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The theory of pump-probe experiments is examined using the nonlinear optical susceptibility X**.
The results of this calculation are shown to differ from those based on a commonly employed
heuristic model of pump-probe experiments which assumes that the pump beam “prepares” the sys-
tem which the probe beam subsequently monitors. This model consequently accounts only for pro-
cesses where the interactions with the pump field come first in time. The correct expression for the
probe absorption line shape as predicted by Imx® contains a sum over all the possible time order-
ings of the various radiative interactions. The interference terms missing from the simplified treat-
ment are shown to account for the spectral hole in homogeneously broadened lines observed recently
[L. W. Hillman et al., Opt. Commun. 45, 416 (1983)]. In addition we derive a generalized expres-
sion for X® that is valid away from the impact limit and contains a realistic population relaxation

(T;) matrix.

I. INTRODUCTION

Pump-probe experiments are a standard technique of
nonlinear optics used to determine how the optical proper-
ties of a medium are modified by a strong pump beam.
Such experiments are often interpreted by assuming that
the pump beam “prepares” the system which the weak,
nonsaturating probe beam subsequently monitors.! For
reasons that will be clarified in the following paragraph,
we shall refer to this approach as the “sequential” inter-
pretation of pump-probe experiments. In accordance with
this interpretation, the attenuation experienced by the
probe beam is determined by first calculating the equili-
brium steady state created by the pump field and then cal-
culating the response of the perturbed system to the probe.
A classic application of this approach is given by spectral
hole-burning experiments in inhomogeneously broadened
absorption lines. In such experiments, the pump beam
saturates one segment of the inhomogeneous absorption
profile (e.g., one velocity group for the case of Doppler
broadening), and hence the probe beam experiences de-
creased absorption when its frequency is near that of the
saturating pump beam.! The sequential approach further
implies that for a homogeneously broadened system in the
presence of a saturating pump, the probe absorption pro-
file will decrease uniformly and cannot have such a hole.
However, several theoretical treatments?~—* and the results
of a recent experiment’ are in marked contrast with this
prediction. Schwartz and Tan? have shown that it is pos-
sible to produce such a hole even in the case of a homo-
geneously broadened absorption line. A number of more
recent papers>* have attributed the origin of this hole to
“population oscillations,” i.e., the periodic modulation of
the ground-state population at the beat frequency between
the pump and probe beams. In a recent experiment, Hill-
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man et al.’ have observed such a hole in the green absorp-
tion band of ruby and have ascribed the origin of this
feature to the mechanism described above.

Some confusion still surrounds this issue, in part be-
cause it is not clear exactly where the seemingly plausible
sequential treatment of pump-probe experiments breaks
down. The intent of this paper is to present a systematic
treatment of pump-probe experiments that shows where
this breakdown occurs. We show that the failure arises
from the artificial decomposition of the applied field into
“pump” and “probe” parts which are treated differently
by the sequential formalism. In contrast, our calculation
is based on an application of the nonlinear susceptibility
commonly used to describe coherent, nonlinear optical
processes.® In this formalism the pump and probe fields
are naturally treated in a symmetrical way. We show that
the nonlinear susceptibility contains contributions corre-
sponding to all possible time orderings of the interactions
with the two applied fields. Conversely, the sequential
treatment of pump-probe experiments contains only con-
tributions in which the pump field acts first and only later
does the probe field interact with the system. This
prescription may be valid for certain experiments involv-
ing the sequential application of a pulsed laser beam, but
is fundamentally wrong when both fields act simultane-
ously, as in experiments using cw lasers. In fact, the con-
straint that the pump act first violates the principles of
elementary perturbation theory which require that all time
orderings be taken into account. We further show that it
is precisely those terms which are omitted in the sequen-
tial treatment that correspond to the interference between
the two fields and give rise to the hole in the probe ab-
sorption profile.

The main results of this paper are as follows. (1) We
derive an expression for the nonlinear susceptibility X**’
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which generalizes that of Bloembergen et al.” in two
respects. (a) We incorporate a more realistic population
relaxation (7';) matrix which describes the relaxation of
population among the interacting levels. The famous 48-
term expression of Bloembergen et al. assumes a diagonal
population relaxation (7';) matrix, and hence can treat
only the relaxation of population out of the interacting
levels. (b) Our expression is not limited to the impact lim-
it of line broadening, and therefore is valid even at large
detunings.®® (2) We relate our expression for X**’ to stan-
dard diagramatic techniques (i.e., double-sided Feynman
diagrams!®!!) in order to display graphically the terms
omitted by the conventional treatments.! (3) We show
that a spectral hole in a homogeneously broadened line is
predicted even in the limit of third-order perturbation
theory, and hence that it is not necessary to treat the in-
teraction to all orders in the pump amplitude, as was done
in previous treatments.>~* Furthermore, we show expli-
citly that a dip is predicted both for two-level systems and
for systems that relax nonradiatively via one or more in-
termediate levels.

II. ¥ FOR A SYSTEM WITH A REALISTIC
POPULATION RELAXATION (T;) MATRIX

Our calculation of the probe absorption line shape will
be based on a standard application of the nonlinear X‘*'
susceptibility (Fig. 1).° To that end we could have used
the 48-term expression for X'> as derived by Bloembergen
et al.” However, in that expression the effects of popula-
tion relaxation (7", processes) are incorporated merely by
the addition of an imaginary part to the energies of the
various levels. This procedure takes care only of the finite
lifetimes of the individual levels. A more realistic descrip-
tion of T'; processes should include also the effects of
transfer of population among the various levels. This may
properly be accomplished by the introduction of a T re-
laxation matrix whose diagonal elements are the inverse
lifetimes of the levels and whose off-diagonal elements
represent the population transfer rates. This relaxation
matrix guarantees the conservation of probability and el-
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FIG. 1. Energy-level diagram and optical frequencies used in
the calculation of the X'* susceptibility for a two-level system.
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iminates some unphysical aspects of the conventional ex-
pression’ (i.e., the divergence of X®) that occurs whenever
one of the levels has an infinite lifetime). In this section
we shall therefore derive a more complete expression for
X*® for a system consisting of two radiatively coupled lev-
els and an arbitrary number of levels which participate in
the relaxation process. Moreover, our expression, which is
based on the factorization approximation developed re-
cently for general multiphoton processes,®!? is not re-
stricted to the impact limit and allows the inclusion of any
si(r;)gle-photon line-shape function in the calculation of
X
We consider a system driven by a time-dependent classi-
cal field. The Hamiltonian for the perturbed system is
given by
H=H,+V(), (1)
where H, denotes the unperturbed (field-free) Hamiltoni-
an and where V(t) denotes the perturbation, which is due

to the superposition of three externally applied mono-
chromatic fields

V(t)=V[E exp(—iwt)+ E,exp(—iw,t)
+Esexp(—iwst)]+c.c. (2)

Here, E; is the amplitude of the jth field and V is the di-
pole operator of the material system, and 7"=[V, - - - ]is
its tetradic analog. The Liouville equation for the density

matrix p is

%tgz——in:—i[Lo+7(t)]p , &)
where

L=[H, ---], (4a)

LOE[HO’ ot ] ’ (4b)

and

7(t)=[V(t), -] (4c)

are Liouville-space (tetradic) operators. The definition
(4b) implies that Ly4 =[H,A] for any operator A, etc.

Assuming that at time — — w0, p(— o0 ) is an equilibri-
um distribution of H, i.e.,

Lop(— 00)=0, 5)

we may write the formal expression for the time-
dependent density matrix p(¢) as follows:

p)=U(t,— o )p(— o0 )=p P +p V4 p@ 4 - . (6)

Here, U is the propagator
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where

Go(7)=exp(—iLyT)

and p

)]

(8)

is the term in the expansion [Eq. (6)] that is of jth order in 7.

The nonlinear polarization P(w,) is related to the expectation value of the dipole operator V at steady state which os-

cillates at frequency w;=w; —®,+w; through®

P((D4)‘=‘NTI‘[ Vp(t)]:-—“)(m( —W4,D1, —CL)2,CL)3)E1E;E3CXP( —iwt +iwyt —ico3t) ’ 9)

where X' is the nonlinear susceptibility for a collection of N absorbers per unit volume evaluated to third order in .

We thus have’:

X(S)( —W4,D1, —602,603)=N

Ploy, —wyw3) ¢

(11)

and where the limit e—0 is to be taken at the end of the
calculation. We have further taken

pl—w)=3 P, |a,a)), (12)
a

where P, is the population of level |a) at thermal equili-
brium, in the absence of any radiation field. The
ﬁ(wl, —w,,;) summation implies that we should sum
over all six permutations of the three fields. It is advanta-
geous to transform Eq. (10) to the time domain in order to
display explicitly the time ordering of the various interac-
tions. To this end we split L, into a system part (L,) and
a bath part (L’). The system part consists of a four-level
system with a phenomenological T relaxation matrix I’
describing the relaxation of the populations to thermal
equilibrium in the absence of driving. We thus have

L0-=—LS +L' 5 (13)
where

LSE[HS» e ]+f ’ (14a)

L'=[H', -], (14b)

H=3 |v)elv|, (15a)

i

X(”( — 4,01, —w2,0)3)

=(—i)’N

}”\(ml,——mz,t%) a

>, 3 (V| Golo)—wy+©3)7 Golw, —©2) ¥ Golw))? |a,a ) Pla) ,

(10)

H'= |v)F,(Qp)v| . (15b)

Here |v)=|a),|b),|c), etc. denotes the states of the
system with energies €,, Qp are the bath degrees of free-
dom, and F, is the bath Hamiltonian which depends on

the state of the system. Furthermore, I is the T'; relaxa-
tion matrix defined by

d

2P (16)

= 3 (vt [TV Doy

relaxation v, 4’

The elements of T' are defined as follows. (i) The decay
rate 7, of level v to level p defines the off-diagonal ele-

ments of T':

Cpop | T VYD =V VvEL - (17a)

These terms have been ignored in previous calculations’ of
X3, (i) The total decay rate of level v is given by

Cvv| Ty =—y,=— 3 «up| T [v,v).
p(#v)

(17b)

The second equality is a necessary and sufficient condition
to guarantee the conservation of probability in Master
equations.’® (iii) The damping rates of the off-diagonal
density-matrix elements due to T; processes are given by
(v | T vp D=5 +7vu), vER - (17¢)

(iv) All other elements of T* are zero. Using these defini-
tions we may write’:

© T T
> Efo dr foldn fo drexplio;m—iwy T —m) +ios(r1—73)]

X L V(11) | Gy(11—73) 2 (13)G(13—72) ¥ (13)G,(13)#7(0) | a,a W P,

(18)
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where
V(r)=exp(iH'T)V exp(—iH'T) , (19a)
7(r)=exp(iL'7)” exp(—iL'r) , (19b)
G,(7)=exp(—iL,T) , (19¢)
and
Gylw)=— (19d)

o—Lg+ie

Equation (18) gives the most general formal expression
for the X'> susceptibility. A pictorial representation of
Eq. (18) is given in Fig. 2. Each bond (i.e., solid line)
denotes a radiative coupling 7”. The wavy lines that con-
nect | b,b)) to |a,a)) stand for the off-diagonal T relax-
ation as described by Eq. (17a). Let us first ignore these
lines. Since 7" is a commutator, it can act either from the
right (horizontal lines) or from the left (vertical lines).
Figure 2 is an efficient bookkeeping device which keeps
track of the eight different three-bond pathways relevant
for X*. Each pathway begins at |a,a)) in the upper
left-hand corner and the bond which connects it to |a,b ))
or |b,a)) represents #7(0) and comes first in time. The
second bond in each pathway represents 77(7,) and the
third bond represents 77(73). We note that in the absence
of off-diagonal relaxation there will be 23=8 pathways. If
we include the wavy lines which represent the process
where |v,v)) relaxes to |u,u)) via the T processes, then
the number of pathways will be doubled and becomes 16.
These terms may be combined in groups of four so that
we finally get four terms only, resulting in

X —04,01, —iw203) =N |y, | *[Pla)—P(b) |17

where

oy
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FIG. 2. Pictorial representation (Ref. 9) of the pathways con-
tributing to X** [Eq. (18)]. The solid lines denote the radiative
coupling »". Horizontal (vertical) lines represent action of 7~
from the right (left). The system starts in the state |a,a )) in the
upper left-hand corner and after three perturbations is located
along the broken line. The last ¥V acts from the left, and thus at
the end of four perturbations the system is in a diagonal state
(la,a)® or |b,b)). The wavy lines connecting |b,b)) to
|a,a)) represent the relaxation of population between levels
|a,a)) and |b,b)) as given by Eq. (17a). Altogether there are
16 pathways. If we make all six possible permutations of the wj,
@, and s fields, there will be 16 X6=96 terms in the general
expression for . If we ignore the wavy lines we obtain the
8 X 6=48-term expression of Bloembergen et al. (Ref. 7).

F(— 4,01, —0,03)= —I (0 — 0+ 03) (0 —-wz)fab(wl)+1ba(co1—w2+a)3)f(co1—a)2)lab(w1)

> F(—w401,—wy03) , (20a)
ﬁ(wl,—wz,w3)
+1pa (01— 0y +03) (@) — 09y (0)) — Ly (0 — 03+ 03)1 (01— 03) 50 (@)
(20b)

=[Lop (1) +Ipa (@) M (@) —0)[ Ipg (@1 — 03+ ©3) — Ly (0 — 0, +03)] .

The expression for F(w,, —w,,»3) given by Eq. (20b) as-
sumes that the radiative couplings 77(0), ¥'(r,;), and
7"(73) appearing in Eq. (18) are to be associated with the
fields w;, —w,, and w;, respectively. Equation (20a) states
that to obtain X we have to sum over all possible permu-
tations of these three fields, i.e.,

X — 04,01, —w2,03)
=N |ppg | [ P(a) = P(O)IP[F(— w403, — 02,01
+ F(—w4,03,01, —03) + F(— w4, — 02,03,0;)
+F(— 4,001,003, —@3) +F(— 04, — w,,01,03)

+F(-—CL)4,CL)1,—(02,CD3)] . (200)

f

In Egs. (20), up, =<b | V' |a) denotes the electric dipole
transition moment connecting levels a and b. The general-
ized line-shape function I,;(w) is defined by®

Iy(w)=(a,b | Gylw) |a,b))
=—i fow drexplioT)
X expl —iwgT— 5 (Vo +75)7—8a(7)] .
(21)

Here, w,, =€, —¢€;, is the frequency of the ab transition,
and g, (7) is the line-broadening function which
represents the dephasing processes due to the interaction
with the bath, and which may be evaluated in numerous
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ways.® We note that I, satisfies the Kramers-Kronig re-
lations:
- © Iy(o')
Ly=—1P [" dor™®2" (22)
T — o

o' —w
where

Ip(@)=1Igp—ilgp (23)

and I, is the ordinary absorption line shape between lev-
els a and b. I, (w) is obtained by interchanging indices in

Eq. (23), i.e,
Ipg(@)=Ig(—w) . (24)

In the impact limit (short correlation time of the bath),
8ap(7) is linear in time, i.e.,
ga(n=La | 7], (252)

and substituting into Eq. (21) we get the Lorentzian line
shape

1
I _
“b(w)_a) w0 +ily (25b)
where
Cos=5Va+7s)+ L0 - (25¢)

Here f‘ab is the “proper dephasing” contribution to the to-
tal line width I';,. The I term in Eq. (20b) contains the
effect of the T’ relaxation matrix and is given by® 4

TNw)=a,a | Gy() |a,a ) +{b,b | Gs(w) | b,b )
—{(a,a | Gs(w) | b,b ) —(b,b | Gs(w)|a,a)) .
(26)

In this paper we consider the three-level relaxation
scheme shown in Fig. 3(a). For this model,
«b,b | Gy(w)|a,a)) =0, and T(®) can be evaluated using
Egs. (14a), (19b), and (20), resulting in

e

|a)

T~
S~ 7,

FIG. 3. Models for population relaxation [Eq. (17)]. (a) A
three-level system. The inverse-level lifetimes are given by
Ya=0, Y6=VYap+Ve, and y.=y, (b) A two-level system
without interlevel relaxation as commonly used in the theories of
the nonlinear susceptibility (Ref. 7).

(b)

b

1977

2 i’,/cb

I = .
(@) (@+iyp N @+i7,)

(27)

Equation (20) is a generalization of the expression of
Bloembergen et al.” for X'*. This familiar 48-term ex-
pression is obtained if we introduce the following two ap-
proximations. (i) The impact (Markovian) limit [Eq. (25)].
(ii) We ignore the off-diagonal elements of " [Eq. (17a)]
and adopt the simplified relaxation scheme shown in Fig.
3(b). Under these conditions we have

flo)=—2L1 L
O+1Y, O+1Yp

(28)

I(w), given by Eq. (28), diverges whenever v, =0, for in-
stance, when a is the ground state. Equation (27), on the
other hand, does not diverge for any physically realizable
system.

III. PUMP-PROBE EXPERIMENTS

In this section we apply the results of Sec. II to the cal-
culation of the absorption spectrum experienced by a
probe beam of frequency w, in the presence of a pump
beam of frequency w,. We consider the response of a sin-
gle atom in a bath to the two applied fields and then mul-
tiply by the atomic number density N to obtain the polari-
zation. The polarization P(w,) giving the response at fre-
quency «, is related to the nonlinear susceptibility
through

P(a)z)=X(1)(a)2)E2 +X(3)( —0)2,602,—&)1,(1)1) lEl |2E2

4
+X(5)(—wz,wz,-—wl,col—m,,wl) |Eq|*E,

b (29)

Since the rate per unit volume at which energy is absorbed
from the probe field is  proportional to
| E, | Im[P(w,)/E,], the absorption coefficient experi-
enced by the probe is given by

___ 1 4 2
alw,)= E,)? dz 2|
=27 Im¥'"(w,)

+21 | E; | AmX PN — 0y, 00, —01,01)+ -+ . (30)

We see that X'"(w,) represents the absorption line shape
of the E, field in the absence of the E, field and that x>’
represents the correction to the absorption to lowest order
in E,. Hereafter we shall focus on X'* and disregard the
higher terms (X'*), etc.). We note that, in contrast to Eq.
(30), the output signal at frequency ws=w;—w,+ w3 pro-
duced by a coherent four-wave mixing process that is
driven by these input fields is proportional to
| X3 — @401, — @2,03) | ? rather than Imx‘®,

The linear susceptibility X'(w,) appearing in Eq. (29)
is related to the quantity I,;(w,) introduced in the previ-

ous section by
X V@) =N | pq | 2LP(a) —P(b) I (,) /i . (31)

Making use of Eq. (20b), we obtain an expression for the
X susceptibility that appears in Eq. (30):
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XN —wp,09, —01,01)=N | g | {[P(a)—P(b)1/#)
X { [Tpa(@3) — Lo (@) (0) Tpq (@) + I o (@1)]
+ [ Lo (03) — I3 (@) IO Ty ( —91) + I (—01)]
+ [T (03) — Inp(02) M@y +0)[ I (@1) + Ipp(@1)]
+ [ pa(02) — Ly (02) @01+ 05) [ Tpq (@) + I (@5)]

+ [ (03) — Iy (@2) 1 (03— 01) [ Tpg( — 1) + Iy (— )]

+ U pa(@2) — Lo (@2) M (@ — 01 ) Tpg (@2) + I (@3)]} (32)

This general expression for X* contains, when expanded, 6 X 4=24 terms. For the case of interest in which the fields o,
and o, are tuned close to resonance of the ab transition, most of these terms make only a small contribution to the total
X® susceptibility. In the rotating-wave approximation, we 1gnore any term in Eq. (32) that contains at least one

antiresonant (w; +®,) denominator. Thus, only four terms remain:
XN —wy,05, —@1,00) =N | gy | *{[P(@)—P() /#]} { Ig ()] (0 (@1) + Tpg ()T (0) o —07)
+ Ty (@)1 (03— 0o (— 1) + Iy (@) T (@ — 01 ) g (@)}

=), + X+ XN+ Xy, (33)

where (X)), (X)), (X)), and (X®)gy refer to the four contributions to X'* in the order in which they are given in
Eq. (33). Since I [Eq. (26)] contains four contributions as well, Eq. (33) includes 16 terms corresponding to 16 distinct

pathways through the lattice shown in Fig. 2. These pathways are displayed explicitly in Fig. 4.
Let us consider the particular case of the three-level system shown in Fig. 3(a), in which levels a and b are radiatively

coupled and level ¢ participates only in the relaxation process. In this case Tw) is given by Eq. (27) and, assuming the
impact limit, I; (o) is given by Eq. (25). Equation (33) for X® thus becomes

aa aa
[0} w1
w
ba aa ba &—-@ bb aa

3}
| w; Tbb ba “Tob  ba
aa ba aa ba
W W ® I
w, 1 2 lw, W, W, r/ @2 T,
ba aa ba aa aa
Wy ol
aa aa
aa ab aa aa ab aa ab aa aa abw; a3
[CTIaECTR PN Wy ? W4 (23]
2 O , @2 / ba
1] ba bJ ba bb
bb™ ), bb w2
w, wy wy w2
aa aa aa aa
aa ab aa aa ab aa ab g5 aa abw, aa

wy w ) r (@) )
2| w 1w 1 1 /
! J 2 pa we;,lgg @4 ba

I ba bb
- bb® @, Iw2 bb 0 ’EIwz
aa aa

aa aa

aa aa

wy waz)
ba aa baI—a’ bb aa

w

! “2 bb  ba Y2 bb  pa
v aa ba &——8— aa

w, 1 1 [, @, (u1 / @ w2
ba aa ba

wy @3
aa aa

FIG. 4. The 16 pathways contributing to Eq. (33). Row I corresponds to the first term in Eq. (33), and similarly for rows II, III,
and IV. Four pathways contribute to each term in Eq. (33), since according to Eq. (26) [is itself the sum of four terms.



XN — 9,0y, —@1,01) =N | ppg | *{[Pla)—P(b)]/#)

ORIGIN OF SPECTRAL HOLES IN PUMP-PROBE . . .

Yeb 1
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r
1 1
Xi|l——————— || — 12+
@3 —@pg+iTgp ] ivp
+ '_—1 — .1_
Oy—wpg+ilgy | | iV
+ 1 N 2 .
@y —wpg +il g 0 —w1+1Yp

1 2

+ ; ;
(y—w1+iyploy—w14iY,) | | —01—wgp+iT4

i'ycb 1

©y—@ps +il g

Wy— 01+

@3 —Wpg +irab

+ ; ;
(0 —w1+iyp w3 —w1+iY,)

=X+ )+ X+ Xy (34)
Upon substitution of Eq. (34) into Eq. (30), we get our final expression for the absorption line shape:
alwy))=a(w;)+ay(w,) , (35)
where
- Tap 41E|*|pa |? T
ay(w,)=27N (P, —Py)/# 2 - , ,
) =2mN s e o 71 Te (@105 )+ Tl 69
y(@3)=27N | pap | *[( Py —Py) /%]
«Im 1 ' 2 . : ) . 1 :
0y—@p +ilep | | @a—@1+ivy (03— +ivp Noy—o1+iY,) | | —01—0a +ilg
1 2 n [Yeb 1 (35"
0y—pg+ilgp | | a—01+iyy (03— +iyp @y —o1+iy.) | | @3—wpe +iTgp )

Here a; comes from the contribution of X! as well as the
(X3 and (X)) terms of X [Eq. (33)], and a, results
from the (X'¥); and (X®))yy terms of Eq. (33). Equation
(35) is our main result for pump-probe experiments. It
should be noted that this equation is in contradiction with
the traditional expression for the probe absorption line
shape, obtained using the sequential model. This prescrip-
tion for the calculation of a(w,) consists of letting the
pump “prepare” the system in a nonequilibrium steady
state which is then monitored by the probe field. This
procedure results in the following expression':

Pab
(wpq —-(02)2+ F‘Z,b ’

(36)

o(@2)=27N | g | 2[(Fa "Fb )ss/#i]

[

where (P, — P, ), is the steady-state value of P, — P, in the
presence of the E; field only. Substituting the standard
steady-state solutions to the Bloch equations in Eq. (36)
results in

I“ab
pa—@2)*+ T

a(@y)=27N | pap | *[(Py —Py) /%] >

(01— @p, )2+Fﬁb

4|pa |*|Ey|®
ﬁz?’a 1-‘ab

When Eq. (37) is expanded in | E, |2 to first order, we ob-

tain only the a, term [Eq. (35')]. The sequential procedure

thus fails to account for the second term a, [Eq. (35")] and
is therefore incomplete.

X (37

(01— @pg )} + Tk +
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The significance of this omission is clarified by some
numerical calculations of Eq. (30), which we now present.
In Fig. 5 we display the absorption line shape a(w,) for
the case of a pure two-level system (which corresponds to
7 =0) in the absence and in the presence of proper de-
phasing. Figure 5(a) applies to the case of no proper de-
phasing (I',, =0), for example, in a system that is purely
radiatively broadened. The upper curve shows the probe
absorption profile in the absence of saturation (i.e.,
E,=0), whereas the lower curve shows the probe absorp-
tion profile under conditions whereby the pump beam par-
tially saturates the transition so that the saturation param-
eter

I=4|pnpE |2/ (#Tap¥s)

is equal to 0.125. In this limit the probe absorption pro-
file is nearly Lorentzian. In contrast, Fig. 5(b) shows the
probe absorption for the case of a transition broadened
mainly by dephasing (e.g., collisions) such that
I',;=9.57, and hence I',, =10y,. In this case, a pro-
nounced Lorentzian-shaped dip of width ~v, centered at
the pump-laser frequency is observed. In order to analyze
the origin of this spectral feature, we have plotted in Fig.
6 the four contributions to ImX‘®) given by the imaginary

(38)

(a)

PROBE ABSORPTION a(wy)

ImX(J)
I
|

(b)

PROBE ABSORPTION o(wp)

1 | 1 | | 1 ] |
-4 0
PROBE DETUNING (@ — @pa) / Tba

P .

FIG. 5. Probe absorption line shape a(w,) given by Eq. (35)
for a two-level system (¥ =%,=0) with the pump laser tuned
to line center (w;=wy,). (a) In the absence of dephasing
(f,,,,:O): upper curve, # =0 (no saturation); lower curve,
# =0.125 (partial saturation). (b) In the presence of dephasing
(ﬁ,,,=9.5‘y,,): upper curve, & =0 (no saturation); lower curve,
# =0.25 (partial saturation).
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parts of the terms designated Xy, Xy, X3y, and
(X®))y in Eq. (34) for each of the cases shown in Fig. 5.
Figure 6(a) shows that in the absence of proper dephasing
the various terms make similar contributions to the total
saturation and that each of the terms has roughly the
same line shape. Figure 6(b) shows that in the presence of
proper dephasing, the line width associated with the (¥ ),
and (X)) contributions [ ~ T, half-width at half max-
imum (HWHM) in angular frequency units] differs signi-
ficantly from that of the (X®®')y; and (X®)1y contributions
(~7s). Hence the imaginary parts of (X)) and (X))
give rise to the overall saturation of the absorption profile,
whereas the imaginary parts of (X®)); and (X*)y give
rise to the dip at the pump frequency. As noted above, the
sequential expression [Eq. (37)] contains only contributions
(X)) and (X**)y and therefore fails to account for the dip.

The material system in which this dip was recently ob-
served is ruby.5 For this case,

Yeb >>VabsVac » (39)

implying that level b decays predominantly to level ¢
where population is stored before returning to the ground
level a. In this limit Eq. (27) reduces to

floy=—2™L— . (40a)
w+1Y,

On the other hand, for a pure two-level system (y, =0),

ImX(J)
I

PROBE DETUNING (w2 — wpg) / Tpa
FIG. 6. The four contributions to Imx‘® defined in Eq. (34)
(a) in the absence of dephasing ( f,,=0) [same parameters as
Fig. 5(a)] and (b) in the presence of dephasing [same parameters
as Fig. 5(b)].
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Eq. (27) yields
[(w)= 2 .
©+ivp

(40b)

Upon comparing Egs. (40a) and (40b), we note that the ex-
pression for X'* in the limit (39) is equal to one-half of
that of a two-level system, provided we replace ¥, by 7..
Figures 5 and 6 thus also pertain to this case within this
factor of 2 and with y, replacing y,. The two-fold reduc-
tion in X® can be understood as resulting from the ab-
sence of stimulated emission effects involving level b due
to the rapid decay of this level.

For the values of the decay rates quoted in Ref. 5, Eq.
(35) predicts that a Lorentzian-shaped dip of width (half-
width at half maximum) ~37 Hz will occur at the laser
frequency. The predicted line shape is in good agreement
with the line shapes measured at low laser power by Hill-
man et al.’> At higher values of the laser power (>0.1
W), significant power broadening of the dip was observed
in the experimental study. Higher-order terms in the non-
|

YN — @y, 3 —01,01) =N | gy | *{[Pla)—P(0)] /%)
1

1981

linear susceptibility (X*, etc.), would have incorporated
into the present theory to account for this behavior. It
should also be noted that propagation effects were impor-
tant under the experimental conditions of Hillman et al.,
and that exact quantitative agreement requires the in-
clusion of these effects. Such propagation and higher-
order nonlinear effects are included in the nonperturbative
theory that was found in Ref. 5 to be in good agreement
with all of the experimental line shapes.

In order to connect our results with previous works,
and to %we further insight regarding the significance of
the (X)), (X)), X3, and (X®))ry contributions to
X®, let us consider the simplified relaxation scheme
shown in Fig. 3(b). In this case

10,11

o~ 1 1
()= ; .
0+iY, o-+1iYp

(41)

Upon the substitution of Egs. (41) and (25b) into Eq. (33),
we get the following expression for X**':

1

X

1

(03— pa +1T 0y 170 (@1 —pa—iTg) ©

(0 —@pg +1T0p iy p N @1 —@pg —iT gp)

1

1

(0 —wpg +iTap =iy 01 —@ps —iT sp)

+ (0y—wpg +iTgp N —iYp N1 —wp, —iF,,b)

1

(0 —wpg +iT p N2 — 01 +iY o @1 —@pg —iT pg)

(03— @pg +iT p Ny — @14V 01 —0ps +iTgp)

1

1

(03— wpg +iT g Ny — 01 +iY g Ny —@pg +iT gp)

(0 —wpg +Hil gy Ny — o1 +iYpy Ny —wpg +iT )

= ([0, + ) T+, + Xy

This equatlon can also be obtamed from the general 48-
term expression of Bloembergen’ by assummg the follow-
ing. (1) A two-level system (a =c, b =d) in the notation
of Ref. 7. (2) The particular choice of frequencies relevant
to pump-probe experiments. (3) The rotating-wave ap-
proximation, which eliminates 40 of the 48 terms. The
eight remaining terms come in four Palrs corresponding to
the (X®);, (X)), X3, and (X*®)y contributions of
Eq. (33). Note that (X(3))1 [(X(”)I ] results from a path-

way in Fig. 2 that passes through an internal point |a,a ))
(|b,b)») and similarly for terms (X*)y, (X*)yy, and
(X®))y. The eight pathways correspond to the first two
columns of Fig. 4. Columns 3 and 4 make no contribu-
tions for the assumed relaxation scheme [Fig. 3(b)]. Each

|

1,1+ [0, + O, 1H Xy, + Xy, 1 -

(42)

r
of the eight terms arises from a distinct pathway in Fig. 2.
For the sake of clarity, we display in Fig. 7 each of these
eight pathways. In addition, we give the double-sided
Feynman diagram corresponding to each pathway 1011 1
is clearly seen from Fig. 6 that the (ImX®)); and (Imx®);
terms arise from pathways in which the two interactions
with the E, field occur before either of the interactions
with the E, field. This time ordering enables us to view
the process as if the E; field “prepares” the system which
the E, field merely probes. Hence the sequential prescrip-
tion [Eq. (37)] accounts for these terms
[(X”))Ia+(X‘3))1b+(X(3))ua+(X‘3’)Hb]. However, Fig. 6
shows that in addition we must include those pathways
[(X®)y and (X**)1y] in which the E, and E, fields inter-
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FIG. 7. The eight pathways leading to the eight terms of Eq. (42) describing a system with the relaxation scheme shown in Fig.
3(b). For comparison with the work of other authors (Refs. 10 and 11), the corresponding double-sided Feynman diagram is shown
below each pathway. The Feynman diagrams follow the convention that the time axis points vertically upward.
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fere (i.e., the first E, interaction occurs before the second
E, interaction). The contributions of these pathways can-
not be viewed as a preparation by E; followed by detec-
tion by E,, and hence are absent.in the expression of the
sequential model. Their significance is obvious, however,
by inspection of Fig. 7. Let us consider, for example, dia-
gram IV,. The first interaction gives rise to a dipole mo-
ment oscillating at frequency w,, and the second interac-
tion then produces a contribution to p,, oscillating at the
beat frequency w;—w,. The third interaction, involving
the w; field, then produces a dipole moment oscillating a
frequency w,, which thus contributes to the absorption of
the o, field. This contribution is significant only if the
population can response to the beat frequency between the
input waves, which occurs only if (0, —o)/(yp+74) < 1.
Consequently, the width associated with this contribution
(i.e., tuning w, with w; held fixed) is ~(yp +74)-

In conclusion, we summarize the main results of this
paper. (1) We have derived an expression [Eq. (20)] for
the X'® susceptibility for a two-level system that general-
izes previous treatments, (a) by including a more realistic

1983

T, relaxation mechanism [Fig. 3(a)] and (b) by applying to
nonimpact line shapes.® (2) By applying this expression to
pump-probe experiments, we have derived an expression
for the probe absorption line shape [Eq. (35)] that is in
contradiction to the conventional expression obtained us-
ing the sequential model. This difference manifests itself
as a dip in the probe absorption profile at the pump-laser
frequency even in a homogeneously broadened sys-
tem.2~%1%16  (3) We have traced the origin of this
discrepancy to interference effects between the two fields
which are ignored if we allow the E, field to probe the
system as prepared only by the E; field. The X*) formal-
ism automatically incorporates these interference effects
properly.
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