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Abstract: We compare the performance of high-order thermal ghost
imaging with that of conventional (that is, lowest-order) thermal ghost
imaging for different data processing methods. Particular attention is given
to high-order thermal ghost imaging with background normalization and
conventional ghost imaging with background subtraction. The contrast-to-
noise ratio (CNR) of the ghost image is used as the figure of merit for the
comparison. We find analytically that the CNR of the normalized high-order
ghost image is inversely proportional to the square root of the number of
transmitting pixels of the object. This scaling law is independent of the
exponents used in calculating the high-order correlation and is the same
as that of conventional ghost imaging with background subtraction. We
find that no data processing procedure performs better than lowest-order
ghost imaging with background subtraction. Our results are found to
be able to explain the observations of a recent experiment [Chen et al.,
arXiv:0902.3713v3 [quant-ph]].
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1. Introduction

Ghost imaging is a novel imaging technique that acquires the image of an object with the
processes of object interrogation and image formation performed separately [1, 2, 3, 4]. In a
typical ghost imaging setup, two mutually correlated beams of light are used: an object field
that illuminates the object but is not spatially resolved by its detector and a reference field that
does not interact with the object but is spatially resolved by its detector. The ghost image is
then obtained by measuring the intensity cross-correlation function of the object and reference
fields.

There are two main categories of light sources used for ghost imaging: entangled photons
produced in parametric down-conversion [1] and spatially incoherent pseudo-thermal light pro-
duced by a laser beam with a rotating diffuser [4] or a spatial light modulator [5]. The setup that
uses pseudo-thermal light has attracted a lot of attention recently due to its potential practical
applications as well as the interpretation of its underlying physical process [6, 7, 8, 9, 10, 11].

(C) 2010 OSA 15 March 2010 / Vol. 18,  No. 6 / OPTICS EXPRESS  5563
#122198 - $15.00 USD Received 4 Jan 2010; revised 26 Jan 2010; accepted 27 Jan 2010; published 3 Mar 2010



While there are similarities and differences in the ghost images produced by the two different
light sources, the most notable difference between the two is that a thermal ghost image al-
ways lies on a noisy background whereas the ghost image obtained using entangled photons
can achieve 100% visibility.

The conventional method to improve the contrast of a thermal ghost image is by simple
background subtraction [2, 3, 6, 11, 12, 13, 14, 15]. Another means of increasing the visibil-
ity of the ghost image is by selecting workable reference speckle patterns using a threshold
level [16]. More recently, high-order intensity correlations have been utilized for the same
goal [17, 18, 19, 20, 21, 22, 23]. In addition, ghost image reconstruction based on compres-
sive sampling to achieve high sampling efficiency and good image quality has been demon-
strated [24]. It should be noted that different methods of data processing of the object and
reference signals lead to ghost images with different qualities. For example, high-order ghost
imaging without normalization by the background intensity is found theoretically to attain an
optimal image quality at a power order of the correlation that depends on the transmitting area
of the object [22], whereas no such optimal behavior is seen in the normalized high-order ghost
image in experiment [23]. The intent of the present paper is to compare theoretically the per-
formances of different schemes for reconstructing thermal ghost images. Particular attention is
given to the important special cases of conventional thermal ghost imaging with background
subtraction and high-order thermal ghost imaging with background normalization. We will use
the contrast-to-noise ratio (CNR), which is defined in the next section, as the figure of merit for
the comparison. Only those methods that are based on the cross-correlation of the object and
reference signals are considered in the current work.

In the following, we first calculate the CNR of the conventional thermal ghost imaging. The
image quality of the high-order thermal ghost imaging is then studied in detail in Section 3.
Throughout this paper, the analyses of the ghost image quality are made using classical argu-
ments [22, 25]. We will consider the effects of shot noise using a semi-classical approach in
Section 4. The results are summarized in Section 5.

2. Conventional thermal ghost imaging

A typical thermal ghost imaging setup is shown in Fig. 1(a). Here we consider the lensless
ghost imaging configuration [6, 12, 13, 14, 26, 27]. The spatial patterns of the light beams are
generated by a rotating ground glass plate to mimic a thermal light source. To simplify the
analysis, the object is taken to be a binary object, i.e., the object mask has either zero or unity
transmission. The average size of the speckles is taken to be approximately the same as the size
of the pixels of the reference detector. As a result, we can perform a spatial discretization of the
intensity of light falling onto the object surface, and the light falling onto a given pixel can be
assumed to be statistically independent of that falling onto other pixels (see Fig. 1(b)).

We assume that the photodetector response time is short compared to the correlation time
of the speckle field, as is the case in many typical situations. In addition, we assume that the
illuminating beam has an essentially uniform intensity distribution over the transverse extent
of the object. Specifically, the average intensity of the light beam is taken to have a negative
exponential probability distribution of mean 〈I(�x)〉 ≡ μ for all the positions�x, where I(�x) is the
speckle intensity in the object plane and 〈· · · 〉 denotes ensemble average. We assume that the
light source is sufficiently intense that shot noise in the photocurrent leaving each detector ele-
ment is negligibly small. In Section 4 we examine the conditions under which this assumption
is valid. Together with the assumption on the size of the speckles made above, we can conclude
that 〈In(�x)〉 = n!〈I(�x)〉n = n!μn and 〈I(�x)I(�x′)〉 = 〈I(�x)〉〈I(�x′)〉 = μ2 for�x �=�x′.

The conventional thermal ghost image is obtained by calculating the cross-correlation of the
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Fig. 1. (a) Schematic of the lenless thermal ghost imaging setup. (b) The simplified ob-
ject model for analysis. The object plane (left) and the reference detector plane (right) are
discretized by pixels of finite sizes. BS: beam-splitter.

object signal Io and the reference signal Ir(�x):

G(�x) = M[IoIr(�x)], (1)

where

M[X ] ≡ 1
N

N

∑
s=1

X (s) (2)

is defined to be the sample average of the quantity X for the N measurements
{

X (s)
}

, s =
1, · · · ,N. Here

Io =
1
Δ

∫

beam area
d2y O(�y)I(�y) → ∑

�y∈T

I(�y) (3)

and

Ir(�x) =
1
Δ

∫

area of pixel at�x
d2y I(�y) → I(�x) (4)

are the object and reference signals respectively, and Δ is the area of a pixel. The pixel index
�y in Eq. (3) is summed over the transmitting regions T of the binary object mask O(�y), with
the number of transmitting pixels denoted by T according to the assumption made previously.
In the general situation in which the speckle size can be larger than the size of a pixel of the
reference detector, T is given by T = (transmitting area of object) / (average speckle size).

We define the contrast-to-noise ratio (CNR) to be

CNR(G) ≡ 〈G(�xin)〉−〈G(�xout)〉√
1
2 [Δ2G(�xin)+Δ2G(�xout)]

, (5)

where Δ2G(�x) ≡ 〈G(�x)2〉− 〈G(�x)〉2. Here �xin and �xout represent the pixel positions inside and
outside the transmitting regions of the object. The variances Δ2G(�xin) and Δ2G(�xout) are gener-
ally not the same. It follows from Eq. (1) that 〈G(�x)〉 = 〈IoIr(�x)〉 and

Δ2G(�x) =
1
N

[〈I2
o I2

r (�x)〉−〈IoIr(�x)〉2] . (6)

Using the result [22]

〈Im
o In

r (�x)〉 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Γ(T +m+n)n!
Γ(T +n)

μm+n, for�x =�xin,

Γ(T +m)n!
Γ(T )

μm+n, for�x =�xout,

(7)
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where Γ(�x) is the gamma function, the CNR of G(�x) is found to be [22, 25]

CNR(G) =

√
N

T 2 +5T +11/2
. (8)

Note that the numerical coefficients of T in the denominator of Eq. (8) depend on the specifics
of the model used for the correlations of the speckle intensities. Of more general applicability
is the scaling law CNR(G) ∝

√
N/T for T � 1 that characterizes the quality of the ghost image

for this data processing method.
An alternative approach for forming the ghost image is to calculate the correlation of the

background-subtracted object and reference signals [2, 3, 6, 11, 12, 13, 14, 15]. Specifically,
one calculates the ghost image as

G′(�x) = M [(Io −M[Io]) (Ir(�x)−M[Ir(�x)])]
= M[IoIr(�x)]−M[Io]M[Ir(�x)]. (9)

It follows from Eq. (7) that the contrast-to-noise ratio of this method is given by

CNR(G′) =

√
N −1

T +7/2−3/N
. (10)

The scaling law of this procedure is thus given by CNR(G′) ∝
√

N/T [28]. We thus see that
G′(�x) performs much better than G(�x) for the relevant limit T � 1.

Still another procedure for determining the ghost image is to calculate the normalized corre-
lation function [29]

g′1,1(�x) =
M[IoIr(�x)]

M[Io]M[Ir(�x)]
. (11)

By dividing the correlation function by M[Ir(�x)], artifacts associated with the nonuniform re-
sponse of the CCD detector are largely removed from the final ghost image. We will show
below in Section 3 that

CNR(g′1,1) ≈
√

N
2T +3

. (12)

Thus g′1,1(�x) performs approximately as well as G′(�x).
It is remarked that at times certain workers have advocated taking the background term

M[Io]M[Ir(�x)] in Eq. (9) as a constant in the limit of large N, that is, taking M[Io] → 〈Io〉 and
M[Ir(�x)] → 〈Ir(�x)〉. Such a procedure leads to the the prediction that the contrast-to-noise ratio
scales as

CNR(G′) →
√

N
T +7/2

. (13)

However, we note that this procedure is somewhat unphysical, as there is no operational way to
determine an ensemble average without performing an infinite number of measurements.

3. High-order thermal ghost imaging

The procedure of high-order ghost image entails calculating the correlation of powers of
the signal and reference intensities rather than the the correlation of the intensities them-
selves. Different configurations for performing high-order thermal ghost imaging have been
described [17, 18, 19, 20, 21, 22, 23]. The simplest procedure is to use the same setup as in
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Fig. 1(a), where there is only a single reference detector, and to calculate the normalized high-
order intensity correlation [19, 20, 23]

g(full)
mn (�x) =

M [Im
o In

r (�x)]
M [Im

o ]M [In
r (�x)]

. (14)

Note that the exponents m and n in the denominator are inside the averages, so that g(full)
mn (�x)

is unity when Io and Ir(�x) are uncorrelated. As mentioned in the last section, the normaliza-
tion over M [In

r (�x)] also has the advantage of eliminating artifacts in the reference detector that
appear as a multiplicative function of�x on the reference signal.

Unlike as in the case of Eq. (9), the use of sample averages in Eq. (14) imposes difficulties
on the analysis of the properties of the ghost image, as the quantities M [Im

o In
r (�x)], M [Im

o ] and
M [In

r (�x)] are also random variables when the number of measurements N is finite. It might
be tempting to treat the denominator as a constant to simplify the analysis. However, this as-
sumption is inappropriate to describe the noise properties of the normalized ghost image, as we
demonstrate below.

To simplify the subsequent analysis, we note that M [Im
o ]−1 is a multiplicative factor that is

independent of the position�x. Therefore, it does not affect the scaling law for the quality of the
ghost image and for the present can be safely taken as a constant. We define Cm = 〈Im

o 〉 and
Bn = 〈In

r (�x)〉, and we would like to compare the qualities of the ghost images calculated by

gmn(�x) =
1

CmBn
M [Im

o In
r (�x)] , (15)

and by

g′mn(�x) =
1

Cm

M [Im
o In

r (�x)]
M [In

r (�x)]
. (16)

It should be noted that gmn(�x) is equivalent to the unnormalized ghost image Gmn(�x) =
M [Im

o In
r (�x)]. In particular, g1,1(�x) ∝ G(�x) with G(�x) = G1,1(�x) given in Eq. (1). Therefore, ac-

cording to Ref. [22], there is an optimal contrast-to-noise ratio for the high-order ghost image
gmn(�x) that scales as CNR(gopt) ∝

√
N/T , with the optimal exponents m ∼√

T and n = 1 or 2.
Before presenting the analysis for g′mn(�x), we show the results of numerical simulations using

Eqs. (15) and (16). In the simulations, we have taken the illuminating beam to be spatially
incoherent, i.e., I(�x) = |E(�x)|2 with 〈E∗(�x)E(�x′)〉 = μδ (�x−�x′), where the electric field E(�x)
follows circular complex Gaussian statistics. The object mask used is depicted in Fig. 2(a), and
the number of transmitting pixels of the object is T = 410. The number of samplings used is
N = 150000. For the value of T used in the simulation, the optimal exponents for the correlation
gmn(x) are m ≈ 20 and n = 2, and CNR(g20,2) ≈ 20CNR(g1,1).

From Figs. 2(c) and 2(d), it is seen that the conventional ghost image g1,1(�x) is barely visible,
while the optimal high-order ghost image g20,2(�x) has very good quality. It is noted that the
averaged speckle pattern M [Ir(�x)] (Fig. 2(b)) is not uniform. More importantly, it is correlated
with the ghost image as can be seen by comparing Figs. 2(b) and 2(c). On the contrary, when
Eq. (16) is used to calculate the ghost image, Figs. 2(e) and 2(f) show that the quality of the
normalized conventional ghost image is the same as that of the high-order ghost image. It is
also noted that while the visibility of the high-order ghost image is much larger than that of the
conventional ghost image (see the scale bars in Fig. 2), the signal fluctuations of the high-order
ghost image are also larger than that of the conventional ghost image. This is shown explicitly
in Fig. 3 in which the probability density functions of the ghost image signals inside and outside
the transmitting regions are plotted.
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Fig. 2. Numerical simulations. (a) The object mask (50× 50 pixels). (b) The averaged
speckle pattern M [Ir(�x)]. (c) The conventional ghost image g1,1(�x). (d) The optimal high-
order ghost image gopt(�x) = g20,2(�x). (e) The normalized conventional ghost image g′1,1(�x).
(f) The normalized high-order ghost image g′20,2(�x). The number of transmitting pixels is
T = 410 and the number of samplings is N = 150000. The latter is chosen to be large to
make the ghost image in (c) visible.

To understand the properties of g′mn(�x), it should be realized that, for large N, M [Im
o In

r (�x)]
and M [In

r (�x)] behave as normal random variables with means

Amn(�x) = 〈Im
o In

r (�x)〉, Bn = 〈In
r (�x)〉, (17)

and variances

α2
mn(�x) =

Δ2 [Im
o In

r (�x)]
N

, β 2
n =

Δ2 [In
r (�x)]
N

, (18)

by virtue of the central limit theorem. This implies that g′mn(�x) is a ratio of two normal random
variables, and the form of the probability density function of g′mn(�x) is given in Ref. [30].
It is noted that in general the moments of the ratio of two normal random variables do not
exist, especially when the denominator can vanish [31]. However, in our case, M [In

r (�x)] �= 0. In
particular, when Bn � 3βn, it has been shown that the function

tmn(�x) =
BnCmg′mn(�x)−Amn(�x)√

β 2
n C2

mg′2mn(�x)−2ρmn(�x)Cmg′mn(�x)+α2
mn(�x)

(19)

is normally distributed with zero mean and unity variance [32], i.e.,

P(tmn(�x)) =
1√
2π

exp

[
− t2

mn(�x)
2

]
. (20)
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Fig. 3. The probability density functions (pdf) of gmn and g′mn inside and outside the trans-
mitting regions of the object with Pi(gmn) ≡ P(gmn(�xi)), i = in or out. (a) The pdf for the
conventional ghost image Pi(g1,1). (b) The pdf for the optimal high-order ghost image
Pi(g20,2). (c) The pdf for the normalized conventional ghost image Pi(g′1,1). (d) The pdf
for the normalized high-order ghost image Pi(g′20,2). The number of transmitting pixels is
T = 410 and the number of samplings is N = 150000. These give 〈g1,1(�xin)〉= 〈g′1,1(�xin)〉=
1.0024 and 〈g20,2(�xin)〉= 〈g′20,2(�xin)〉= 1.0998. The data points are accumulated by repeat-
ing the simulations for 500 times. The solid curves (overlapping with the numerical data)
are the theoretical results using Eq. (20).

Here ρmn(�x) is the covariance of M [Im
o In

r (�x)] and M [In
r (�x)]. Moreover, if Bn � βn, the probabil-

ity density function of g′mn(�x) tends to be a normal distribution.
Using Eq. (7), we find that

Amn(�x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Γ(T +m+n)n!
Γ(T +n)

μm+n, for�x =�xin,

Γ(T +m)n!
Γ(T )

μm+n, for�x =�xout,

(21)

Bn = n!μn, Cm =
Γ(T +m)

Γ(T )
μm, (22)

α2
mn(�x) =

A2m2n(�x)−A2
mn(�x)

N
, β 2

n =
B2n −B2

n

N
, (23)

and

ρmn(�x) =
Am2n(�x)−Amn(�x)Bn

N
. (24)

The theoretical probability density functions of the ghost images are plotted in Fig. 3(b) using
Eq. (20) and an excellent agreement between the theory and the simulation results is seen.

An approximation to Eq. (20) can be made by putting g′mn(�x) = 〈g′mn(�x)〉 in the denominator
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of tmn(�x). The probability density function for g′mn(�x) is then found to be

P(g′mn(�x)) ≈
1√

2πΔmn(�x)
exp

[
− [g′mn(�x)−〈g′mn(�x)〉]2

2Δ2
mn(�x)

]
. (25)

The mean of g′mn(�x) is given by

〈g′mn(�x)〉 =
Amn(�x)

CmBn(�x)
=

⎧
⎪⎨
⎪⎩

Γ(T )Γ(T +m+n)
Γ(T +m)Γ(T +n)

, for�x =�xin,

1, for�x =�xout,

(26)

and the variance of g′mn(�x) is given by

Δ2
mn(�xin) =

(2n)!
N(n!)2

[
Γ(T +2m+2n)Γ(T )2

Γ(T +m)2Γ(T +2n)
+

Γ(T +m+n)2Γ(T )2

Γ(T +m)2Γ(T +n)2

− 2Γ(T +m+n)Γ(T +m+2n)Γ(T )2

Γ(T +m)2Γ(T +n)Γ(T +2n)

]
, (27)

and

Δ2
mn(�xout) =

(2n)!
N(n!)2

[
Γ(T +2m)Γ(T )

Γ(T +m)2 −1

]
. (28)

Using these results, we calculate the CNR as

CNR(g′mn) =
〈g′mn(�xin)〉−〈g′mn(�xout)〉√

1
2 [Δ2

mn(�xin)+Δ2
mn(�xout)]

. (29)

For example, CNR(g′1,1) =
√

N/(2T +3) and CNR(g′1,2) =
√

N/(3T/2+6).
When T � m and n, it can be shown that

g′mn(�xin) ∼ 1+
mn
T

, g′mn(�xout) = 1, (30)

and

Δ2
mn(�xin) ≈ Δ2

mn(�xout) ∼ m2(2n)!
NT (n!)2 . (31)

Then the CNR with T � m,n is found to be

CNR(g′mn) ∼
√

N
T

[
n(n!)√
(2n)!

]
. (32)

Therefore, CNR(g′mn) scales as
√

N/T , which is the same as the scaling law for CNR(gopt)
and CNR(G′). Figure 4 shows the theoretically predicted CNR(g′mn) calculated using Eq. (29).
Numerical results using N = 20000 are also shown and agree with the analytical results. The
deviation of the numerical data from the theory for g′5,5 and g′20,2 is due to the finite number of
samplings used in the simulations and is found to improve when a larger N is used.

From the large T limit of Δmn(�x), we see that the noise of the high-order ghost image in-
creases linearly with the object signal order m and exponentially with the reference signal order
n. Moreover, the CNR is independent of m. Finally, Eq. (32) demonstrates that the optimal value
for n is 1 or 2.
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Fig. 4. Plots of the contrast-to-noise ratio CNR(g′mn) (normalized by
√

N) against the num-
ber of transmitting pixels T for various values of m and n. The theoretical curves are plot-
ted using Eq. (29). The data points are from simulations using N = 20000. Also shown are
CNR(G) from Eq. (8), CNR(G′) from Eq. (10) and CNR(gopt) from Ref. [22]. We note
that under all circumstances the function G′ produces the best image, with procedures g′1,1
and g′2,2 performing nearly as well.

Since the CNR is not quite dependent on m, one can take a very large value of m in order to
achieve high visibility, which is given by [22]

V ≡ 〈g′mn(�xin)〉−〈g′mn(�xout)〉
〈g′mn(�xin)〉+ 〈g′mn(�xout)〉 ≈ tanh

(mn
2T

)
. (33)

The results explain the experimental observations [23] that a large m and a small n are preferable
in high-order thermal ghost imaging.

4. Effects of shot noise

In Sections 2 and 3, the contrast-to-noise ratios are calculated under the assumption that the
light beams are sufficiently intense so that the noise properties of the signals are dominated by
the statistics of the speckle fields. Depending on the illumination power on the photodetectors,
other noise sources, such as shot noise and dark current, contribute to a certain extent to the
signal statistics. The intent of the present section is to study the effect of detection noise on
the quality of the ghost image and to determine the conditions under which these additional
noise sources are negligible so that the results of Sections 2 and 3 are valid. For definiteness,
we assume that shot noise is the only noise source that is present, and that sources of technical
noise have been rendered negligibly small.

Based on the assumptions made to the bucket and reference detectors in Section 2, the pho-
tocurrents output from the detectors during the reception of an optical pulse of known intensity
Ia with a = o,r are

ia = e
nΔIa

μ
, (34)

where e is the electron charge and nΔ is the average number of photoelectrons ejected by a
detector element, which is defined by

nΔ =
ημΔτ

hν
, (35)
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where η is the quantum efficiency of the detector, Δ is the area of the pixel, τ is the integration
time of detection process, ν is the frequency of the light, and h is the Planck constant. We have
assumed that the quantum efficiencies of the bucket and reference detectors are the same for
convenience.

According to the semiclassical theory of photodetection, the photocurrent is governed by
Poisson statistics. The nth moment of ia is given by

〈ina〉shot noise = enφn

(
nΔ
μ

Ia

)
≡ en

(
nΔ
μ

)n

{Ia}n, (36)

where φn(z) are the exponential polynomials [33, 34]. The ensemble averages of the object and
reference signals over the intensity of the speckle fields in the calculations of the mean and
variance of the ghost image are thus replaced by

〈Im
o In

r (�x)〉 → 〈{Io}m{Ir(�x)}n〉

=
(

μ
nΔ

)m+n 〈
φm

(
nΔ
μ

Io

)
φn

(
nΔ
μ

Ir(�x)
)〉

, (37)

with m,n ≥ 0. Equation (37) can also be written as
(

μ
nΔ

)m+n 〈
φm

(
nΔ
μ

Io

)
φn

(
nΔ
μ

Ir(�x)
)〉

=
(

μ
nΔ

)m+n m

∑
i=0

n

∑
j=0

S(m, i)S(n, j)
〈Ii

oI j
r (�x)〉

μ i+ j ni+ j
Δ ,

(38)
where S(n,k) is the Stirling number of the second kind. It is then seen that the high-order
correlations of Io and Ir(�x) also involve the contributions from lower order correlations. Note
that, for the case of single beam ghost imaging [5], the Poisson shot noise appears only in
the bucket detector. In this case, the cross-correlation in the calculation of the ghost image is
〈{Io}mIn

r (�x)〉 instead of 〈{Io}m{Ir(�x)}n〉.
As an illustration, we calculate the CNR with shot noise for the conventional ghost image

with background subtraction [cf. Eq. (9)] in the large N limit. The mean of the ghost image is
given by

〈G(sn)′(�x)〉 =
(

μ
nΔ

)2
〈

φ1

(
nΔ
μ

Io − nΔ
μ
〈Io〉

)
φ1

(
nΔ
μ

Ir(�x)− nΔ
μ
〈Ir(�x)〉

)〉
, (39)

and the variance is

Δ2G(sn)′(�x) =
1
N

{(
μ
nΔ

)4
〈

φ2

(
nΔ
μ

Io − nΔ
μ
〈Io〉

)
φ2

(
nΔ
μ

Ir(�x)− nΔ
μ
〈Ir(�x)〉

)〉

−
[
G(sn)′(�x)

]2
}

. (40)

Using φ1(z) = z, φ2(z) = z2 + z and Eq. (21), the signal-to-noise ratio is found to be

〈G(sn)′(�x)〉
ΔG(sn)′(�x)

=

√
NO(�x)

[T +7O(�x)]+O(�x)[4n−1
Δ +n−2

Δ ]
, (41)

where O(�x) is the binary object function. The corresponding CNR is

CNR(G(sn)′) =

√
N

(T +7/2)+(4n−1
Δ +n−2

Δ )/2
. (42)
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Equation (41) gives the correct dependence on the intensity μ when compared to the full
quantum approach [28]. The form of CNR(G(sn)′) is the same as that in Eq. (13) except for
an additional second term in the denominator. When T � 1 or nΔ > 10, the contribution from
shot noise to the CNR becomes insignificant. For high-order thermal ghost imaging, the refer-
ence signal order n is kept to be small. It is checked numerically that the difference between
〈{Io}m{Ir(�x)}n〉 and 〈Im

o In
r (�x)〉 is less than 5% for m ≤ 50, n ≤ 4 and T ≥ 100 with nΔ ≥ 200.

In our laboratory, we perform pseudo-thermal ghost imaging experiment using a pulsed laser
with power ∼ 100 mW, pulse duration ∼ 100 fs and repetition rate ∼ 15 Hz. After scattered
by the diffuser (ground glass plate), the energy of the light registered by the bucket detector
is measured to be about 1 nJ. The object transmission area is about 5 mm2 and the pixel size
of the CCD camera (reference detector) is about 10 μm2. Therefore, the energy of light on
a CCD pixel is (assuming the CCD has the same quantum efficiency as the bucket detector)
about 1nJ/(5mm2)× (10 μm2). The wavelength of the laser is 780 nm. Therefore, the number
of photoelectrons per pixel per pulse is

nΔ =
ημΔτ
hc/λ

=
10−9/(5×10−6)× (10×10−12)

(6.63×10−34)× (3×108)/(780×10−9)
∼ 7800. (43)

With more than a thousand photons per pixel, the shot noise is thus negligible.

5. Conclusions

We have analyzed the performances of several common methods of processing the data of ther-
mal ghost imaging. It is found that the contrast-to-noise ratio (CNR) of conventional thermal
ghost imaging using simply the averages of the product of the object and reference signal (G(�x))
scales as

√
N/T , whereas that utilizing the correlation with background subtraction (G′(�x)) or

background normalization (g′1,1(�x)) scales as
√

N/T , in which N is the number of measure-
ments and T is the number of transmitting pixels of the object. We have also shown analytically
that the CNR of the normalized high-order ghost image g′mn(�x) scales as

√
N/T , which is in-

dependent of the exponents of the high-order correlation.
We note that, by choosing a large object signal order m and a small reference signal order n in

the high-order ghost imaging, both the visibility and the contrast-to-noise ratio can be increased
substantially at the same time. The results are consistent with the experimental observations
reported in Ref. [23]. Finally, a semiclassical photodetection analysis is performed to justify
the approach and the applicable regime of the classical method used in the calculations in this
paper.
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