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We present a theoretical analysis of the stability characteristics of each of the four eigenpolarization
configurations of two light waves counterpropagating through a nonlinear medium. Our treatment gen-
eralizes previous treatments in that we allow the possibility of the development of transverse instabilities
in either the intensities or the polarizations of the waves. Indeed, we find that under many conditions
the instability develops in directions other than the symmetry axis of the interaction and that the insta-
bility can affect the intensity or the polarization of the waves. We also find through numerical computa-
tions that the polarizations of the waves can become unstable in the nonlinear regime at intensities above
the threshold for the transverse amplitude instability but below the threshold predicted by linear stabili-
ty analysis for the corresponding polarization instability. We conclude that in many cases the inclusion
of the tensor properties of the nonlinear interaction is important in describing the dynamical behavior of

counterpropagating waves.

PACS number(s): 42.65.Vh

The situation of two light waves counterpropagating
through a nonlinear medium is of interest because such a
configuration is present in many optical devices, such as
certain phase conjugate mirrors and optical switches.
Any instabilities that could occur in the propagation of
such light waves would be expected to affect adversely
the performance of the optical device. From a different
perspective, the behavior of two counterpropagating light
waves is of interest at a conceptual level, because this ap-
parently simple situation can lead to very complicated
behavior such as bistability and to instabilities including
chaos. One reason why the interaction of counterpro-
pagating light waves leads to such rich behavior is that
the interaction displays aspects of nonlocality and time
delay, even for the case (assumed within this paper) in
which the nonlinear responses of the material system is
both local and instantaneous. The origin of this behavior
is that, for example, the instantaneous value of the inten-
sity of the backward-going wave at some representative
point in the material can influence the propagation of the
forward-going wave as it passes this point. This portion
of the forward-going wave can subsequently influence the
propagation of that portion of the backward-going wave
that has not yet reached the initial point, and in this
manner the backward-going wave can influence its own
propagation in a nonlocal and time-delayed fashion. Ata
mathematical level, this behavior results from the fact
that the propagation of the forward- and backward-going
waves are described by partial differential equations, and
(unlike in the case of a single forward-going wave) these
equations cannot be transformed trivially into an ordi-
nary differential equation by introducing the local time
t —z /v (where v is the velocity of light in the material
medium). Similarly, the boundary conditions for the
problem must be specified at two different locations for
the forward- and backward-going waves. As a conse-
quence of these mathematical properties, counterpro-
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pagating light waves can give rise both to convective in-
stabilities (i.e., to instabilities that grow in space) and to
absolute instabilities (i.e., to instabilities that grow in time
and lead possibly to temporal chaos), whereas a single
light wave can give rise only to convective instabilities.

REVIEW OF PREVIOUS WORK ON INSTABILITIES
OF COUNTERPROPAGATING WAVES

One of the early studies of the stability characteristics
of counterpropagating waves was that of Silberberg and
Bar-Joseph [1,2]. Their treatment described the interact-
ing waves in the scalar approximation, they found that
the waves could become unstable, but only for a non-
linear medium with noninstantaneous response. The in-
stability could lead either to periodic or to chaotic fluc-
tuations. They ascribed the origin of this instability to a
gain-feedback mechanism in which gain is present (as in
stimulated Rayleigh-wing scattering) at frequency side-
bands of the incident waves detuned by approximately
the inverse of the medium response time and in which
feedback is present because these sidebands can scatter
from the grating established in the medium by the in-
terference of the two incident waves. More recently [3]
this model has bene extended to apply to the situation in
which the nonlinear response is provided by a collection
of two-level atoms, a situation in which instabilities have
been observed experimentally [4]. In addition, it has re-
cently been shown by Law and Kaplan [5] that instabili-
ties can occur as the result of the combined action of op-
tical nonlinearity and linear dispersion.

The importance of polarization effects in determining
the stability characteristics of counterpropagating waves
in an isotropic nonlinear medium has been established
from several different considerations [6]. In 1978,
Pepper, Fekete, and Yariv [7] observed amplified
reflection and parametric oscillation in a collinear four-
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wave-mixing interaction in which the pump and signal
waves were orthogonally polarized. These results were
interpreted in terms of a theoretical model [8] of the
phase-conjugation process, but in fact also provide a
demonstration of a polarization instability of counterpro-
pagating light waves. In 1980, Winful and Marburger [9]
showed that hysteresis and optical bistability can occur in
the process of degenerate four-wave mixing in the
geometry used to produce phase conjugation. This sort
of analysis was later extended by Lytel [10] and by Ka-
plan and Law [11] to show that hysteresis and bistability
could occur in the polarizations of interacting waves in a
strictly collinear geometry. These predictions were sub-
sequently verified experimentally by Gauthier et al. [12].

In 1983, Kaplan [13] showed that counterpropagating
optical waves possess four eigenpolarizations, namely the
arrangements in which the polarizations of the counter-
propagating waves are linear and parallel, linear and per-
pendicular, circular and corotating, and circular and
counterrotating. If the input waves have polarizations
other than one of these eigenarrangements, the polariza-
tion of each wave will vary with position within the non-
linear medium. Mathematically, the eigenpolarizations
possess the property that the propagation equations [see
Eqgs. (4) below] possess steady-state solutions for which
the polarization of each wave is spatially invariant. The
original analysis of Kaplan did not address whether these
eigenpolarizations were stable or unstable to the growth
of small perturbations. However, in 1986 Wabnitz and
Gregori [14] performed a linear stability analysis of the
spatial dependence of these solutions for the case of a
medium with instantaneous response and showed that
two of these eigenpolarizations, namely linear parallel
and circular corotating, were always stable whereas the
other two eigenpolarizations, linear perpendicular and
circular counterrotating, could become unstable for cer-
tain ratios of the input intensities for materials with cer-
tain tensor properties [in particular, for certain values of
the ratio B/ 4 in the notation of Eq. (4) below]. Tratnik
and Sipe [15] showed that for an isotropic medium these
spatial instabilities could not lead to chaos, although spa-
tially chaotic behavior could occur for propagation along
certain types of symmetry axes in anisotropic materials,
as had been pointed out earlier for one particular case by
Yumoto and Otsuka [16]. One should note that the spa-
tial instabilities analyzed in Refs. {14]-[16] are convec-
tive instabilities and correspond physically to the situa-
tion in which the polarizations of the input beams do not
correspond exactly to an eigenpolarization. The solu-
tions are unstable in the sense that the deviation of the in-
put polarization from the input polarization becomes
more pronounced with propagation distance through the
nonlinear medium.

In 1987, Gaeta et al. [17] studied the temporal stability
of the eigenpolarizations of counterpropagating waves
and found that the configuration of linear and parallel in-
put polarizations, which as mentioned above is spatially
stable, nonetheless can become unstable to the growth of
temporal fluctuations. Under certain conditions involv-
ing high input intensities, these fluctuations were shown
to be chaotic in nature. (The case of circular and corotat-

ing input polarizations was found to be stable to temporal
as well as spatial fluctuations for a medium with instan-
taneous response, a result that might be expected on the
basis of angular momentum conservation.) These predic-
tions were subsequently verified experimentally by Gau-
thier, Malcuit, and Boyd [18].

The instabilities mentioned above (except for those of
Refs. [7] and [8]) are instabilities that occur on the system
axis and can be described theoretically by a one-
dimensional theory. Under certain conditions, instabili-
ties are predicted [19,20] to develop in the transverse
structure of the interacting waves, and in fact such trans-
verse instabilities have been observed experimentally
[12,21]. A prime example is self-oscillation in the process
of phase conjugation (i.e., infinite phase-conjugate
reflectivity) by degenerate four-wave mixing, a possibility
that was pointed out as early as 1977 by Yariv and
Pepper [8]. In the notation of Ref. [8], the phase-
conjugate intensity reflectivity is given by R =tan?|«|L,
where L is the interaction path length and « is the non-
linear coupling constant proportional to ¥'* times the
product of pump ‘wave amplitudes. For |«|L =7 /2, the
reflectivity becomes formally infinite, indicating that off-
axis waves will be spontaneously generated by the four-
wave-mixing process. However, for directions near the
axis defined by the pump waves, nonlinear optical pro-
cesses not included in the analysis of Yariv and Pepper
such as forward four-wave mixing can become phase
matched as a result of the nonlinear contribution to the
wave vector of the interacting waves, and the presence of
such processes can modify the threshold for instability.

Under certain circumstances off-axis instabilities can
develop having complex transverse spatial patterns, in-
cluding rings [18,22,23], emission of a pattern with four-
fold symmetry [18,24] and with sixfold symmetry (hexa-
gons) [23]. Detailed studies have been performed to
determine the conditions under which various types of
transverse patterns can occur [24]. Grynberg has pointed
out that the tendency for hexagons to be formed can be
understood from the point of view that phase-matched
near-forward four-wave-mixing processes can lead to mu-
tual reinforcement of a pattern with sixfold symmetry
[25]. Moreover, Chang et al. [26] have performed nu-
merical calculations of the interaction of counterpro-
pagating waves that predict the generation of hexagonal
patterns.

THEORETICAL GROUNDWORK

We assume that the fields inside the nonlinear medium
propagate nearly parallel to the z axis such that the fields
are polarized in a plane parallel to the x-y plane. The to-
tal complex electric field E(r,?) centered at a frequency o
inside the nonlinear medium can then be expressed as

E(r,t)= 3 [E;(r,0)§;]e 7™, (1)
i

where ; is the unit vector for the particular polarization
basis that is being used and E; is the amplitude of the 4;-
polarized field. For example, in the Cartesian basis,

j=x,y and §, =% and 1, =9, and in the circularly polar-
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ized basis, j =+, — and ﬁi=('iii?)/\/§. Similarly, we
assume that the nonlinear polarization is given by

P(r,t)=3, [Pj(r,t)ﬁj]e—i“" ) (2)
j

where P; is the amplitude of the polarization in the ﬁj
direction. We can express the components of the non-
linear polarization in terms of a field-dependent suscepti-
bility tensor y;; such that

pP;= 2 XijEj . o o (3)

e 4 gl

=%y LTI

Thus Y;; represents the nonlinear coupling of the jth
component of the field to the ith component. The form
of x;; for an isotropic Kerr medium in the linearly polar-
ized and circularly polarized bases will be introduced
below.

We next assume that the total field inside the medium
is composed of forward-traveling and backward-traveling
fields with wave-vector amplitudes given by k =nw/c
where # is the linear index of refraction of the medium.
In this case, the following equations for the forward- and
backward-traveling field components can be derived from
the driven wave equation and Egs. (1)-(3),
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where V1 is the transverse Laplacian, x{’ and y{?¥) are

the dc and %2k spatial Fourier components of Xij» T€-
spectively, and F; and B; are the amplitudes of the ith
.component of the forward- and backward-traveling
waves, respectively. Equations (4) form the basis for our
study of instabilities of counterpropagating fields in a
nonlinear medium.

The following section gives the results of a temporal
stability analysis of the amplitudes and the polarizations
of the steady-state solutions to Egs. (4) for the four eigen-
polarization configurations. In the stability analysis, we
seek solutions that grow exponentially in time [i.e.,
exp(Az)] such that Re(A)>0. We then plot the boundary
of instability which corresponds to Re(A)=0. For all the
cases that we discuss here, we assume that the input in-
tensities of the forward- and backward-traveling waves
are equal. This assumption leads to the prediction of
only nonoscillatory instabilities Im(A)=0 for the system
at threshold [i.e., Re(A)=0]. If the input intensities are
unequal, oscillatory instabilities [i.e., Im(A)7#0] can
occur [27]. However, as the parameter space is large
even for equal input intensities, we have decided that
consideration of these effects is beyond the scope of the

present paper and that these results should be considered
in a future publication.

STABILITY ANALYSIS
OF EIGENPOLARIZATION CONFIGURATIONS

We first consider the temporal stability of the linearly
polarized eigenpolarizations. In the linearly polarized
basis, the field-dependent susceptibility for an isotropic
lossless nonlinear medium is given by

B B
A= |BE'S;+ (EEf+EE), ()

where A and B are the real nonlinear coefficients that de-
scribe the tensor Kerr nonlinearity for the isotropic medi-
um. For example, for the case of the Kerr effect that re-
sults respectively from molecular orientation, from a non-
resonant electronic nonlinearity, and from electrostric-
tion, the ratio of the two coefficients is given by B/ 4 =6,
1, and 0. The expression for y;; in Eq. (5) assumes that
the response time of the medium is much shorter than the
transit time of light through the medium.

For the case of the linear and parallel eigenpolariza-
tion, we assume that the input fields are polarized along
the x direction, in which case the steady-state solution for
the field amplitudes is given by

F$3(2)=1/T explik(A'+B' /2);+21,)z] , (6a)
BS(z)=1/T,expl —ik(A4'+B'/2)2I;+I,)z],  (6b)
B;%(z)=0, (6¢c)
F3(z)=0, (6d)
where A'=4n?A/n3¢? and B’'=4mB /n%? are the
renormalized nonlinear coeflicients and

I;=(nc/2m)|F$3(0)|* and I, =(nc/2m)|BSS(L)|* are the
input intensities of the forward and backward waves, re-
spectively. The forward and backward waves remain po-
larized along the x direction and each x component sim-
ply experiences a nonlinear phase shift. In order to deter-
mine the temporal stability of the steady-state solutions
(6), we perform a linear stability analysis of both the am-
plitude and the polarization of the total field inside the
medium by assuming that

B(r,/)={[FS(2)+8F,(r,,7,) R
+8F,(r,,z,1)§}e k= —n
+{[B5(2)+8B,(r,z,)) R

+8By(rl,z,t)?}e“—kz““"’ )

where 8F, (8B,) and 8F, (6B,) represent the forward-
(backward-) traveling perturbation fields polarized along
the x and y directions, respectively. The details of the
analysis are presented in part 1 of the Appendix. We al-
low the perturbations to grow off axis so that the trans-
verse stability of the amplitude and of the polarization of
this eigenpolarization configuration can also be explored.
Figure 1 shows the results of the stability analysis in
which we plot the normalized threshold intensity
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FIG. 1. Normalized threshold intensity P for the linear and
parallel eigenpolarization configuration plotted as a function of
the transverse wave-vector parameter K, L for (a) the amplitude
instability for any value of B/ A4 and for the polarization insta-
bility for (b) B/ 4 =6 and (c) B/ A =1. Equal input intensities
for the forward- and backward-traveling waves are assumed.

P=Fk(A4’'+B’'/2)IL for instability as a function of the
normalized transverse wave vector K| L =(k}+k})L /2k
for the perturbation for the case in which the input inten-
sities are equal (I;=1I,=I). This normalization for the
intensity is used since, for a linearly polarized wave, P
represents the nonlinear phase shift in radians imparted
by the field on itself. In the limit of large K, L, we expect
that the results for the threshold intensity should ap-
proach the value P, predicted for phase-conjugate oscil-
lation for the corresponding field amplitudes. For all the
cases treated in this paper, the value of P, can be easily
calculated from the equations for the perturbing field am-
plitudes given in the Appendix. For example, for the per-
turbing field amplitudes that are polarized parallel to the
linear and parallel eigenpolarization, the value of P, is
determined by settmg the absolute value of the term (i.e.,
|12'\/ PPy, |=2P) in Eq. (A6) which couples the forward
Stokes perturbatxon field 5 to the backward anti-Stokes
perturbation field b7 * equal to m/2. This term is
equivalent to the coupling constant x from the four-wave
mixing-theory of Yariv and Pepper [8].

Figure 1(a) shows the well-known result [19] for the
transverse amplitude instability for scalar waves, which
does not depend on the ratio of B/ A. In this case, we see
that the value of P=0.45 for the threshold intensity at
K,L =3 is considerably lower than the threshold of
P_ =7 /4. The results for the polarization instability de-
pend on the value of B/ 4, and in Figs. 1(b) and 1(c) the
threshold intensity P for B/A=6 and B/A =1 are
shown. The results in Fig. 1(b) are the same as previously
calculated [28]. For the case B/ A4 =0, the threshold in-
tensity for the polarization instability is found to be
infinite for all values K L. The threshold for phase-
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conjugate oscillation for the orthogonally polarized per-
turbation fields is given by P,=(2A4/B+1)w/4. In
both cases shown, the instability threshold of P=0.8 for
B/A=6 and P=1.2 for B/A=1 is lowest on axis
K ,L =0 and is below P, . Nevertheless, since the thresh-
old for the amplitude instability is lower than that for the
polarization instability for this eigenpolarization
configuration, it is expected that the system will become
unstable by means of amplitude fluctuations.

We next consider the case of the linear and perpendic-
ular eigenpolarization. The forward- and backward-
traveling input fields are taken to be polarized in the x
and y directions, respectively. In this case the steady-
state solutions for the field amplitudes are given by

F$(2)=V T exp{ik[(A'+B'/2)[;+ A'I, 1z} , (82)
BS(2)=V/T,exp{ —ik[A'I;+(A'+B'/2)],]z} ,  (8b)
F3(z)=0, (8c)
B3S(z)=0 (8d)

where If——(nc/217 )IF$3(0)|2 and I, =(nc/2m)|BjS(L)?
are the input intensities of the forward and backward
waves, respectively. As expected in the unperturbed
solution, the forward and backward waves in the medium
remain polarized along the x and y axes, respectively.
We perturb this solution by assuming that the total field
inside the medium is given by

E(r,1)={[F{(2)+8F,(r,,2,1) ]
+8F,(r;,z,t)§}e gillz—on
+{8B,(r},z,t)%
+[BSS(2)+8B, (r,2,01§)e T . ()

The details of the linear stablllty analysis are given in
part 2 of the Appendix.

The results of the analys1s for the case of equal input
intensities are shown in Fig. 2 where we plot the thresh-
old intensity P for the amplitude instability [Figs
2(a)-2(c)] and the polarization instability [Figs. 2(d)-2(f)]
as functions of KL for various values of B/A. The
threshold for the amplitude instability does depend on
B/ A, which is to be expected since P is proportional to
A +B /2, whereas the cross phase modulation exhibited
in Egs. (8a) and (8b) depends only on 4. The threshold
intensity for phase-conjugate oscillation of the perturbing
fields polarized parallel to the steady-state input fields is .
given by P, =(1+B /2 A )r/2 and thus (for values of 4
and B that are of the same sign) is smallest for B/ 4 =0.
The minimum values for the threshold intensity for the
amplitude instability all occur off axis (K,L70) for
B/A=6,1, and 0, and are given by P=1.8, 1, and 0.8,
respectively, which in all cases are lower than the associ-
ated value of P,. For the polarization instability, the
behavior is more complicated. The threshold for phase-
conjugate oscillation is given by P, =(1+B/2A4)r/
|2—B/A|. For the case B/ A =6, the lowest threshold
value P~=1.5 for the polarization instability occurs on
axis and is lower than the value of P for the amplitude in-
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FIG. 2. Normalized threshold intensity P for the linear and
perpendicular eigenpolarization configuration plotted as a func-
tion of the transverse wave-vector parameter K, L for (a)-(c)
the amplitude instability and for (d)—(f) the polarization insta-
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The expressions for y;; in the circularly polarized basis
are thus given by

(12a)
(12b)

X++=X--=A(EE"),
X+-=x*,=BE_._E¥* .

The expressions (12) for field-dependent susceptibility
tensor X;; (i =+, —; j=-,—) are used with Eqgs. (4) to
describe the propagation of the forward- and backward-
traveling circularly polarized components. The forms for
X++ and Y.z are particularly simple for an isotropic
medium because there does not exist a preferred direc-
tion, and thus the circular basis forms a more natural
basis for the system than the Cartesian basis. The physi-
cal meaning of the 4 and B coefficients is apparent from
Egs. (12). The coefficient A determines the strength of
the nonlinear coupling experienced by each circularly po-
larized component as a result of the total intensity [Eq.
(12a)], whereas the coefficient B determines the strength
of the coupling between two polarization components of

bility for (a) and (d) B/ 4 =6, (b) and (e) B/ A =1, and (o) and __OPPOsite handedness [Eq. (12b)].

() B/A=0. Equal input intensities for the forward- and
backward-traveling waves are assumed.

stability. For B/ A4 =1, the lowest value P=~2.3 for in-
stability occurs off axis and is higher than the value than
for the corresponding amplitude instability. For
B/ A4 =0, the threshold P~1.6 for instability is indepen-

dent of K, L and thus is most likely to occur on axis since _

typically there would be more noise in that direction to
initiate the instability. Nevertheless, the minimum
threshold value for the polarization instability for
B/A =0 is larger than the corresponding minimum
value for the amplitude instability.

We next investigate the stability properties of the cir-
cularly polarized eigenpolarizations. The field com-
ponents and the nonlinear polarization components are
transformed from the linearly polarized basis to the cir-
cular polarized basis through use of the following trans-
formations: - ' o

E, E,
E_ ]=M E, l , (10a)
P, P,
P ] =M P, |° (10b)
where M is the matrix given by
1 [1 i
M=7—2— 1 —i (10c)

The elements of the field-dependent susceptibility tensor
X;; in the circularly polarized basis are then related to the
elements of the field-dependent susceptibility tensor Xij in
the linearly polarized basis by

We now consider the case of the eigenpolarization
configuration in which the two input waves are circular
and corotating. The steady-state solutions to Egs. (4) for
the case in which the incident waves are & . polarized are
given by

F¥(2)=1/T,explikA"(I;+2I,)z] , (13a)
B (2)=1/T,exp[ —ik A"(2I;+1,)z] (13b)
——FS(z)=0, (13¢)
B%(z)=0, (13d)

where Ip=(nc/2m)|F3(0)|* and I, =(nc /2m)|BS$(L)|?
are the input intensities of the forward and backward
waves, respectively. The steady-state solutions (13) are
similar to the solutions for the linear and parallel polar-
ization except that in the circularly polarized case only
the coefficient 4 determines the magnitude of the phase
shift. We perturb the amplitude and polarization of the
steady-state fields by assuming that the total field inside
the medium is given by

E(r,t)={[F%(2)+8F . (r,,2,1)16
+8F _(r,2,1)8 _}e'kz o
+{[B3(2)+8B . (r,,2,1)]6 .

+8B _(r,,2,8)6 _}ei "k —on

where O6F, (8B.) and 8F_ (8B_) represent the
forward- (backward-) going perturbation fields that are
& and & _ polarized, respectively.

The details of the temporal stability analysis of the
steady-state solution (13) are given in part 3 of the Ap-
pendix. The results for the amplitude stability are shown
in Fig. 3 for the case of equal input intensities I r=I,=1.
In order to make a direct comparison with the results of -

(14)
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FIG. 3. Threshold intensity P rescaled by the factor
(1+B/24) for the circular and corotating eigenpolarization
configuration plotted as a function of the transverse wave-vector
parameter K L for the amplitude instability. The polarization
for this configuration is predicted to be always temporally
stable. Equal input intensities for the forward- and backward-
traveling waves are assumed.

the linearly polarized eigenpolarization configuration, the
normalized intensity P is defined in the same manner [i.e.,
P=k(A'+B’'/2)IL] as the linear case. The result for

the threshold intensity as a function of K, L is identical to

the result from the amplitude stability analysis for the
linear and parallel eigenpolarization configuration except
that the threshold intensity depends on the ratio of B/ A4
through the normalization factor (1+B/2A4). This fac-
tor occurs because the couplings between all the ampli-
tude perturbations depend only on the coefficient A4 rath-
er than (A4 +B/2). The threshold value for phase-
conjugate oscillation is also renormalized in the same
manner and is given by P, =(1+B/2A4)w/2. The re-
sults of the polarization instability analysis reveal that
the steady-state solutions (13) are always temporally
stable to polarization perturbations. Thus the circular
and corotating eigenpolarization configuration offers the
best possibility of studying the scalar wave instabilities
without any of the complications introduced by polariza-
tion effects. However, if the medium is allowed to have a
noninstantaneous response (i.e., ax,-j /9t#0), then polar-
ization instabilities may also occur [27].

We finally consider the temporal stability of the circu-
lar and counterrotating eigenpolarization configuration.
The steady-state solutions for the four field components
for the case in which the incident forward and backward
waves are &, and & _ polarized, respectively, are given
by

F$(2)=v/Trexp{ik[A'I;+(4'+B")], 1z}, (15a)
Bs_s(z)=1/Tbexp{—ik[(A’+B')If+A’Ib]z} ,  (15b)
FS(z)=0, (15¢)
B%(2)=0, (154d)

where I;=(nc/2m)|F$$(0)|? and I,=(nc/2m)|BSS(L)}?
are the input intensities of the forward and backward
waves, respectively. We perturb the steady-state solution
(15) by assuming that the total field inside the medium is
given by
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E(r,0)={[F$(z)+8F , (r,,z,0)]6 ;
+8F _ (l‘l,z,t){;-\v_}ei(kz—m)
+{8B 1 (r,,z,1)6 4

+[B%(2)+8B _(r},2,1)1§ _}e' Tk —et |

(16)

The details of the stability analysis are given in part 4
of the Appendix and the results are shown for the case of
equal input intensities in Fig. 4 for B/ 4 =6 [Figs. 4(a)
and 4(d)], 1 [Figs. 4(b) and 4(e)], and O [Figs. 4(c) and
4(f)]. Similar to the results for the amplitude-stability
analysis of the other eigenpolarizations, we find that the
threshold for the amplitude instability is infinite on axis
in all three cases [Figs. 4(a)-4(c)]. The minimum value of
P is found to decrease slightly for increasing values of
B/ A, and for the three values of B / A shown it occurs at
K |IL =3. The minimum threshold values are given by
P=0.8, 0.7, and 0.6 for » =0, 1, and 6, respectively. In
all cases the values are below the threshold
P,=(1+B/2A)w/2(1+B/A) for phase-conjugate os-
cillation. The threshold intensity for the polarization in-
stability [Figs. 4(d)—4(f)] is found to be independent of
K| L for all values of r and is simply equal to the corre-
sponding threshold intensity P for phase-conjugate os-
cillation, which for all cases is given by the respective
value of P, for the amplitude perturbations. In all cases
shown the threshold intensity for the amplitude instabili-
ty is lower than the value for the polarization instability.

_I L) T L] T ‘l T T T I_
5 B/A=6 B/A=6
4t 1 .
A, 3r amplitude '} polarization b
2 | JL 4
Lr @ [ @ |
a) || , i
0 C 1 1 ] L ] 1 I3 1
N T T l_ T T T I_
5 B/A=1 [ B/A=1 ]
4 o -
A g - amplitude [ polarization T
1 - - je -
L (b) N (e) |
0 1 L 1 - 1 | U S
‘l T T T I_ -l T L T |—
i BIA=0 B/A=0
a 3 amplitude 4| polarization
2 - RS -
i @[ ® |
c
0 _I 1 1 1 1 —I 1 1 1 I—

0 5 10 16 20 O 5 10 18 20
K.LL KJ-L

FIG. 4. Normalized threshold intensity P for the circular and
counterrotating eigenpolarization configuration plotted as a
function of the transverse wave-vector parameter K,L for
(a)~(c) the amplitude instability and (d)—(f) the polarization in-
stability for (a) and (d) B/ 4 =6, (b) and (e) B/ A =1, and (c)
and (f) B/ A =0. Equal input intensities for the forward- and
backward-traveling waves are assumed.
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NUMERICAL INTEGRATION
OF COUPLED NONLINEAR EQUATIONS

For most of the results of the stability analysis shown
here, the threshold for the amplitude instability is some-
what lower than the threshold for the polarization insta-
bility for a particular value of the ratio of B/ A. This re-
sult could lead one to believe that polarization effects are
not important in the instability regime. Nevertheless, we
believe that the inclusion of polarization effects is critical
to the determination of the full dynamics of the system in
the instability regime. In Fig. 5 we give an example of a
numerical integration of the full coupled nonlinear equa-
tions for the case of the linear and parallel eigenpolariza-
tion configuration with B/ A =6 in the regime in which
the input intensity P"=0.7 of the two input waves is
above the threshold for the amplitude instability
[P =0.45; see Fig. 1(a)] but below the threshold for the
corresponding polarization instability [P =0.8; see Fig.
1(c)]. As a result of the computing-insensitive nature of
the integration, we have considered only a single trans-
verse dimension (i.e., x direction). The split-step fast-
Fourier-transform method [29] of integration along the
characteristics is used to perform the integration. The
transverse profile of the input files is assumed to be
Gaussian such that

. 172 )
277. mn _xz/w%

Fx(x,O,t)=Bx(x,L,t)= lm

(17)

with a beam radius corresponding to a confocal parame-
ter that is given by kw3 /L =400. We also assume that in
the input field of the forward-traveling wave that there is
a small constant field polarized along the y direction with
a magnitude equal to 107°P™, In Figs. 5(a) and 5(b), we

of .

1 ! i ]

0 100 200 300
time (units of transit time)

FIG. 5. Temporal evolution of the intensity at the center
[i.e., x =0] of the transverse profile of the (a) x and (b) y com-
ponents of the transmitted forward-going wave. The ratio of
B/A =6 and the normalized input intensities are equal and
given by the value of Pi"=0.7, which is above the threshold for
the amplitude instability, but below the threshold for the corre-
sponding polarization instability. Both the amplitude and the
polarization of the output field exhibit temporal fluctuations.
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plot the normalized output intensity PPL, (x =0)
=(nc/2m)k(A'+B’'/2)|F,(0,L,t)]?L. of the forward-
going wave as a function of time at the center (i.e., x =0)
of the transverse profile for the field polarized along the x
and y directions, respectively. The fields are ramped on
smoothly to the corresponding steady-state input value
within five transit times. The amplitude of the field ini-
tially becomes unstable after approximately 25 transit
times. After approximately 55 transit times the polariza-
tion also becomes unstable. For the time duration shown
here, the system does not settle to a stable steady state.
Figures 6(a) and 6(b) show the transverse intensity
profiles of the x- and y-polarized components of the out-
put of the forward-traveling wave at 150 transit times.
The transverse profiles of each component show deep
modulation with the width of the y-polarization com-
ponent being nominally half the width w, of the input
field. Since the system does not settle to a steady state,
the transverse profiles continue to change as is evidenced
by the transverse profiles of the transmitted wave at 300
transit times [Figs. 6(c) and 6(d) for the x- and y-polarized
components, respectively).

Further numerical studies for very long times would be
necessary to determine if the system ever reaches a stable
steady-state value. Also, an integration that includes
both transverse dimensions would be needed to determine
the true dynamical behavior of counterpropagating laser
beams such as pattern formation [26]. However, we be-
lieve that the numerical results shown here present strong
evidence that the inclusion of the tensor properties of this
interaction is important in determining the full dynami-
cal behavior of the system. We expect that the cases in
which the scalar treatment of counterpropagating waves
is fully valid are for the circular and corotating
configuration and for the linear and parallel configuration
with B/ A =0, since in these cases the threshold for po-
larization instability is infinite.

T T T T i T ] ] T
L5 s=150nL/c A £=300nL/c 1
- ik l i
x 1r I ii -k v | .
H itl I:i HH] |!|_
O R . U N
a, ' i (J 1. il
ot S HEAN AL III o \\ i
1 1 ! 1 1 i L ; L !
_r 1 ] T T _I - T 1 T I-
051 ;- 150 nL/c t=300nL/c
__04f 1L i
,53 0.3+ 4k ]
S 02t 1L i
01l ® Ik @ i
0f; 1 1 1 L4 | ! 1]
2 1 0 1 2 -2 -1 o0 1 2
x/wo x/wo

.. FIG. 6._Transverse intensity profile of the (a) and (c) x and (b)

and (d) y components of the transmitted forward-going wave
after (a) and (b) 150 transit times and (c) and (d) 300 transit
times for the conditions described in Fig. 5. The transverse
profiles of both the amplitude and the polarization of the field
exhibit deep modulation.
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TABLE I. Summary of the result of the linear stability analyses for I,=1I,.

Eigenpolarization Temporal stability
Lowest instability threshold is for amplitude instability
and occurs off axis at K,L~3.
For B/ A =0, lowest instability threshold is for amplitude instability
<> and occurs off axis at K, L~3.

For B/ A =1, lowest instability threshold is for amplitude instability
and occurs off axis at KL ~3.
For B/A =6, lowest instability threshold is for polarization instability

and occurs on axis.

OO

Polarization is always stable
Amplitude can become unstable, and the lowest instability threshold

occurs off axis at K, L ~3

Lowest instability threshold is for amplitude instability
and occurs off axis at K,L~3 for B/A4 =0, 1, or 6.

OO0

CONCLUSIONS

We have investigated the transverse stability of the am-
plitudes and the polarizations of the four eigenpolariza-
tion configurations of counterpropagating waves in an
isotropic medium. The results of the stability analysis are
summarized by Table I. We find that in most cases the
amplitudes of the fields become unstable at lower thresh-
old intensities than do the polarizations, and that except
for the case of linear and parallel configuration, the ten-
sor properties of the medium (i.e., the ratio B/ 4) deter-
mine the threshold for instability for the amplitudes of
the waves. We also find through numerical integration of
the full nonlinear equations with one transverse dimen-
sion that the polarizations of the fields can become unsta-
ble for input intensities that are below the threshold for
the polarization instability but above the threshold for
the amplitude instability as calculated from linear stabili-
ty analysis. We thus conclude that, in general, considera-
tion of the tensor properties of the nonlinear interaction
is important in describing the dynamical behavior of
counterpropagating waves.
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APPENDIX

In order to determine the amplitude and polarization
stability of the four mutual eigenpolarizations, we per-
form a stability analysis on the respective steady-state
solutions.

1, Linear and parallel

We perturb the amplitude and the polarization of the
steady-state fields by assuming that the total field is given
by

E(r,t)={[F3(z)+8F (r},2,t)]%
+8F,(1),2,t)§}e k= 7wt
+{[B3S(2) + 8B, (r,,z,1) 1%

+8B,(r,z,t)§}e! remud (A1)

where 8F, (0B,) and OF, (8B,) represent forward-
(backward-) going perturbation field polarized along the x
and y directions, respectively. We assume that these per-
turbations have the following form:

8F, (z,8)=[f3()er+ foet* 1] ™0™ | (A22)
8B, (1,,2,1)=[bS(z)eM+bier1]e V™ | (A2b)
SF, (1,,2,)=[ fS(z)eM+ foe 1 4™ (A2¢)
8B, (r),z,0)=[bS(z)eM+be 1] 1™ . (A2d)

By assuming this form, one can interpret for the case
Im()A)> 0 the amplitudes f° and b7 (i =x,y) as being the
forward- and backward-traveling Stokes components, re-
spectively, and ff and bf (i =x,y) as being the forward-
and backward-traveling anti-Stokes components, respec-
tively. As a result of the four-wave interaction, the
Stokes and anti-Stokes components are coupled, and thus
both these components must be present in the assumed
form for the perturbation. We substitute the electric field
into Egs. (4) and (5) and linearize the resulting equations
for the perturbation amplitudes. We find that the pertur-
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bation amplitudes polarized along the x direction decou-
ple from the amplitudes polarized along the y direction,
which yields the following equations for the perturbation
polarized along the x direction:

ars
L —%—iKl+i(2A'+B,')(If+Ib) f3
. ) .| ne *
+i2A'+B") | SRR (b
. ’ B’ e *
+i | AT+ -Z;ngzlf;:
+i(2A4'+B") _;%FSS‘Bgs b;* , (A3a)
A (2 4'+-B s
2 = | o K —iQA B+ | b
. , , ne ¥
—i24"+B) | 2R BS |15
) Vs | BE *
—i(24'+B') | = FFBSS ]ff?
| g B | nC gss2 |pa*
AT B G
*
dfe
d:; - _ﬁL—iKl+i(2A'+B')(If+Ib) re
—i(24'+B") |5 -F5"BSS |be”
2
N ar g B | | ne s
dbe*
+i(24'+B’) | ZE psspss* ]f:?*
2
. , | ne * *
+iA'+B) | ZEFS B |ff
| g B | ne pss*a |, s
+ilA4 +—2— E;Bx by (A3d)

and for the perturbations polarized along the y direction

75 —AT,—iK L +i2P, i2y/P,P,
g |5 —i2/P;P, AT, +iK,L—i2P,
dz/L |7t | ~iP; —i2y/P,P,
Be* i2/P;P, iP,
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d S
—;ifzi— —%—‘Kl—l-iA’(If+Ib) '
g0 | M€ psspss* | sy Lopi | BC psso *
+id _Z?FXBX by+2B 21’TFx ]f;
+iB’ zic—F,fsags be*, (Ada)
ar
dbs
d; = [%+iKl—z‘A'(If+Ib)]bf
. g1 | NC 1sS* nsS | S pr | FC pSSpSS *
—id" | —FF BE [y —iB | FUBE \f]
o —%B’ Enf;stz b;‘*, (A4b)
dfy” | oA o*
—CE—— __c_+lKl_lA (If+Ib) fy
. | 0C * * |, |ne *
—id | FF BE |b) ~—B |- 2\ f)
—iB’ [%FES*BES* bS, (Adc)
b _ A .
= | KL AU ET,) by
. 4. | ne * *, ., | ne *_gg¥
+id E;FEBfS fi +iB ET-FES B3\
+5B’ %335*2 bS (A4d)

where I;=(nc/2m)|F3(0)]* and I,=(nc/2m)|B(L)|?
are the input intensities, A’'=4m’wA/(nc)* and
B'=47%wB /(nc)?* are the rescaled nonlinear coefficients,
and K l=(k§+ky2) /2k is the transverse wave-vector pa-
ramefer. )

We solve each set of equations for the perturbation am-
plitudes by first substituting the steady-state solutions for
F58 and BSS and by making the following transformation
of the amplitudes:

fi@)=Fitexp |i | 4'+2-

(I;+2I, )zl . (AS52)

bita)=bi(zlexp | =i |4+ 2= |21, 41,02 | (AsH)

where i =S,a and j =x,y. We express the resulting equa-
tion for the f ; and b ; in matrix form

iPy i2V/P/P, 3
SR za* |2 (A6)
—AT,+iK,L—i2P;  —i2V/PsP, Fe
i2y/ PP, AT, —iK L +i2P, | |5e*
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where P;,=(A'+B’/2)I;,L are the normalized input
intensities of the forward and backward waves, r =B/ A
is the ratio of the nonlinear coefficients, T,=L /c is the
transit time through the medium, and
P;,=P;,/(1+r/2). Since the elements of the 4X4 ma-
trices above are all constants, solving for the perturbation
amplitudes becomes an eigenvalue problem. We thus
proceed with the stability analysis as follows by consider-
ing the perturbation amplitudes polarized along the x
direction. The analysis for the perturbation amplitudes
polarized along the y direction are treated analogously.
The solution to the set of equations can be expressed as

P (e e e e]|Cie’”
B3| |Ef g o o |[Ce™|
Faay| (e o & V| |ce™

bia | (6 &8 ) g

(A8)

where the y,’s are the eigenvalues of matrix (A6), the
Els (j=S,a; k=f,b) are the associated eigenvectors,
and the C;’s are the constants which are determined by
the boundary conditions. For the stability analysis, we
apply the boundary conditions S(0)=b3(L)
=f;*(0)=5,‘:*(L)=O, which leads to the following con-
dition:

& & & & |
1
v, L v,L v,L vaL
g’ gre™ g™ g™ | |,
T - - A | =Y
é-tlzbeylL égbeyzL é-gbeysl‘ ézbeY‘tL C,
{Cy
&)
M =0. ‘ (A9b)
M3 | c,
c,

In order to reach a nontrivial solution (i.e., { C}70), the
determinant of M; must vanish,

det(M;)=0 . (A10)

For a fixed ratio of I, /I; and of B/ 4, the condition
above (A10) results in a complex transcendental equation
involving both A and the total normalized intensity
Pr=P;+P,. By setting Re(1)=0, we solve the real and
imaginary parts of the resulting transcendental equation
for the oscillation frequency A=Im(A)T, and the intensi-
ty Py at the threshold for instability.

2. Linear and perpendicular

We perturb the amplitudes and the polarizations of the
steady-state fields by assuming that the total field is given

by
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E(r,t)={[F3(2)+8F (r,,2,1)|&
+8Fy(rl,z, t)/)\,}ei(kz—wt)
+{8B, (r,z,¢)R

+[BS(2)+8B,(r,,z,1) [§}e! kw0
(Al1)

We assume that the perturbations have the form given by
Egs. (A2), and we find that the perturbation amplitudes
also decouple into two sets of four equations. As in the
case of linear and parallel input fields, the amplitude per-
turbations of the forward and backward fields couple
with one another, and the polarization perturbations cou-
ple with one another. The resulting linearized equations
for the amplitude-perturbation fields are given by

d S
2 = ‘—%——iKl+i(2A'+B')If+iA’Ib fi
. 40 | BC psspss* |, s
+id' | —F°B) b,
| 41 B | e a¥®
A+ || F | S
. ne *
+id | o= FFBS b (Al2a)
dbs |2
g1 | M€ psspss | S ;40 | M€ sSpSs | pa*
i [%Fx B, s —id |5 DFCBy s
. A'-I-—Bi 1€ pss2 |pa*
; 15l (A12b)
Ed
dfe A Cim g ; *
d; == | K QA B +id'T, | f}
i g | BC ps*pSS |pa*
ZA 27TFX 'By bya
N qr BT | e pss*
—i|A4 +7 ‘EFSS 2155
;4 | € pss*pss* [, s
i4' |ZZFS B (o] (A12¢)
g o ] e
— = | TR AT+ (24 +B), | by
. .| ne * *
+id" | FFB|f
. .+ | HC * *
+id' | ZFF B |
4+ A!+_‘B_'_ _EBSS*Z bS
; - o B; B (A12d)
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and for the polarization-perturbation fields

d S
_;zy - —-i'——'Kl+iA'If+i(2A'+B’)Ib 5
.B' | nc psspss* |, s
PR
.B' | nc ss*3 | pa*
Z | XFp
H g B T
4i|ar— Bl | |2 psspss |pa” (A13a)
2 % S R
dbs
e [%+iKl—i(2A'+B’)If—iA’I,, ’b,f
B’ | nc _ss*pss | o8
i et B S
.|, B NC 8S 1SS ¥
AT |
_,-123_ %B;sz be* | (A13b)
dfe” A o st it gy | pa®
.B' | nc * *
B E;FES B;S |b?
_;B | ¢ pss*a | es
) 217'Fx Iy
4 B nC ss* pss* |, 8
- A_T —z;Fx B> b7, (Al3c)
L I N B
= |7 K. QAT +BO il | b
.B' | nc .ss* nss* | ot
T B
. ) B’ ne * * S
+i A_T EFES BS\f;
.B' | nc 5% |,
+l'2— 2—’”_“3Jc by . (A139)

As we did previously for the case of linear and parallel in-
puts, we make a transformation of the amplitudes so that
we can put the equations in matrix form which can be
easily solved,

fi2)=F](z)exp Ii A'+~Bz- I+ AT z’, (Al4a)
b;' —B‘Ti —i| 4L+ |4+ E Al4
i(z)=bj(z)exp {—i | A'I +—2— I |z (A14b)
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where i =S,a and j =x,p. Thus the equations for the f}’s and the 5}’s become

75 ~AT,—iK,L+iP; VPP,
g |5 —iV/PiPy, AT, +iK,L —iP,
az/L |7t |~ —iP, ~ivV/P}P;
5o iV/P}P; iP,

and see Eq. (A16) on the following page.

The procedure for the stability analysis is analogous to
that for the amplitude perturbation with linear and paral-
lel inputs.

3. Circular and corotating

In the circularly polarized basis, we perturb the ampli-
tude and polarization of the steady-state fields by assum-
ing that the total field is given by

E(r,t)={[F53(2)+8F  (r,,2,1)]8 +
+8F _(r},2,1)6 _}e' ke~
+{[B3(2)+8B (12,16 4
+8B_(r,z,1)6 _}e! ke (A17)

where 8F, (8B,) and 8F_ (8B._) represent the
forward- (backward-) going perturbation fields that are
¢, and &_ polarized, respectively. As with the linearly
polarized input polarizations, we assume that the pertur-
bation fields have the form

ik, 1)

8F o (r,,2,0)=[f5 (2)eM+ foer 1] ™ | (A18a)
8B, (r,,7,1)=[bS (2)eM+b%e 1 ™™ (A18b)
SF _(r,2,0)=[f5 (D)eM+ 2 (2)e*"1]e 4™, (A18¢)
8B _(r),z,0)=[b5 ()e™+b% (z)e* 1] ™1™ | (A18d)

By substituting the field E into Egs. (4) and (12) and
linearizing the resulting equations for the perturbation
amplitudes f;’s and b;’s, we find that the amplitude and
polarization perturbations decouple into two sets of

J

. |7

—~AT,—iK,L+irP;—i(1—r)P;
dz/L |BS '

—i(1+r)V/ P;P;

The stability analysis is then completed in a manner
analogous to that for the amplitude polarization field for
the linear and parallel inputs.

4, Circular and counterrotating

We perturb the amplitudes and polarizations of the
steady-state fields by assuming that the total field is given
by : s

AT, +iK L +i(1—r)P}—irP;

1621
iP; iV P;P, 7S
—iV/ PP} —iP, b;
o —_— x|, (A15)
—AT,+iK L —iP;  —iV/ P}P; fe
iV P;P; AT,—iK L +iP, | |B2°

[

differential equations. The set of equations for the
amplitude-perturbation fields is identical to those [Egs.
(A3)] for the amplitude-perturbation fields for the linear
and parallel eigenpolarization with the substitution of 4’
for A'+B’'/2, + for x, and — for y.

The set of equations for the polarization-perturbation
fields further decouples into two sets of two equations in
which only the Stokes (anti-Stokes) components are cou-
pled. The resulting equations for the Stokes components
are given by

dj:‘= — & ik A+ BNI L) (£
+i(A'+B’) %F%fﬂis* bS ,  (Al9)

dbs A o s

= | g HK A T BO ) (B2
—i(A4'+B") —;—f;stBsf* fik (A19b)

where I,=(nc/2m)|F$(0)> and I, =(nc/2m)|BE(L)* -
are the input intensities. The equations for f¢ and bZ
are entirely equivalent to those above with the replace-

ment of f2 for f5, b% for b3, and A* for A.
We transform the amplitudes through the relations

Fia)=Fiexplid'I;+2I,)z] , (A20a)
bi(z)=b}(z)exp[ —id"(2L;+1,)z] (A20b)

where i =S,a and j =-+,—. The resulting equations in
matrix form are given by :

7S
B‘S

i(1+rV P;P;
(A21)

[
E(r,t)={[F3(z)+8F ; (r,,2,1)]6

+8F _(1,,2,1)& _}e'tke—a)
-+ {SB.'_(I'_L,Z,I)G_F
+[BS3(2)+8B _(r,,2,t)]6 _}e'(Thz oD

(A22)
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As in all the previous cases, the linearized equations for
the amplitude-perturbation fields decouple from those for
the polarization-perturbation fields. The resulting equa-
tions for the amplitude perturbation fields are given by

dfs A ) .
= | T oK 24 i B, | £

+i(A'+B') | ZEFSBS” b3

2

+i4’ nCFSSZ f+*

+i(A'+B) | JEFTES b (A232)
db‘s; )\, . N ' ' > ’ s
= | K —i( A B2 AT, (b

—i(A"+B") FSS*BSs !

.y | ne *

—i(A'+B’) 2—17'FS+SB§+S it

. 2
df‘_z:‘ A, . . ’ . ? ' a*
— == | T TiK 2 AT+ AFBOL | f4

—i(A'+B’) FSS*BSS be

—id’ %Fim s

—i(4'+B) |[JEFTBE b5, (A230)
B I N
= | S K i (A B 24T, b

+i(A"+B) | ZEFSBS” | £y

+i(A'+B") FSSBSS 5

+id' |JZBE (b3 (A23d)

where I,=(nc/2m)|F$(0)|* and I,=(nc/2m)|BS(L)}?
are the input intensities. The linearized equations for the
four polarization-perturbating fields decouple into two
sets of two equations which couple the forward-
(backward-) going Stokes field with the backward-
(forward-) going anti-Stokes field and which are given by



and for the polarization-perturbation fields

7S
a_ |F-
dz/L |5’

—AT,—iK,L +irP;+i(1—r)P;
i(1+r)V/ PP;

AT, +iK L +i(1—r)P;+irP; | |5
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ars | a < We make the following transformation:
= (TS (A 24T, | 2
' fiz)y=FUz)exp{i[A'I,+(A'+B"), ]z} , (A25a)
+i(A4'+B") %FiSBS_S be* ., (A240) ! ’ d ’
s [ . bi(z)=b!(z)exp{ —i[(4'+B");+ A'I,]z}  (A25b)
= | = —iK, +i24'I;+i(4'+B"I, |b%
dz c
ne - where i =S,a and j=+,—. Substitution of Egs. (25)
+i(A'"+B') |——FSS'BSS |fS . (A24b) into Eqgs. (24) yields the following equation for the
2w amplitude-perturbation fields:
J
7S | |-AT,—iK,L+iP;  i(1+r)V PPy iP} i(1+r)V PP, 1 7S
g |82 B —i(1+rV PP, AT, +iK,L—iP, —i(1+r)V P;P; —iP} bS 26
dz/L | e —iP} ~i(1+V/ PP} —AT,+iK,L—iP; —i(1+rV/ PP} | |F4"
5e" i(1+r/P:P; iP} i1+rV PP,  AT,—iK,L+iP; | |5

i(14+r)V/ P;P; 7S
(A27)

From these two sets of equations, we complete the stability analysis in a manner entirely analogous to that for the am-
plitude perturbation fields for the linear and parallel eigenpolarization.

*Present address: School of Applied and Engineering
Physics, Cornell University, Ithaca, NY 14853.
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