming that the electron cloud can be described by a uniform
charge density —e/4maj for r<ay and zero charge density elsewhere, and
performing an elementary calculation using Gauss’s law. These two forces must
be equal and opposite in equilibrium, leading to the result

x=—aEe. (5)

Since p = —ex, and introducing the linear polarizability ofelectronic) defined by
p = afelectronic) E, we find that

ofelectronic) = a;. (6)

For the hydrogen atom the quantum mechanical version of this problem can be
solved exactly [10, 11] leading to the very similar result a(electronic) = (9/2)ag.

Expression (6) for the polarizability was derived for a static applied field, but is
expected to be valid whenever the applied field frequency w is much smaller than
any atomic resonance frequency ay. In fact, this is not an unrealistic limit, because
optical materials are often selected so that their absorption frequencies are far
removed from the frequencies of the applied optical field. Under these circum-
stances, we can use equation (6) to estimate the linear refractive index n of the
material. We make use of the standard relations n = ¢!/2, where the dielectric
constant is given by e = 1+44myV and where (ignoring local field effects)
'V = Nafelectronic). We estimate the atomic number density as N =
1/(2ay)® = 8.44 x 102 cm™3. We then find that e ~ 2.6 and n = 1.6, in good agree-
ment with typical values of the refractive index of bulk matter.
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A very different model, the Lorentz model of the atom [12], is often used to
estimate the near-resonance linear optical properties of an atomic system. Let us
establish the connection of this model to the quasi-static model described above.
The Lorentz model describes the atom as a harmonic oscillator of resonance
frequency wy and damping rate r as illustrated in figure 2. The equation of motion
for the electron coordinate is then

mx = —kx — irx — eE(t), (7)

where k = mw} is the effective spring constant of the oscillator. This equation can
readily be solved for a field of the form E(¢) = Ej exp (—iwp?). One then finds that
the induced dipole moment p(f) = —ex(¢) can be expressed as p(f) = ofw)E(1)
where the polarizability o) is given by

ofo) = L, ®)

which has the low frequency value a(electronic) = €2 /ma}. T o order of magnitude,
we can identify the resonance frequency oo with R/, where R = & [2ay is
the Rydberg constant introduced in equation (4). We thus find that
ofelectronic) = 443, in good order-of-magnitude agreement with our previous
result (6).

We next generalize this treatment by allowing the optical response to be
nonlinear. We assume that the atomic dipole can be expanded in a power series
in the applied field as

p(t) = 0E(t) + BEX(t) + YE (1) + - -
=V +p2@) + D)+ 9)

We assume that the local environment is not necessarily centrosymmetric, and
thus we allow even powers of E(f) as well as odd powers to appear in these
expressions. We also assume that the conditions are quasi-static, that is, £(¢) and
p(t) are allowed to vary in time, but only at frequencies much smaller than the
resonance frequency of the atomic system.

We can estimate the size of the nonlinear coefficients 8 and Y by means of a
well-known argument [1]. We assume that the nonlinear response will become
comparable to the linear response for applied field strengths £ comparable to the
atomic field strength Ey = efad. Note that Ey = m?e [i* =~ 1.9 x 107sVem™ =
5.7 x 10" Vm~!. We thus predict that, to order of magnitude,

B = ofelectronic) /Ey = aj e = h'0 [m’e® = 8.63 x 1073 em*s~! V=L, (104)

Y = afelectronic) /E2, = a} [ = 1" [m7e'® = 5.03 x 107% ecm’s™! V72 (10h)
We have written these results both in terms of @y to suggest how rapidly the
nonlinear coefficient increases with the linear dimensions of the atom and in terms
of fundamental physical constants to show this dependence. The nature of optical
nonlinearities can also be understood by noting that equations (9) and (10) can be
combined to give the following results, valid to order of magnitude
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P = —eay <Eﬁ> (11a)
E 2

P — <E—> , (115)
E 3

PP = —eq <E_at> . (11 ¢)

Often the nonlinear optical properties of materials are described in terms of nth
order susceptibilities %", which are defined by the equation

P(t) = VB0 + VB () + VB (@) 4 (12)

where the polarization is defined by P(¢) = Np(t) and where as above we assume
that E(¢) varies slowly compared to the inverse of the atomic resonance frequency.
We then find that, to order of magnitude,

y' = Na= Na} =1, (13a)
X(z) =NB= Na(S)/e: a%/Se

=1i* [8m*¢ = 7.29 x 10 ecms~! V7!, (13 b)
¥ = Ny= Nd} | = a} /8¢

=78 [8m*e!® = 4.25 x 107 cm?s™! V72, (13¢)

where as above we have set N equal to (2a9)™> = 8.44 x 103 cm™3. We have
written each of these results in several different forms to display the functional
dependences on the various parameters of the problem and to provide numerical
estimates of their values.

As a test of the validity of the simple model just presented, we recall that the
hyperpolarizability of a radiatively broadened atom in the two-level approximation
is given for near-resonant excitation by ([13], equation (5.3.37))

(14)

_2 lul*
=3

13 (0 — wp)*’

where u is the transition dipole moment, o is the optical frequency and ay is the
resonance frequency. We can estimate the value of the expression by setting |u|
equal to eay, by ignoring @ with respect to @y under the assumed quasi-static
conditions, and setting 7wy equal to the Rydberg contstant R of equation (4). We
thus find that ¥ = a] /é%, in good agreement with the order-of-magnitude estimate
given by equation (10 b).

The discussion presented above summarizes the well known results for the
electronic contribution to the linear and nonlinear optical properties of a material
system under highly off-resonant excitation. In the remainder of this paper, we
will see how to derive analogous results for the nuclear and electrostrictive
contributions to the nonlinear optical response.
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3. Nuclear response

Let us next consider how the motion of atomic nuclei contributes to the linear
and nonlinear optical properties of a material system. We shall find that the nuclear
response typically makes a negligible contribution to the linear response at optical
frequencies, but that curiously the nuclear response can make a significant
contribution to the nonlinear optical properties. Of course, explicit quantum
mechanical predictions for the nuclear contribution can be obtained, for instance
within the context of the Born-Oppenheimer approximation [14]. Here our goal is
to develop simple order-of-magnitude predictions that describe the relative size of
the nuclear and electronic responses of a material system to an applied optical field.

As a simple special case, we consider the nuclear contribution to the linear
optical response of an isolated atom. In our simplified treatment of section 2, we
assumed that the applied electric field induced a displacement of the electron
with respect to a fixed atomic nucleus. In reality, the electron and nucleus both
move relative to the fixed centre of mass of the system. The displacement of
the nucleus will be smaller than that of the electron by the factor m /M, where m
is the electron mass and M is the nuclear mass. We thus conclude that the
nuclear contribution to the polarization of the medium can be described by a
nuclear polarizability given by

onuclear) = %a{electronic), (15)

where ofelectronic) is the polarizability given by equation (6). Since
m|M = 1/1837 for the hydrogen atom and is much less than unity for any other
realistic condition, we see that the nuclear response makes a negligible contribu-
tion to the linear optical properties of an atomic system.

The analysis is more complicated for molecules. First, for homonuclear mol-
ecules, the conclusion represented by equation (15) should be expected to hold, at
least to order of magnitude. The situation can be considerably more complicated
for heteronuclear molecules. For simplicity, consider a diatomic heteronuclear
molecule of nuclear charges ga and ¢g, masses My and Mg, and equilibrium
internuclear separation xp. An applied electric field E(#) will change the inter-
nuclear separation to xo + x(#), where x(¢) obeys the equation of motion

Mx = —kx — AgE(?). (16)

Here M = M,M,[/(M,+ M,) is the reduced mass of the vibrational mode,
k = Ma? is the effective spring constant where w, is the resonance frequency of
the vibrational mode, and Ag = (ga — ¢g) /2 is the effective charge difference (see
figure 3).

One would expect Ag to be of the order of magnitude but somewhat smaller
than the electron charge e. Let us assume that the electric field oscillates according
to the real part of Ey exp (—iot). We can then solve equation (16) to find that the
induced dipole moment p(f) = Agx(t) can be described in terms of a nuclear
polarizability o(nuclear) as p(f) = o(nuclear)E(t), where

AF M
D2 — a2

y

onuclear) = (17)
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Figure 3.  Vibrational mode of a heteronuclear diatomic molecule.

Under typical conditions at optical frequencies, this response is much smaller than
the electronic response. For instance, in the typical limit o, < © < @y, we find
through use of equations (8) and (17) that

ofnuclear) AGN\ [ m) [
e — (=) ) (=) (18)
oelectronic) e M)\ o}
which by inspection is seen to be much smaller than unity. We can also consider

the nuclear contribution at very low frequencies < ,. In this case the ratio of
the nuclear response to the electronic response is given by

o(nuclear) A [ Mo? <Aq2> <m> <a>§>
= === (19)
ofelectronic) €2 /mw} e J\ M) \o?

We next demonstrate that the ratio of the nuclear response to the electronic
response is of the order of magnitude of unity. We noted above that Aq is of the
order of the electron charge e. Note further that the ratio of the nuclear mass to the
electron mass is of the order of 103, and that w, is of the order of 1/30 of wy for
typical molecules. Consequently the product of m /M with of /? is of the order of
unity. Let us examine more fundamentally why this should be so. The interatomic
potential describing the binding of two atoms to form a molecule will be
qualitatively of the form shown in figure 4. Note that the depth of the potential
well will be of the order of the Rydberg constant R and that the width of the
potential well will be of the order of ay. Thus, the spring constant k that appears in
equation (16) will be of the order of R/aj, since U(x) :%k(x—xo)z near the
bottom of the potential well, and hence the resonance frequency w, = (k/ M)l/ 2
will be of the order of w, = (R /a%M)” 2 and the product Mw? will be of the order
of R/a}. Note next that the analogous quantity for the electronic response mw} will
also be of the order of R/aj. We can establish this result by noting that the
potential well that binds the electron to the atomic nucleus also has depth R and

U(x) A

Figure 4.  Interaction potential energy of two atoms in a diatomic molecule.
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Figure 5. Third order nonlinear optical response induced by a wave of frequency » on a
wave of frequency o'.

width ap, and thus that its spring constant will be of the order of R/a}, its
resonance frequency will be of the order of wy = (k /m)'/> = (R /a%m)” 2, and hence
mao} will be of the order of R/aj. We thus conclude that to order of magnitude

m\ [ i
Gae

oynuclear)
afelectronic)

It thus follows that

for o — 0. 1)

We have thus shown that the nuclear contribution to the linear response is
much smaller than the electronic contribution at optical frequencies, but is of the
same order of magnitude for frequencies much smaller than the vibrational
resonance frequencies. The analysis presented here has assumed that the molecule
does not possess a permanent electric dipole moment. For materials that do possess
a permanent electric dipole moment, the nuclear contribution can be much larger
than the electronic contribution at sufficiently low frequencies. For instance, the
zero-frequency dielectric constant of water is 81 and that of one particular tensor
component of barium titanate is several thousand.

Let us next consider the nuclear contribution to the nonlinear optical
susceptibility. For definiteness, we consider the third-order response with two
applied frequencies in the combination described by the susceptibility
Y3 (0' = 0’ + ® — w), as illustrated in figure 5. The nuclear contribution to this
process is well known from theoretical treatments of stimulated Raman scattering.
The standard result is ([13], equation (9.3.19))

(N /12Ma,)(da/dx);
o — (a)_ a)‘,) —+ ir

1o =0 +o—o0)= , (22)

where it has been assumed that the linear polarizability (which is largely electronic
in origin) changes with the internuclear separation xy + x according to
o= 0 + (dou/dx),x. (23)

Clearly, equation (22) predicts a resonance when o and o’ differ by the vibrational
frequency of the material system, but let us here consider only the non-resonant
situation in which o and ®' are equal. We then find that

x3) (nuclear) = ¥ (0 = 0 + © — ) = (N /12 Meo?)(dot/dx)2. (24)

We can make an order-of-magnitude estimate of the size of this response by
assuming that (doi/dx), is of the order of magnitude of the square of the Bohr
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radius ao [15]. By comparing equations (13 ¢) and (24), we find that to order of
magnitude the relative nuclear response is given by

%) (nuclear) :Naé/Ma)%: m\ (af _1 (25)
x® (electronic)  Naf [fio w? ’

M

where the second-to-last form is obtained by introducing R = e/2a} for fiwy and
where the last step follows from equation (20). We thus see that the non-resonant
nuclear contribution to the optical frequency nonlinear optical response is ex-
pected to be of the same size as the electronic contribution. We can also see from
equation (23) that the Raman resonant response will be w, /I times larger than the
non-resonant response.

4. FElectrostrictive response

Another contribution to the nonlinear susceptibility results from the tendency
of materials to become more dense in the presence of an electric field, a phenom-
enon known as electrostriction. This process is illustrated schematically in figure 6.
The process of electrostriction can be understood theoretically in the following
manner ([13], section 8.2). The presence of an electric field within a material
produces a pressure given by

Pstr = YStI‘EZ /87[3 (26)
where

Ystr = p(ae /ap) (27)

is known as the electrostrictive constant. This pressure tends to compress the
material, which leads to a change in the dielectric constant of the material given by

_(Ge)(Op\p _ (. Ce\(1Op)\p _
fe= <a_/7> <8_p> Par = <p 8p> <P 8]7) Pty = Vs CPsury (28)

where

Figure 6.  Physical origin of the electrostriction process. Materials become more dense in
the presence of an electric field.
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- L

Figure 7.  Calculation of the compressibility.

1 Op
C= ~ 2P (29)
is known as the compressibility. Since e = 1 + 47y, it follows that Ay = (1/4m)Ae
and consequently with the usual field conventions of nonlinear optics that

®)(str) = 2. C /48 (30)

We now estimate the value of ¥ (str). We expect Y to be of the order of
unity, because of the relation (valid ignoring local field effects) e = 1 +4TNa
which (since the mass density p is proportional to the number density N) implies
that Vg =e— 1. To estimate the value of the compressibility, we begin by
expressing the compressibility as

AV]V

C=—TFa (1)

where AV [V is the fractional change in volume induced in the material by an
applied stress F'/A. We note that in order to appreciably decrease the separation
between two atoms in a solid, we would have to push them together with a force
comparable to the atomic Coulomb force F,; = eE,; = R/ay. Consider now a cubic
region of volume ¥ = L3 with forces F applied to two opposing faces (see figure 7).
Any cross-section of th1s cube will have an area 4 = L> and will contain
approximately A /(2a0) atoms. The force F required to compress the cube
apprec1ably (i.e. to produce AV [V =~ 1) is of the order of the number of atoms
in each cross- sectlonal plane A4 / (2a0) times the force F = eEy = R Jay per atom,
that is, F =4 /(2a0) | X Fy. Thus the applied strain F /A required to produce
such a compression is of the order of Fy /4a} = R [4aj. We therefore predict that,
to order of magnitude,

1
p) 2‘10 _

14 03 o1 —13 133 -1
R/4a0 R =12x10""em’erg” =1.2x 107" m’ J~". (32)

We can combine this result with equation (30) to find that, to order of magnitude,

O)(str) = a__ (33)
247r2R 12me’

where the last form comes by introducing expression (4) for the Rydberg constant.
Next, by comparison with equation (13 ¢), we can rewrite this result as
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Y I(str) = % % (electronic). (34)

We see that the electrostrictive contribution to the third-order susceptibility is
predicted to be approximately of the same order of magnitude as the electronic
contribution.

The largest uncertainty in this result is due to the accuracy of the prediction for
the compressibility of bulk matter. In fact, inspection of tables [16] of compres-
sibilities of bulk matter (or of its inverse, the bulk modulus) shows that compress-
ibilities are typically in the range of 107!2 to 10~! cm?erg™!, at least 100 times
larger than the simple estimate given by equation (32). Of the various numerical
estimates presented in the present work, the estimate of the compressibility is
probably the least accurate. Reasons for this discrepancy include the simplicity of
the model presented and especially the fact that the forces that confine individual
atoms to their equilibrium positions in bulk matter are considerably smaller than
the force that binds electrons to the atomic nucleus, which was the assumption
made in the present calculation.

5. Conclusions

We have developed simple order-of-magnitude estimates of the values of a
number of physical constants that are conventionally used to describe the non-
linear optical properties of a material system. These estimates show how these
quantities depend on fundamental physical constants. We obtain the new and
somewhat surprising result that the resulting expressions for the three dominant
contributions to the third-order susceptibility show the same functional depen-
dences and predict that these contributions (electronic, nuclear, and electrostric-
tive) should be equal, at least to order of magnitude. Finally, we note that these
three processes possess different response times and different tensor properties,
which allow these processes to be distinguished in laboratory measurements.
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Appendix: systems of units

The present paper is written in the gaussian system of units. Conversion to the
ST system can be performed using well known procedures. See for example the
appendix to Jackson [17] for a discussion of this topic in general or to appendix A
of Boyd [13] for a discussion of conversion between systems of units within the
context of nonlinear optics.

As an example of the results of such a conversion, we display one of the key
results of the present paper (equations 13) in the SI system of units. We define the
material polarization within the ST system by
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P(1) = colyVE(@) + YD E () + xVE (1) + . (A1)

Through use of the standard procedures for converting to the SI system we then
find that equations (13) become

X(l) — 5’ (A 2(1)
1@ = N(4m)’eoa) fe = 2Meodl fe = 3.05 x 1072 m V~!, (A2b)
3 = N@n)’edal | = 8Tedag [& = 5.95 x 107 m> V2, (A2¢)

where we have set N equal to (2a,)~
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