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Abstract. We describe a device constructed of a sequence of microresonators
coupled to an optical waveguide. The in¯uence of these resonators is to enhance
nonlinearities and to induce strong dispersive e� ects, leading to exotic optical
properties including slow and superluminal group velocities of propagation.

In recent years there has been a ¯urry of activity aimed at the development of
techniques that can lead to a signi®cant modi®cation of the group velocity of
propagation of a light pulse through a material medium [1]. Proposed applications
of these procedures include the development of optical delay lines [2] and the
`storage` of light pulses [3, 4] with perhaps implications for the ®eld of quantum
information. Most of this research has made use of the response of resonant media
[5] and much of it has made use of the concept of electromagnetically induced
transparency [3, 6].

In this contribution, we describe an alternative procedure for the propagation
of slow light based on inducing large dispersive e� ects in optical waveguides by
coupling the waveguide to an array of optical resonators. A typical device of this
sort, which we refer to [7, 8] as a side-coupled integrated spaced sequence of
resonators (SCISSOR), is shown in ®gure 1. The resonators can be of arbitrary
design, although in our experimental work we are concentrating on resonators in
the form of ring waveguides or of a whispering gallery mode [9] of dielectric discs.
Alternatively, the resonators could be dielectric spheres coupled to an optical ®bre;
the excitation of the resonances of such spheres has been observed previously [10].
Since the light ®eld e� ectively circulates many times in each resonator before
passing to the next, the group velocity of propagation of a pulse of light through
such a structure is signi®cantly reduced. In addition, the phase shift experienced
by the light wave in interacting with each resonator depends sensitively on its
detuning from the cavity resonance, and thus this structure produces large and
controllable dispersion. Moreover, if the resonator is constructed of a material that
displays a nonlinear optical response, the nonlinear phase shift acquired by a light
wave in interacting with the resonator scales as the square of the ®nesse of the
resonator [11]; thus such a structure displays an enhanced nonlinear optical
response. For these reasons, devices of this sort may prove extremely useful for
many applications in modern photonics. Related approaches o� ering similar
promise, but possessing photonic bandgaps (which are necessarily attenuating)
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are Bragg gratings [12, 13], photonic crystal structures [14] and coupled resonator
optical waveguide structures recently proposed [15]. The SCISSOR structure is
unique in that it can induce strong delay and dispersion while greatly enhancing
weak intrinsic nonlinearities without introducing a photonic bandgap.

In order to understand the optical properties of a SCISSOR device, let us ®rst
recall the treatment of the optical properties of a single resonator coupled to an
optical waveguide. We describe the coupling of light into and out of the resonator
in terms of e� ective re¯ection and transmission coe� cients r and t according to
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where we assume that r2 ‡ t2 ˆ 1 and where the various ®eld amplitudes are
de®ned as in ®gure 1. Each optical resonator of the SCISSOR structure behaves in
many ways like a Fabry±PeÂ rot cavity but with the crucial distinction that it has
only a single output port and thus (ignoring for the present, attenuation e� ects) is
an `all-pass ®lter’ which simply impresses a phase shift F on to the transmitted
®eld. To calculate this phase shift, we ®rst note that the internal or single-pass
phase shift ¿ imposed on a wave circulating within the resonator is given by
¿ ˆ ! ¡ !R… †T, where !R is one of the resonance frequencies of the resonator and
T is the circumferential transit time 2pnR=c. Since eEE3 !… † ˆ exp ‰i¿ !… †Š eEE4 !… † and
eEE2 !… † ˆ exp ‰iF !… †Š eEE1 !… † we ®nd through use of equation (1) that the total phase
shift F is given by
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This phase shift F that the light wave experiences in interacting with each
resonator modi®es the propagation of light through a sequence of such resonators.
In particular, the e� ective propagation constant becomes keff ˆ n!=c ‡ F=L,
where L is the spacing between resonators. Near each cavity resonance, the
phase F varies rapidly with frequency, leading to a greatly reduced group velocity.
In particular, one ®nds that the group index for a pulse whose carrier wave
acquires an internal phase shift ¿0 is given by
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Figure 1. A SCISSOR.



The group index takes its maximum value when the optical wave is tuned to a
cavity resonance (¿ ˆ 0), leading to an equation for the group index that can be
expressed in any of the following forms:
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where B0 ˆ …1 ‡ r†=…1 ¡ r† can readily be shown to express the on-resonance
build-up factor of light within the resonator (i.e., B ² jE4j2=jE1j2) and where
F ˆ …p=2†B0 is the ®nesse of the resonator. The frequency dependence of the
build-up factor B, the resonator contribution to propagation constant and the
group index are shown in ®gure 2.

While the steep slope of the dispersion-relation curve near resonance is
responsible for the reduced group velocity, the transition from the ¯at sections
of the dispersion curve to the steep section is necessarily curved and introduces
group velocity dispersion (GVD). On resonance, the lowest-order GVD parameter
k00
eff (and all other even orders) is zero. However, the distance over which pulses

can propagate is limited ultimately by broadening induced by third-order disper-
sion. We ®nd that it is better to propagate o� resonance and to sacri®ce some
enhancement in order to gain much in terms of the maximum possible propagation
distance. Speci®cally, by tuning slightly above resonance (such that

! ˆ !R ‡ p=FT31=2), third-order dispersion can be eliminated. The lowest-order
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Figure 2. (a) Build-up factor of the light intensity within a single optical resonator, (b)
the resonator contribution F=L to the propagation constant of light for a SCISSOR
and (c) the resonator contribution …c=L†…dF=d!† to the group index ng, all scaled for
generality and plotted as functions of the optical frequency !.



dispersion that is introduced by operating o� resonance can be compensated for by
the enhanced nonlinear response of the structure. Under proper conditions, the
negative lowest-order GVD occurring at this operating point can be precisely
balanced by the nonlinearity to form a SCISSOR soliton [7, 8]. The enhanced-
nonlinearity coe� cient ®eff is obtained from the build-up and the group velocity
reduction factors as
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Figure 3 shows the frequency dependences of the lowest-order GVD k00
eff and

enhanced nonlinearity ®eff and also indicates the optimum detuning for soliton
propagation.

Figure 4 compares three approaches to attempting to propagate slow light in a
SCISSOR with a group velocity of approximately(c/n)/100. In ®gure 4 (a), a weak
pulse tuned to resonance is greatly delayed but broadens and acquires ripples
associated with negative third-order dispersion. In ®gure 4 (b), the pulse frequency
is tuned above resonance to the extremum of the lowest-order GVD{. At this
frequency, the third-order GVD necessarily vanishes, and we see that pulse
distortion of the sort shown in ®gure 4 (a) is prevented from occurring. However,
the pulse broadens considerably as a result of non-vanishing second-order (lowest-
order) dispersion. In ®gure 4 (c), the same pulse but with a peak power
corresponding to that of the fundamental SCISSOR soliton is seen to propagate
with a preserved pulse shape. The group velocity reduction in this case is 75£ as
opposed to 100£ in ®gure 4 (a), but the high ®delity of pulse propagation makes
this strategy appear to be superior.

The analysis given above has assumed that the resonators are non-attenuating.
In practice, microresonators su� er from intrinsic absorption (both linear and
nonlinear), bending loss and scattering loss due to surface imperfections which
lower the transmission and build-up factor. Of course, gain may be added to the
system, if possible, to o� set these losses. The net attenuation near resonance is
increased in proportion to the resonator ®nesse. In fact, if the resonator coupling
strength and round-trip loss are exactly equal, the resonator is said to be critically
coupled and the net loss is complete, that is the transmission is zero. Although the
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{ The simulations used to study pulse evolution in a sequence of waveguide-coupled
resonators were carried out using an iterative method in which each iteration consisted of
linear and nonlinear phase accumulation during one round trip within the resonator followed
by interference at the coupler. Traditional beam or pulse propagation split-step Fourier
methods are unnecessary as structural dispersion is more readily treated in the time domain.
The values of k 0

eff and ®eff are lowered by factors of 3=4 and 9=16 respectively from their
given maximum values when operating at the anomalous GVD maximum.



above analysis assumed that the resonators are lossless, in fact the qualitative

features of this analysis are still valid provided that the coupling strength is greater
than the round trip loss. Such a resonator is said to be overcoupled. Low-loss

propagation through a SCISSOR constructed from N resonators can be ensured if

the single-pass attenuation satis®es ¬2pR ½ 1=NF , where ¬ is the absorption

coe� cient of the resonator material. The dispersion relation becomes steeper near
resonance with increasing attenuation in the overcoupled regime, implying an even

greater group velocity reduction. Of course, this reduction in group velocity is

obtained at the price of reduced output power.

Even more interestingly, we ®nd that lossy resonators forming a SCISSOR

structure can be implemented to propagate light superluminally [16]. If the

coupling strength is chosen to be weaker than the round-trip loss, the resonator
is said to be undercoupled. The dispersion relation for the SCISSOR in this

regime is qualitatively di� erent from that found in the overcoupled regime. Figure

5 (a) displays the transmission for a single resonator in the three regimes. In

addition, ®gure 5 (b) displays the resonator contribution to the dispersion relation

for all three regimes and displays the reversal of sign near resonance. This negative
slope implies that a pulse exiting from a resonator will emerge with its centre

advanced in time with respect to the incident pulse. Causality is maintained

because the discrete impulse response of the resonator does not possess any

advanced impulses. A ®nite bandwidth pulse displays superluminal propagation

but quickly attenuates in a multiresonator undercoupled SCISSOR. Gain (as-
sumed ¯at across the pulse bandwidth) may be incorporated into the straight

waveguide to o� set the losses associated with the undercoupled con®guration. The

group index near resonance in the undercoupled regime is given by
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Figure 3. Plot of the frequency dependence of the e� ective nonlinear self-phase
modulation (SPM) coe� cent ®eff and the GVD parameter k00

eff . Note that the sign
of the GVD parameter k00

eff changes with the sign of the detuning from resonance.
The curves are normalized for generality. The broken line indicates the optimum
detuning for soliton propagation and corresponds to the conditions used in ®gure 4 (c).



where a ˆ exp …¡¬pR†. Figure 5 (c) demonstrates superluminal propagation of a

linear resonant pulse through undercoupled resonators situated near an amplifying

waveguide. The exiting pulse experiences a negative time delay or, equivalently, a

time advance. Moreover, the theory also predicts superluminal propagation for a

SCISSOR in which each resonator is constructed of an amplifying medium in

which the round trip gain is greater than the coupling strength; however, our

numerical simulations suggest that propagation is highly unstable in this regime.
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Figure 4. Numerical results showing the advantage of using optical nonlinearity for
propagating slow light through a SCISSOR structure. The SCISSOR consists of
100 resonators of 10 mm diameter spaced by 10p mm with r ˆ 0:98 corresponding to
a group velocity reduction of 100£. (a) A weak 100 ps resonant pulse propagates at a
group velocity of (c/n)/100 through the SCISSOR and is corrupted by resonator-
induced third-order dispersion. (b) The same pulse, but with its carrier frequency
tuned to the extremum of the lowest-order GVD, propagates with a group velocity
of (c/n)/75 but is greatly broadened. (c) A 100 ps pulse of 6.4 mW peak power, tuned
to the GVD extremum propagates as the fundamental SCISSOR soliton with a
group velocity of (c/n)/75 and is well preserved. Here we assumed parameters typical
of a GaAs or chalcogenide-glass-based waveguiding structure (® ˆ 60 m¡1 W¡1).



In conclusion, we have demonstrated that waveguides modi®ed with side-
coupled resonators can produce `slow’ or `fast’ light propagation. Fabrication
methods for producing microresonators are rapidly advancing [17±19] and it is
expected that microresonators will serve as building blocks for forming micro-
resonator arrays for integrated photonics [20]. Dispersive e� ects resulting from the
frequency dependence of resonant peaks ultimately limit the range over which
slow-light propagation may be achieved in a SCISSOR structure. We have
demonstrated a better way to propagate slow light involving a balance between
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Figure 5. (a) The transmission for a single resonator with r ˆ 0:9 in the overcoupled
(a ˆ 0:96) critically coupled (a ˆ 0:9), and undercoupled (a ˆ 0:84) regimes. (b) The
dispersion relation for the same three cases. Note the change in the sign of the slope
of the curve near resonance in the undercoupled case. In the critically coupled case,
the curve undergoes a p=L phase jump at the cavity resonance frequency (where the
transmission is zero). In the overcoupled case, the second half of curve has been cut
and displaced downwards by 2p=L for generality of display. The frequency axis is
labelled in units of d!, which correspond to the resonator linewidth in the limit of
negligible atttenuation. (c) Numerical simulation demonstrating superluminal
propagation of a 36 ps pulse through a SCISSOR structure composed of 20 lossy
undercoupled resonators of 10 mm diameter, spaced by 10p mm. Gain has been
added to the straight waveguide section to maintain pulse power.



resonator induced GVD and resonator enhanced nolinearity employing soliton
robustness. Finally, in practice, microresonators are typically lossy; we have shown
that this loss can be implemented to study superluminal light propagation.
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