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Abstract. This paper reviews some of the authors’ recent research aimed at obtaining an
understanding of the physical processes that determine the linear and nonlinear optical properties
of nanocomposite materials. One result of this research is the prediction and experimental
verification that under proper conditions two materials can be combined in such a manner that
the nonlinear susceptibility of the composite exceeds those of the constituent materials. This
paper also presents a survey of the various geometrical structures of composite materials.

1. Introduction

A common approach to the development of nonlinear optical materials entails searching
for materials that possess, at the molecular level, desirable nonlinear optical properties.
An alternative approach, which will be explored in this paper, entails combining known
materials into a composite material. Under proper conditions, this composite material might
combine the more desirable properties of the starting materials, or ideally, might possess
properties superior to those of the starting materials.

Some of the commonly encountered structures of composite materials are shown in
figure 1. The Maxwell Garnett [1] geometry consists of small inclusion particles embedded
in a host material. The Bruggeman [2] geometry consists of two intermixed components.
These two model geometries are the structures most often encountered in theoretical
discussions of composite materials. Two additional structures are that of porous silicon and
that of layered materials. Recent research [3] has shown that an electrochemical etching
procedure can be used to turn silicon into a porous structure. The resulting structure then
contains ‘worm holes’ which can be modelled as cylindrical columns in which the silicon has
been eaten away from the host material. When still more material has been eaten away, the
resulting structure can be modelled as cylindrical columns of silicon surrounded by voids.
In either case, the voids can be filled with a second material to form a composite structure.
These composite materials can be thought of as a two-dimensional version of the Maxwell
Garnett structure. Research on porous silicon is still quite new and will not be discussed
further in this paper. The final structure illustrated in figure 1 is the layered geometry,
consisting of alternating layers of two materials with different linear and nonlinear optical
properties.

In all of the structures shown in figure 1, we assume that the two materials are intermixed
on a distance scale much smaller than an optical wavelength. Under these conditions,
the propagation of light can be described by effective values of the optical constants that
are obtained by performing a suitable volume average of the local optical response of the
material. In fact, performing such an average can be rather subtle for situations involving the
nonlinear optical response, because it is the nonlinear polarization that must be averaged, and
the nonlinear polarization depends on the spatially inhomogeneous electric field amplitude
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Figure 1. Some examples of composite nonlinear optical materials.

in the composite material. The results of some of these calculations are described below.
We will, however, make the assumption that the spatial extent of each region is sufficiently
large that we can describe its response using macroscopic concepts such as susceptibilities
rather than using microscopic concepts such as polarizabilities. Roughly speaking, this
assumption requires that many molecules be contained in even the smallest region of each
component.

The optical properties of composite materials can in many ways be understood in terms
of local field effects. In standard discussions of the optical properties of homogenous
materials, one introduces the concept of the local field [4]

Eloc = E + 4π

3
P (1)

as the effective field that acts to polarize an individual molecule. By performing a spatial
average of the response of the total system, one can derive the Lorentz–Lorenz law

ε = 1 + 4πLNα (2)

whereL is a local field correction factor

L = 1

1 − 4
3πNα

= ε + 2

3
. (3)

This model can be extended to the nonlinear optical response. One finds, for example, [4, 5]
that

χ(3)(ω4, ω3, ω2, ω1) = L(ω4)L(ω3)L(ω2)L(ω1)Nγ (4)

whereγ is the second hyperpolarizability. Note that the local field correction factor appears
to fourth order in this expression. In the theory of composite materials, one finds that the
effective nonlinear susceptibility has a form analogous to that of (4) where the local field
factor now provide a measure of how the average electric field in a given component
of the composite is related to the spatially averaged electric field. Since this correction
factor appears to high order (fourth order forχ(3)) one expects that the enhancement
of the nonlinear response can become large. Such behaviour will be illustrated in the
specific examples shown below. We next turn to a more detailed discussion of some of the
geometries illustrated in figure 1.
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2. Layered geometry composites

We have performed theoretical [6] and experimental [7] studies of the nonlinear optical
response of composite optical materials possessing a layered structure. Materials of this
sort are inherently anisotropic. For light polarized parallel to the layers of the structure, we
find that both the linear and nonlinear optical susceptibilities are given by simple volume
averages of the properties of the constituent materials, that is,

εeff = faεa + fbεb and χNL = faχ
NL
a + fbχ

NL
b . (5)

Herefa andfb denote the volume fill fractions of components a and b. However, for light
polarized perpendicular to the plane of the layers the linear dielectric constant is given by

1

εeff
= fa

εa
+ fb

εb
(6)

and the third-order susceptibility is given by

χ
(3)

eff (ω = ω + ω − ω) =
∣∣∣∣εeff

εa

∣∣∣∣2(
εeff

εa

)2

faχ
(3)
a +

∣∣∣∣εeff

εb

∣∣∣∣2(
εeff

εb

)2

fbχ
(3)

b . (7)

Note that the factorεeff/εa can be interpreted as a local field correction factor for
component a. Equation (7) predicts that under proper conditions a layered composite
material can display enhanced response. Such results are illustrated in figure 2, under
the assumption that only component a of the composite displays a nonlinear response. We
see that the enhancement in the nonlinear susceptibility can be as large as a factor of nine
if the two constituents differ by a factor of two in their linear refractive indices. A smaller
enhancement is predicted if the refractive indices of the two materials differ by a smaller
factor. For example, the curve labelled 1.77 corresponds to the conditions of our initial
experimental study of these effects, and it predicts an enhancement of 35%.

Figure 2. Predicted enhancement of the nonlinear optical
susceptibility for a layered geometry composite.

Our experimental system [7] consists of alternating layers of the conjugated polymer
PBZT and of titanium dioxide. Layers were spin coated with a thickness of approximately
50 nm and were cured at elevated temperatures after each deposition. After curing, the
PBZT has a refractive index of 1.65 and the titanium dioxide has a refractive index of 2.2.
The third-order susceptibility of PBZT is several orders of magnitude larger than that of
titanium dioxide and is responsible for essentially the entire measured nonlinear response
of the composite material. Since the more nonlinear constituent of the composite has the
smaller linear refractive index, this composite structure is predicted to possess an enhanced
nonlinear response.
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These samples were studied experimentally by measuring the nonlinear refractive index
experienced by an intense light beam. The details of our measurement procedure are
described in [7]. Basically, our procedure involves measuring, as a function of the angle
of incidence, the nonlinear phase experienced by the incident light beam. The phase shift
was measured using the induced focusing technique [8]. For s-polarized light, the measured
phase shift was found to decrease uniformly with the angle of incidence. This behaviour
occurs because the light intensity inside the material decreases with increasing angle of
incidence because of Fresnel reflection losses. An enhancement of the nonlinear response
is predicted only for p-polarized light, because in this case the electric field of the incident
light wave has a component perpendicular to the planes of the layers of the composite.
For p-polarized light, we find that the measured nonlinear phase shift first increases with
increasing angles of incidence and begins to decrease only for larger values of the incidence
angle. This behaviour was found to be in good quantitative agreement with the predictions
of theory. Plans are now under way to find other materials for which an enhancement
greater than 35% can be achieved.

3. Bruggeman geometry composites

This geometry consists of two intermixed components possessing in general different linear
and nonlinear optical properties. The linear optical properties are described by the equation

0 = fa
εa − εeff

εa + 2εeff
+ fb

εb − εeff

εb + 2εeff
(8)

which was derived initially by Bruggeman [2]. Alternative deviations have been devised
by Landauer [9] and by Aspnes [10]. We have recently tested the prediction of (8) by
measuring the refractive index of material samples composed of porous glass (Corning
Vycor) containing one of several different nonlinear optical liquids: diiodomethane, carbon
disulphide, carbon tetrachloride and methanol. The porous Vycor glass has an average pore
size of 4 nm and a 28% porosity. Results of this measurement are shown in figure 3,
along with the theoretical prediction of (2). Although the agreement seen in figure 3 is
extremely good, we have found that the predictions of the Maxwell Garnett model are
nearly indistinguishable from those of the Bruggeman model for the present conditions at
the resolution of figure 3. A comparison of various theoretical models for the effective
linear refractive index is shown in figure 4. Note that the horizontal scale extends to larger
values here than in figure 3. The parameters used in evaluating the various theoretical
expressions are the same as in figure 3, that is,fpores = 0.28; nglass = 1.51. In addition
to the Bruggeman and Maxwell Garnett models, we also show the Wiener limits [11].
It has been shown theoretically that in any linear theory the effective refractive index

Figure 3. Measured linear refractive index of a composite
material composed of a nonlinear liquid embedded in porous
Vycor glass, plotted as a function of the liquid refractive index.
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Figure 4. Comparison of the predictions of various
theoretical models using the parameters relevant to
Vycor glass.

Figure 5. Predicted enhancement of the nonlinear
susceptibility, i.e. χ

(3)
eff /χ

(3)
a for a Bruggeman

geometry composite plotted as a function of the
fill fraction of component a.

must lie between the two limiting values which are shown. We conclude that while the
present data are unable to distinguish between the Bruggeman and Maxwell Garnett models,
they do validate the effective medium approach for describing the linear optical properties
of composite materials and are able to rule out some of the possible models which are
consistent with the Wiener limits.

Strictly speaking, the nonlinear optical properties of a Bruggeman composite structure
need to be described by a statistical theory, because by assumption the two constituents
are randomly interspersed. As a simplifying assumption, one can assume that the field is
spatially uniform within each component. One is thereby led to the prediction [12]

χ
(3)

eff =
∑

i

1

fi

∣∣∣∣∂εeff

∂εi

∣∣∣∣(∂εeff

∂εi

)
χ

(3)
i . (9)

Theoretical predictions based on this equation are shown in figure 5. Note that the theory
predicts that an enhancement of the nonlinear optical response is possible, that is, the
effective nonlinear optical response can exceed that of the constituents from which the
composite is constructed. We are currently in the process of testing the predictions of (9)
for the nonlinear optical properties.

4. Maxwell Garnett geometry composites

In the Maxwell Garnett geometry, small spherical inclusion particles are imbedded in a host
material. The linear optical properties of such a material have been the subject of active
study ever since the time of the pioneering work on these materials by Maxwell Garnett [1].



510 R W Boyd et al

In the linear case, the effective dielectric constant of the composite material is given by

εeff = εh

(
1 + 2βf

1 − βf

)
where β ≡ εi − εh

εi + 2εh
(10)

and wheref denotes the fill fraction of inclusion material andεi andεh denote the linear
dielectric constants of the inclusion and host materials, respectively. More recent work [13–
15] has been devoted to the nonlinear optical properties of these materials. This work has
shown that these materials can possess large optical nonlinearities, both for the case in which
the inclusion particles are metallic in nature and for the case in which both constituents are
dielectrics but with very different dielectric constants. Our own work has stressed this latter
situation in an attempt to avoid the loss inherent to metallic materials. For this all-dielectric
case, theory [14] predicts that enhancement of the nonlinear response occurs when high-
index (but linear) inclusion particles are embedded in a nonlinear host, because in this case
the electric field tends to be concentrated in the nonlinear constituent of the composite. Host
materials that are presently under investigation include fluorescein-doped boric acid glass,
rhodamine 6G and Cu-phthalocyanine; inclusion materials include titanium dioxide and
semiconductor nanocrystallites. To date, our experimental studies of these materials have
been thwarted by the clumping of inclusion particles that tends to occur at large packing
densities, leading to unacceptably large scattering losses.

The predictions of the Maxwell Garnett model are shown explicitly in figures 6 and 7.
Figure 6 refers to the case in which nonlinear inclusion particles are imbedded in a nonlinear
host, both of which are assumed to be lossless, i.e. to be dielectrics. The theory of [15]
then predicts that the effective value ofA = 6χ

(3)

1122(ω; ω, ω,−ω) is related to that of the
inclusion particlesAi by

A =
∣∣∣∣ ε + 2εh

εi + 2εh

∣∣∣∣2(
ε + 2εh

εi + 2εh

)2

f Ai . (11)

We see from figure 5 that in all casesA increases uniformly withf but in no case is there an
enhancement of the nonlinear response, that is, in no case doesA/Ai exceed unity. Note that
the Maxwell Garnett model is strictly valid only in the limit of small fill fractions, that is,
for f � 1. The reason for this restriction is that for a dense collection of inclusion particles,
the polarization induced in a given particle depends both on the average electric field in
the material and on the dipole fields of its neighbouring particles. This latter contribution
is not properly accounted for in Maxwell Garnett’s treatment of the linear response or in
our treatment of the nonlinear response. Although the limit of validity is strictlyf � 1,
in fact the Maxwell Garnett model is usually assumed to be valid for fill factors up to 0.5,
above which these correlations between the polarizations of neighbouring particles become
dominant.

Figure 6. Predictions of the Maxwell Garnett model for the
case of nonlinear inclusion particles imbedded in a linear host
material. The model is unreliable for fill fractions greater than
approximately 50%.
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Figure 7. Predictions of the Maxwell Garnett model for the
case of linear inclusion particles imbedded in a nonlinear host
material. The model is unreliable for fill fractions greater than
approximately 50%.

Figure 7 shows the opposite limiting case, that is, the case of linear inclusion particles
imbedded in a nonlinear host material. The prediction in this case is given by a complicated
expression quoted in [15]. The expression is much more complicated in this case because
the host experiences the spatially nonuniform dipole field of each inclusion particle. The
predictions shown in figure 7 illustrate that in this case an enhancement of the nonlinear
response is possible, for sufficiently large fill fractions and for the case where the inclusion
particles possess a larger dielectric constant than the host.

5. Summary

We have described several different architectures for the fabrication of composite nonlinear
optical materials and have reviewed current theoretical models for describing the linear
and nonlinear optical properties for each such architecture. Under certain conditions such
materials can give rise to an enhanced nonlinear optical response. We have also described
some recent experimental investigations of these materials. We conclude that composite
optical materials possess interesting and potentially useful nonlinear optical properties.
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