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Multidimensional coupling owing to optical
nonlinearities. I. General formulation
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A beam propagating in a nonlinear, dispersive medium can experience nonlinear coupling among its parame-
ters in the x, y, and t dimensions. We derive two new computational techniques that account for this coupling.
The first technique uses the beam-propagation method to solve three coupled differential equations, and the
second uses six coupled second-moment equations. Nonlinear coupling is especially important for the opera-
tion of self-mode-locked (Kerr-lens mode-locked) lasers, an example of which is considered in detail in an
accompanying paper [J. Opt. Soc. Am. 13, 560 (1996)]. The two techniques derived here can be adapted to
handle most of the physical effects of importance to self-mode-locked lasers, but we concentrate on the ef-
fects of diffraction, second- and third-order dispersion, and Kerr nonlinearity.  1996 Optical Society of
America
1. INTRODUCTION

Self-mode-locked (Kerr-lens mode-locked) lasers have de-
veloped rapidly since their discovery in 1990.1 They have
produced the shortest pulses of any laser (ø8.5 fs with
Ti:sapphire).2 They have been built from a variety of
materials, for example, Nd:YAG,3 Nd:YLF,4 Cr:LiSAF,5

and Cr:YAG,6 and have been pumped by a variety of
sources.

The design of self-mode-locked laser cavities has
been investigated in several different ways. The ef-
fect of the Kerr nonlinearity on cavity behavior has
been studied by use of techniques such as quadratic ap-
proximation,7 change of variables,8 minimization of mean-
squared error,9 and self-similar solution.10 The effects
of gain11 – 13 and of thermal lensing3,14 on cavity behavior
have also been studied.

However, an effect that has not been included in these
studies is that of nonlinear coupling among beam pa-
rameters in the x and the y dimensions. This effect is
important because the X- and Z-shaped cavities15,16 of
self-mode-locked lasers give rise to elliptical, rather than
circular, beams. When nonlinearities that depend on in-
tensity (e.g., Kerr nonlinearity, saturated gain, thermal
lensing) are present, elliptical beams evolve in a way that
depends on the beam widths in both the x and the y
directions. It is not possible, therefore, to calculate the
evolution of the beam in the x direction without also con-
sidering the evolution in the y direction and vice versa.

Previously we reported a technique that generalizes the
methods of Refs. 7–10 to include the effects of nonlinear
x–y coupling.17 We demonstrated that nonlinear cou-
pling can have a significant effect on the self-mode-locking
process. In some cases, nonlinear coupling completely
changes the conditions under which self-mode locking is
achieved.

More recently, an approach has been developed to calcu-
late analytically the self-consistent (Gaussian) solution in
the astigmatic cavity of a self-mode-locked laser.18 This
approach is based on the assumption that the Kerr non-
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linearity causes a small fractional change in beam size
throughout the cavity. Consequently, the technique is
most accurate in the small-power limit.

In addition to the spatial characteristics of self-mode-
locked lasers, the temporal characteristics have also been
investigated. Techniques used to model temporal behav-
ior include master equations,19 self-consistent solution of
lumped, noncommuting operations,20 iterative integral
equations,21 and coupled spatial–temporal analysis.22

The first three techniques neglect the coupling among
spatial (x, y) and temporal (t) beam parameters. This
coupling can be important because beam area affects in-
tensity, which affects the evolution in the t dimension.
Similarly, pulse width affects intensity, which affects evo-
lution in the x and y dimensions. The fourth technique
(Ref. 22) does account, to some extent, for this space–time
coupling, but it does not consider coupling between the
x and the y dimensions.

The effects of nonlinear coupling are also important
outside the context of the self-mode-locked laser. Previ-
ously these effects were investigated for the case of an
unconfined beam propagating in a Kerr medium with
coupling in two dimensions (x and y) but not in three
dimensions (x, y, and t). The numerical techniques
that have been used include fast Fourier transform/
Runge–Kutta,23 second moments,17 self-similar solu-
tion,24 and WKB approximation.25

In this paper we develop numerical techniques for cal-
culating beam evolution in all three dimensions, x, y,
and t, while taking into account the effects of nonlinear
coupling. The accompanying paper26 applies these tech-
niques to a self-mode-locked laser and compares the ac-
curacies that are obtained.

For the type of problem considered here, the most accu-
rate calculations are based on three-dimensional numeri-
cal methods, for example, a beam propagation (split-step)
method that uses three-dimensional fast Fourier trans-
forms (3D FFT’s). Such techniques have not been ap-
plied to a thorough treatment of self-mode-locked lasers,
however, because of the vast computing resources that
1996 Optical Society of America
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would be required. We show that a much faster numeri-
cal method, making use of one-dimensional (1D) FFT’s
to solve three coupled differential equations, can be de-
veloped if the field amplitude is separable in x, y, and
t. We demonstrate that an even faster method that uses
coupled second-moment equations can be obtained if the
spatial and temporal profiles of the beam do not change
significantly during propagation.

The numerical methods discussed in this paper can be
adapted to handle most physical effects of importance
to self-mode-locked lasers. These effects include diffrac-
tion, second-, third-, and fourth-order dispersion, Kerr
nonlinearity, loss, saturated gain, thermal lensing, and
gain dispersion. This paper, however, concentrates pri-
marily on diffraction, second- and third-order dispersion,
and Kerr nonlinearity.

2. GENERALIZED PROPAGATION
EQUATION
The optical field inside a laser cavity results from a self-
consistent solution of Maxwell’s equations after all the
variations in gain, loss, and index of refraction are ac-
counted for. Using Maxwell’s equations, together with
the constitutive relations, we proceed in the usual way27

to obtain (in SI units)

= 3 = 3 Esr, vd 2 eLsvd
v2

c2
Esr, vd ­

v2

e0c2
PNLsr, vd .

(1)
Here Esr, vd is the electric field, r ­ sx, y, zd is the posi-
tion vector, z is the propagation distance, v is the tempo-
ral frequency, c is the speed of light, e0 is the permittivity
of free space, eLsvd is the linear relative permittivity, and
PNLsr, vd is the nonlinear polarization.

In a self-mode-locked laser it is usually necessary for
the electric field to maintain a linear, nonrotating po-
larization to avoid frequency-dependent losses. Conse-
quently the vector quantities Esr, vd and PNLsr, vd can be
replaced with the corresponding scalar quantities, Esr, vd
and PNLsr, vd ­ e0eNLsr, vdEsr, vd. We define the total
relative permittivity as e ­ eL 1 eNL, the index of refrac-
tion as nsr, vd ­

p
esr, vd, and the propagation constant

as bsr, vd ­ nsr, vdvyc. The leftmost term in Eq. (1)
can be approximated as 2=2Esr, vd because j=s= ? Edj ,,

j=2Ej. With the above substitutions, Eq. (1) becomes

=2Esr, vd 1 b2sr, vdEsr, vd ­ 0 . (2)

We define the electric field amplitude Asr, T d by the
relation

Esr, T d ­ 1/2Asr, T dexpsib0z 2 iv0T d 1 c.c. , (3a)

where b0 ­ n0v0yc is the linear propagation constant, n0

is the linear index of refraction at the reference frequency
v0, and T is time in the laboratory frame of reference.
We take the Fourier transform of each side of this equa-
tion, then use the slowly varying envelope approximation
to drop one term. The result is

Esr, vd ø 1/2Asr, v 2 v0dexpsib0zd . (3b)

We substitute this expression into Eq. (2), then apply the
approximation b

2
0 2 b2 ø 2b0sb0 2 bd. Finally, we use

the paraxial (slowly varying amplitude) approximation to
drop the ≠2Ay≠z2 term. The result is
i
≠

≠z
A ­ 2

1
2b0

≠2

≠x2
A 2

1
2b0

≠2

≠y2
A 2

v0

c
sn 2 n0dA . (4)

The (complex) change in the index of refraction at some
point in the cavity is

n 2 n0 ø DnK 1 DnT 1 DnL 2 i
c

v0

g 2 a

2
. (5)

Here DnK is the change in the index that is due to the
Kerr nonlinearity, DnT is the change in the index that is
due to thermal nonlinearity, and DnL is the change in the
index that is due to dispersion:

DnLsvd ø
c

v0

"
b1sv 2 v0d 1

b2

2
sv 2 v0d2

1
b3

6
sv 2 v0d3 1 · · ·

#
. (6)

The quantity bm ­
≥
dmbsvdydvm

¥
v­v0

is the mth-order
dispersion parameter, and bsvd ­ nsvdvyc is the propa-
gation constant. The quantities b2 and b3 are often
called the group-velocity-dispersion and cubic-dispersion
parameters, respectively. The saturated gain coefficient
for an active medium modeled as a homogeneously broad-
ened two-level system is28

gsx, y; zd ­
g0sx, y; zd

1 1 IAsx, y; zdyIS

, (7)

where g0 is the unsaturated (small-signal) gain, IA is
the time-averaged intensity that accounts for both the
forward- and the backward-propagating beams, and IS is
the saturation intensity. In this expression gsx, y; zd is
taken to be real because the main effect of the imaginary
part of gsx, y; zd is to produce a shift in the frequency
of oscillation away from the resonant frequency of the
empty, passive cavity.29 For the problem treated in this
paper the slight change in the frequency of oscillation is
not of concern. The loss coefficient, which is assumed to
be linear, is given by a.

We substitute approximations (5) and (6) into Eq. (4).
We take the inverse Fourier transform of all terms, which
causes each factor of v 2 v0 to be replaced by i≠y≠T .
Finally, we eliminate the term containing b1 by making
the change of variables t ­ T 2 zyvg, where t is the time
referenced to the center of the pulse and vg ­ 1yb1 is
the group velocity. The result of these operations is a
generalized propagation equation:

i
≠

≠z
A ­ sD̂x 1 D̂y 1 D̂t 1 D̂ s3d

t 1 K̂ 1 Ĝ 1 L̂ 1 T̂ 1 · · ·dA .

(8)

Here the operators for diffraction in x and y and disper-
sion in t are

D̂x ­ 2
1

2b0

≠2

≠x2
, D̂y ­ 2

1
2b0

≠2

≠y2
,

D̂t ­
b2

2
≠2

≠t2
, D̂ s3d

t ­ i
b3

6
≠3

≠t3
. (9)

The operators for Kerr nonlinearity, saturated gain, loss,
and thermal lensing are K̂ ­ 2sv0n0

2y2cdjAj2, Ĝ ­ igy2,
L̂ ­ 2iay2, and T̂ ­ 2v0DnTyc, respectively. The non-
linearity parameter n0

2 is defined by the relation DnK ­
1/2n0

2jAj2 and is a constant that depends on the particu-
lar material. Other physical effects can also be impor-
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tant. Examples are fourth-order dispersion, which is es-
pecially important for the shortest-pulse lasers (,10 fs),21

and gain dispersion, which accounts for the variation in
gain and loss as a function of wavelength.

3. FOURIER-TRANSFORM TECHNIQUES
The beam propagation method (BPM) is useful when
diffraction, dispersion, and nonlinearities are present.27

The distinctive feature of this method is that calculations
for nonlinearities are performed independently of calcula-
tions for diffraction and dispersion.

To apply the method, we first consider diffraction
and dispersion alone. For this case, Eq. (8) reduces to
is≠y≠zdA ­ D̂A, where D̂sx, y, td ­ D̂x 1 D̂y 1 D̂t 1 D̂s3d

t .
We take the Fourier transform of each side of this equa-
tion, solve the resulting differential equation for a step
size h, and then take the inverse Fourier transform.
The result is

Asx, y, t; z 1 hd ­ D Asx, y, t; zd , (10a)

where

D̂ ­ F̂ 21
xyt expf2ihD̂skx, ky , v 2 v0dgF̂xyt . (10b)

Here F̂xyt is the three-dimensional Fourier-transform
operator and

D̂skx, ky , v 2 v0d ­ F̂xytfDsx, y, tdg

­
1

2b0
k2

x 1
1

2b0
k2

y 2
b2

2
sv 2 v0d2

2
b3

6
sv 2 v0d3 . (11)

Next, the nonlinearities alone are considered. For
this case Eq. (8) reduces to is≠y≠zdA ­ N̂A, where
N̂ ­ N̂ sx, y, t; zd ­ K̂ 1 T̂ 1 L̂ 1 Ĝ 1 · · · . We solve
the differential equation to get Asx, y, t; z 1 hd ­
N̂ Asx, y, t; zd, where N̂ ­ expf2i

Rz1h
z N̂ sz0ddz0g. To

obtain numerical results we make an estimate of this
last integral.

It is possible to combine the effects of diffraction
and dispersion with the effects of nonlinearity by
simply multiplying the D̂ and N̂ operators to ob-
tain Asx, y, t; z 1 hd ­ N̂ D̂ Asx, y, t; zd, but the re-
sults are accurate only to the second order in step
size h. It is better to use the symmetrized form,27

Asx, y, t; z 1 hd ­ D̂1/2N̂ D̂1/2Asx, y, t; zd, where D̂1/2 ­
F̂ 21

xyt expf2i1/2hD̂skx, ky , v 2 v0dgF̂xyt, as this gives re-
sults accurate to the third order in h.

For the general case, we must use the BPM with 3D
FFT’s. However, if the field amplitude is separable in x,
y, and t such that

Asx, y, t; zd ­ Bxsx; zdBy s y; zdBtst; zd , (12)

then we can derive a much faster numerical method that
uses 1D FFT’s to solve coupled differential equations.

Before deriving these coupled differential equations, we
check to see whether the assumption of Eq. (12) seems
reasonable. First, we neglect the nonlinearity and sub-
stitute Eq. (12) into Eqs. (10) to obtain
Asx, y, t; z 1 hd ­ Bxsx; z 1 hdBys y; z 1 hdBtst; z 1 hd ,
(13)

where

Bxsx; z 1 hd ­ F̂ 21
x exp

√
2i

hk2
x

2b0

!
F̂xBxsx; zd , (14a)

Bys y; z 1 hd ­ F̂ 21
y exp

0@2i
hk2

y

2b0

1AF̂yBys y; zd , (14b)

Btst; z 1 hd ­ F̂ 21
t exp

"
i

hb2sv 2 v0d2

2

1 i
hb3sv 2 v0d3

6

#
F̂tBtst; zd . (14c)

Here, F̂x, F̂y , and F̂t are 1D FFT operators. Comparing
Eqs. (12) and (13), we see that, in a linear system, a field
that is separable will remain separable for any propaga-
tion distance h.

Next we check what happens when we include the
Kerr nonlinearity. The nonlinear operator N̂ is given
by N̂ ­ expfsiv0n0

2hy2cdjBxj2jByj2jBtj
2g. It is easy to see

that N̂ is not separable in x, y, and t, even if Bx, By , and
Bt begin as Gaussian functions. So, in general, Eq. (12)
will not be true when nonlinearity is present. However,
in practical situations, Eq. (12) is often a good approxima-
tion. We demonstrate this in the accompanying paper26

by considering a specific example of a pulse propagating in
a nonlinear medium and comparing the numerical results
obtained with and without the assumption of Eq. (12).

We now assume that Eq. (12) is valid and proceed to
derive the coupled differential equations. We define a
normalized amplitude, usx, y, t; zd ­ Asx, y, t; zdy

p
Mszd,

where Mszd ­
RRR`

2` dxdydt jAsx, y, t; zdj2. Then, follow-
ing Eq. (12), we can write usx, y, t; zd ­
uxsx; zduysy; zdutst; zd. We note that

RRR
`

2` dxdydtjuj2 ­
1, so it is consistent to require that

R`

2` dxjuxj2 ­ 1,R`

2` dyjuy j2 ­ 1, and
R`

2` dtjutj
2 ­ 1.

To account for the effects of saturated gain and
thermal lensing in Eq. (8), it is possible to extend
the computational techniques presented in this pa-
per, but this requires considerable additional devel-
opment. Consequently, here we drop the terms that
account for gain, loss, and thermal lensing to obtain
i≠Ay≠z ­ sD̂x 1 D̂y 1 D̂t 1 D̂ s3d

t 1 K̂dA. We substitute
A ­

p
M uxuyut into this equation, then apply the operator

s1yuxd
RR`

2` dydtup
y up

t to each term. After simplifying,
we are able to write

i
1
ux

≠ux

≠z
1

1
2b0

1
ux

≠2ux

≠x2
1

v0n0
2

2c
M

dydt
juxj2 ­ c1szd , (15)

where c1szd ­ 2i
R

`

2` dyup
y s≠uyy≠zd 2 s1y2b0d

R
`

2` dyup
y

s≠2uyy≠y2d is a real function of z only, dy ­ s
R`

2` juy j4dyd21

is the effective beam width in the y direction, and
dt ­ s

R
`

2` jutj
4dtd21 is the effective pulse width. Apply-

ing the BPM to Eq. (15), we see that the physical effect
of the constant c1szd is to cause a longitudinal phase shift
in the field amplitude ux that is a function of z but not of
x, y, or t. In this paper we are not concerned with this
longitudinal phase shift and therefore make the simpli-
fying assumption (which is precisely valid for the linear
case but not for the nonlinear case) that c1szd ­ 0.
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To understand the physical meaning of the quan-
tity M in Eq. (15), we note that, with SI units
and the conventions of this paper, jAsx, y, t; zdj2 ­
2I sx, y, t; zdyn0e0c,30 where I is the intensity. Then
Mszd ­

RRR`

2` dxdydtjAj2 ­ 2Uyn0e0c, where U is the
pulse energy. The coefficient n2, defined by the re-
lation DnK ­ n2I , is related to the coefficient n0

2 by
n0

2 ­ n0e0cn2, from which it follows that n0
2M ­ 2n2U .

We use this, along with the definition of the critical
power, Pc ­ 2pn0yb

2
0n2,31,32 to rewrite the nonlinear term

in Eq. (15) as s2pUyb0dydtPcdjuxj2. (Note that Pc can
be negative as defined.) The physical meaning of the
critical power will become clear below. Repeating the
process above for the y and t dimensions, we find
the three coupled equations:

i
≠ux

≠z
­ 2

1
2b0

≠2ux

≠x2 2
2p

b0dydt

U
Pc

juxj2ux , (16a)

i
≠uy

≠z
­ 2

1
2b0

≠2uy

≠y2
2

2p

b0dxdt

U
Pc

juy j2uy , (16b)

i
≠ut

≠z
­

b2

2
≠2ut

≠t2
1 i

b3

6
≠3ut

≠t3
2

2p

b0dxdy

U
Pc

jutj
2ut . (16c)

We solve these equations by using the BPM with 1D
FFT’s, as described above. The three equations above
are coupled to one another through the effective widths
dx, dy, and dt. From a computational point of view, the
implication of nonlinear coupling is that, each time a
propagation step is taken, all three of Eqs. (16a)–(16c)
must be solved before we move on to the next step.

For a continuous-wave beam we can derive two dif-
ferential equations to replace the three equations above.
Similarly, if the pulse width is so long that it does not
change its value significantly during propagation, then dt

is approximately constant, and the effective power can be
defined as P ­ Uydt. In either case, the resulting equa-
tions are

i
≠ux

≠z
­ 2

1
2b0

≠2ux

≠x2
2

2p

b0dy

P
Pc

juxj2ux , (17a)

i
≠uy

≠z
­ 2

1
2b0

≠2uy

≠y2 2
2p

b0dx

P
Pc

juy j2uy . (17b)

Similar equations can be derived for the two dimen-
sions x and t; these are useful for the propagation of
an optical pulse in a planar waveguide. Also, equations
can be derived in one dimension for x, y, or t. For ex-
ample, we can use Eq. (16c) along with the definition
Ust; zd ­ utst; zdyuts0; 0d to obtain a well known equation
for the propagation of a pulse in an optical fiber33:

i
≠U

≠z
­

b2

2
≠2U

≠t2 1 i
b3

6
≠3U

≠t3 2 gP0jUj2U , (18)

where P0 ­ U juts0; 0dj2 is the initial power at the center
of the pulse, g ­ 2pyb0AePc ­ n2v0ycAe is a coefficient of
the Kerr nonlinearity, and Ae ­ dxdy is the effective area
of the optical fiber.
4. EQUATIONS BASED ON
SECOND MOMENTS
Numerical methods using Fourier transforms give de-
tailed information about the field amplitude in the x, y,
and t dimensions. In contrast, equations based on mo-
ments with respect to the intensity distribution give in-
formation only about the average properties of the beam.
In particular, second-moment methods give information
about the spatial and temporal widths of the beam and
the rate of change of these widths with propagation dis-
tance z. In many cases the beam profiles in the x, y,
and t dimensions are relatively smooth and hence well de-
scribed by these average properties. In these cases one
would like to use methods based on second moments, if
possible, because of the greatly reduced computing time.

For problems involving nonlinear cavities it is neces-
sary to bounce the beam back and forth within the cav-
ity many times to find the self-consistent cavity solution.
We can speed the computations considerably by using
second-moment equations (SME’s) to get close to the so-
lution. Following this, an FFT technique can be used, if
desired, to improve accuracy.

It is possible to use SME’s to account for third-order
dispersion in a linear cavity when the profile of the beam
is Gaussian.34 In the more general case, however, the
SME’s are less successful in accounting for the third-
order dispersion, and an FFT method is preferable. It is
possible to use the SME’s to account for thermal lensing
and gain saturation, but we do not treat these cases here
because of space limitations. Our starting point for the
development of the coupled SME’s is therefore Eqs. (16)
but with the third-order dispersion term removed from
Eq. (16c). If we let the subscript n represent x, y, or t,
we can write these equations in the general form

i≠uny≠z ­ sD̂n 1 K̂ndun . (19)

Here the dispersion-diffraction operator D̂n is defined as

D̂n ­ 2
dn

2
≠2

≠n2
, (20)

where dn is the dispersion-diffraction parameter, given
for n ­ x, y, or t by

dx ­ dy ­ 1yb0, dt ­ 2b2 . (21)

The Kerr operator K̂n is defined as K̂n ­ 2knjun j2, where
kn ­ 2pUyb0PnPc is the Kerr coefficient and Px ­ dydt,
Py ­ dxdt, and Pt ­ dxdy are the effective space–time
areas.

The definition of the second moment of the width with
respect to the intensity distribution (also known as the
mean-squared width) in the dimension n is r2

n ­ kn2l 2

knl2, where kn2l ­
R`

2` n2jun j2dn and knl ­
R`

2` njunj2dn.
If only the physical effects of Eq. (19) are considered, and
if knl ­ 0 at z ­ 0, then knl ­ 0 for all z. The second
moment can therefore be written as r2

n ­
R`

2` n2junj2dn.
The rms width of the beam in the n dimension, rn, is the
square root of the second moment.

The first step in deriving the coupled SME’s is to
find a way to calculate ≠r2

ny≠z in terms of the trans-
verse variables x, y, and t. We manipulate the basic re-
lation ≠r2

ny≠z ­ s≠y≠zd
R`

2` n2junj2dn to obtain ≠r2
ny≠z ­
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âs1dsi≠uny≠zd, where the operator âs1d is defined as âs1d ­
2 Im

R
`

2` dnn2up
n . Inasmuch as i≠uny≠z is the leftmost

term in Eq. (19), it follows that ≠r2
ny≠z ­ âs1dsD̂n 1 K̂ndun.

Carrying out these operations and using integration by
parts yields

≠r2
n

≠z
­ 2dn Im

Z `

2`

dnnup
n

≠un

≠n
; 2dnCn . (22)

The quantity Cn is known as the chirp parameter. We
will discuss its physical meaning presently.

The next step in deriving the SME’s is to find
an expression for ≠2r2

ny≠z2. To do this we manipu-
late Eq. (22) to obtain ≠2r2

ny≠z2 ­ sâs2d
1 1 âs2d

2 dsi≠uny≠zd,
where âs2d

1 ­ 2dn Re
R`

2` dnns≠uny≠nd Ĵ and âs2d
2 ­

22dn Re
R`

2` dnn up
n s≠y≠nd. Here Ĵ is an operator that

takes the complex conjugate of its argument. From
Eq. (19) it follows that ≠2r2

ny≠z2 ­ sâs2d
1 1 âs2d

2 dsD̂n 1 K̂ndun.
To carry out the operations in this equation we use tech-
niques such as integration by parts, expansion of the
derivative terms, and use of real and imaginary parts to
eliminate terms. The result is

≠2r2
n

≠z2 ­ 2d2
n

Z `

2`

dn

É
≠un

≠n

É2
2 dnkn

Z `

2`

dnjunj4 . (23)

We would like to rewrite this equation, using physical
quantities that are easier to interpret. To do this we
expand the normalized field amplitude as

unsn; zd ­ fnsn; zd exp

√
2i

Cnn2

4r2
n

!
, (24)

where fnsn; zd is the chirp-free normalized field am-
plitude. The function fn must satisfy the relation
Im

R
`

2` dnfp
n ≠fny≠n ­ 0 for Eq. (22) to be true. This

relation is satisfied automatically if fn is real.
To extend the physical interpretation to account for

non-Gaussian beam (pulse) profiles we define two addi-
tional shape-factor parameters, s2

n and hn. The first of
these is

s2
n ­

Z `

2`

dnj≠fny≠nj2Z `

2`

dnj≠fgny≠nj2
­ 4r2

n

Z `

2`

dn

É
≠fn

≠n

É2
, (25)

where fgn ­
≥
2pr2

n

¥
21/4

exp
≥
2n2y4r2

n

¥
is the chirp-free

Gaussian amplitude. The factor sn, which is just the
square root of the quantity above, is known as the times-
diffraction-limit number, the beam-quality factor, or the
M2 factor.35 – 39 We show below that this quantity is re-
lated to the far-field diffraction angle of a beam propa-
gating in a linear medium. For a Gaussian profile the
beam-quality factor takes on the smallest possible value,
sn ­ 1. For a hyperbolic-secant profile, sn ­ py3.

The nonlinear shape factor hn is defined as

hn ­

Z `

2`

jun j4 dnZ `

2`

jugn j4 dn

­ 2
p

p rn

Z `

2`

junj4dn ­
2
p

p rn

dn

, (26)

where ugn ­ s2pr2
nd21/4 exps2n2y4r2

nd exps2iCnn2y4r2
nd

is the normalized Gaussian field amplitude and dn ­
s
R

`

2` dnjunj4d21 is the effective width. The nonlinear
shape factor is equal to 1 for a Gaussian beam and may be
either less than or greater than 1 for other beam (pulse)
profiles. For a hyperbolic-secant profile, hn ­ spy3d3/2.

We substitute Eq. (24) into Eq. (23) and use Eqs. (25)
and (26), along with the condition Im

R`

2` dnfp
n ≠fny≠n ­

0, to obtain

≠2r2
n

≠z2 ­
d2

n

2r2
n

0@s2
n 1 C2

n 2
es3d

n hxyt

dnb0

U
Pc

1A , (27)

where hxyt ­ hxhyht is the three-dimensional nonlin-
ear shape factor and es3d

n ­ r2
ny2

p
prxryrt is the three-

dimensional ellipticity factor.
Using techniques like those employed to find the first

and second derivatives, ≠r2
ny≠z and ≠2r2

ny≠z2, of Eqs. (22)
and (27), we find that the higher-order derivatives,
≠mr2

ny≠zm for m $ 3, are in general nonzero. To ex-
pand r2

nszd in a Taylor series about an initial position z1,
therefore, we require many terms. If, however, we make
the step size h ­ z 2 z1 small enough, then the terms of
order h3 and higher become negligible, and we can write

r2
nsz1 1 hd ­ r2

nsz1d 1 s≠r2
ny≠zdz­z1 h 1 1/2s≠2r2

ny≠z2dz­z1 h2 .

We substitute Eqs. (22) and (27) into this equation to
obtain

r2
nsz1 1 hd ­ r2

n1

24√
1 2

Cn1h
zdn1

!2

1

√
h

zdn1

!2

3

0@s2
n 2

es3d
n hxyt

dnb0

U
Pc

1A35 , (28a)

where n equals x, y, or t, zdn ­ 2r2
nydn is the dispersion-

diffraction distance (which may be negative), and the
subscript 1 indicates that a parameter is evaluated at the
initial position z1. We obtain a set of equations for
the chirp parameters Cn by taking the derivative with
respect to h of each term in Eq. (28a) and using Eq. (22).
The result is

Cnsz1 1 hd ­ Cn1

√
1 2

Cn1h
zdn1

!
2

h
zdn1

0@s2
n 2

es3d
n hxyt

dnb0

U
Pc

1A .

(28b)

To use Eqs. (28) we must know the values of five
quantities at the beginning of the step, rnsz1d, Cnsz1d,
es3d

n sz1d, snsz1d, and hxytsz1d. Equations (28) give the val-
ues of two quantities at the end of the step, rnsz1 1 hd
and Cnsz1 1 hd, and we can use these to calculate a
third, es3d

n sz1 1 hd. We have no way of finding the shape
factors, ss3d

n sz1 1 hd and hxytsz1 1 hd, but in practical prob-
lems these often remain nearly constant during propaga-
tion. In such cases we know all five values at the end
of the step, and this allows us to reapply Eqs. (28) to de-
termine the evolution of the beam for the second step.
We repeat this process for the third step, the fourth step,
and so forth to propagate through any arbitrarily large
distance.
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We can replace the chirp parameter in Eqs. (28) by
using the radius of curvature, defined as Rn ­ 2zdnyCn.
The result is

r2
nsz1 1 hd

­ r2
n1

24√
1 1

h
Rn1

!2

1

√
h

zdn1

!2
0@s2

n 2
es3d

n hxyt

dnb0

U
Pc

1A35 ,

(29a)

1
Rnsz1 1 hd

­
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2
n1

r2
n

24 1
Rn1

√
1 1

h
Rn1

!
1

h
z2

dn1

0@s2
n 2

es3d
n hxyt

dnb0

U
Pc

1A35 .

(29b)

The six coupled equations, Eqs. (28), or the six coupled
equations, Eqs. (29), constitute the coupled SME’s.

For a continuous-wave beam we can reduce the number
of coupled equations from six to four. Similarly, if the
pulse width does not change significantly during propa-
gation, we can define an effective power as P ­ Uydt ­
Uhty2

p
prt, and again we can reduce the number of equa-

tions from six to four. In either case, for n equal x or y
the equations are

r2
nsz1 1 hd

­ r2
n1

24√
1 1

h
Rn1

!2

1

√
h

zdn1

!2√
s2

n 2 es2d
n hxy

P
Pc

!35 ,

(30a)

1
Rnsz1 1 hd

­
r

2
n1

r2
n

24 1
Rn1

√
1 1

h
Rn1

!
1

h
z2

dn1

√
s2

n 2 es2d
n hxy

P
Pc

!35 ,

(30b)

where hxy ­ hxhy is the two-dimensional nonlinear shape
factor and es2d

n ­ r2
nyrxry is the two-dimensional ellipticity

factor.
One can understand the physical meaning of the beam-

quality factor sn by considering Eq. (30a) for the case
of linear propagation. From this equation the far-field
angle of the beam initially at its beam waist is calculated
to be u ­ s≠rny≠zdz!` ­ sn1y2b0rn1, which is just sn1

times the far-field angle of a Gaussian beam.
A special case of Eqs. (30) is for a circular beam, which

has rx ­ ry and es2d
n ­ 1. It has long been known that,

for this case, Eqs. (30) are exact for any distance h and for
any power P .39,40 This fact is easily verified by use of pro-
cedures similar to those above to show that ≠mr2

ny≠zm ­ 0
for m $ 3.

If the initial profile of a circular beam is Gaussian, then
hxy ­ 1 and s2

x ­ s2
y ­ 1, so that the rightmost parenthet-

ical expression in Eqs. (30a) and (30b) goes to zero when
P ­ Pc. Above this power a circular beam initially at a
beam waist (1yR1 ­ 0) will eventually shrink to an rms ra-
dius of zero. Similarly, if the initial radius of curvature
is negative (R1 , 0), which corresponds to a converging
beam, then for P ­ Pc the rms radius will shrink to zero
when z ­ jR1j. In reality, several complications accom-
pany the catastrophic collapse that is due to self-focusing.
One complication is that the central portion of the pulse
undergoes catastrophic collapse before the rms radius
goes to zero. For a circular Gaussian beam this occurs at
s3.77y4dPc.41 Another complication is that the changes in
the index of refraction depend on higher-order intensity-
dependent effects (Dn ­ n2I 1 n4I2 1 · · ·).42 Still an-
other complication is that the paraxial (slowly varying
amplitude) approximation breaks down when beam size
becomes very small.43,44

Another special case is for the composite mean-squared
width, defined as

r2
xy ­ r2

x 1 r2
y . (31)

To expand Eq. (31) we substitute Eq. (30a) for n ­ x and
n ­ y. The resulting formula is exact for any propaga-
tion distance h. This fact is easily verified by use of pro-
cedures similar to those above to show that ≠mr2

xyy≠zm ­
0 for m $ 3. The expanded form of Eq. (31) can be
used to show that catastrophic collapse of an elliptical
Gaussian beam occurs at P ­ Pcsex1 1 e

21
x1 dy2, which is

larger than the critical power Pc. The increased power
of collapse for an elliptical beam has been demonstrated
experimentally.45

The accuracy that can be obtained with second mo-
ments depends on the details of the problem. As we
have seen, in some cases the SME’s give exact results.
In other cases the results are not exact, but they are close
to those obtained with FFT’s. This will be true when-
ever the shape factors associated with the beam do not
change too much. This is often the case for self-mode-
locked lasers, as we show in the accompanying paper.26

5. CONCLUSIONS
We have presented three computational techniques, two
of which were derived for the first time to our knowl-
edge, for including the effects of nonlinear coupling on
the propagation of light through nonlinear, dispersive me-
dia. In the paper that follows26 we compare the accuracy
of these three techniques. We also show how to propa-
gate through optical elements and inside cavities, and we
demonstrate the importance of nonlinear coupling by con-
sidering a specific self-mode-locked laser as an example.
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