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We consider the linear and nonlinear optical properties of an optical waveguide consisting of a side-coupled
integrated spaced sequence of resonators (SCISSOR). This fully transmissive system possesses large and con-
trollable dispersion because the phase shift imparted by each resonator is strongly frequency dependent. Ad-
ditionally, near resonance, the circulating power in each resonator can greatly exceed the power carried by the
waveguide, leading to greatly enhanced nonlinear effects. We show that the effects of nonlinearity and dis-
persion can be balanced to create temporal solitons and that many other novel and useful pulse propagation
effects can occur over short propagation distances in such a structure. © 2002 Optical Society of America
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1. INTRODUCTION
A waveguide-coupled microdisk or microring resonator
behaves much like a Gires–Tournois interferometer,
which is simply a Fabry–Perot interferometer with a
100% reflecting back mirror. Such a configuration is
simple and yet extremely interesting because it has the
ability to modify the phase and enhance the circulating
intensity through energy storage while possessing only
one exit port through which unit transmission is sus-
tained at all frequencies. Such a device is known as an
all-pass or phase-only filter. Manufacturing techniques
have progressed to the point where microdisk or micro-
ring resonators can be fabricated with circumferences cor-
responding to hundreds and even tens of optical wave-
lengths. This size corresponds to azimuthal mode spac-
ings of the order of many terahertz, allowing for
resonance bandwidths of the order of tens of gigahertz to
terahertz. Because of these attractive features, mi-
croresonators have found application in disk lasers,1–4

add–drop filters for wavelength-division multiplexing,5

high-resolution spectroscopy,6 laser frequency stabiliza-
tion,7 dispersion compensation,8 all-optical switching,9,10

and cavity quantum electrodynamics.11 In this paper we
describe how resonators can be used to tailor the linear
and nonlinear pulse propagation characteristics of an or-
dinary dielectric waveguide. We begin with a review of
basic relations that describe waveguide-coupled resona-
tors and then proceed to describe pulse propagation ef-
fects for sequences of waveguide-coupled resonators.

2. RESONATOR BASICS
Figure 1 illustrates a sequence of waveguide-coupled
resonators. The resonators are situated close to the
waveguide to achieve evanescent coupling but are spaced
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far enough from one another that direct resonator-to-
resonator coupling is negligible. First, we examine the
basic relations among the incident (Ẽ1), transmitted
(Ẽ2), and circulating (Ẽ3 , Ẽ4) fields of a single resonator.
In the spectral domain the fields exiting the coupling re-
gion are related to the input fields through the following
unitary matrix:

F Ẽ4~v!

Ẽ2~v!
G 5 F r it

it r GF Ẽ3~v!

Ẽ1~v!
G , (1)

where the lumped self- and cross-coupling coefficients r
and t are assumed to be independent of radian frequency
(v) and satisfy the relation r2 1 t2 5 1. Propagation
along the circumference (2pR) of the resonator may take
the form of a mode of a ring waveguide or whispering-
gallery mode12 of a disk or sphere with effective index n0 .
Along this feedback path, assuming attenuation and in-
trinsic dispersion are negligible, the field simply acquires
an internal phase shift f:

Ẽ3~v! 5 exp@if~v!#Ẽ4~v!, (2)

f~v! 5 2pRn0v/c. (3)

Solution of Eqs. (1) and (2) yields the following expres-
sions for the transmitted Ẽ2 and circulating Ẽ3 steady-
state monochromatic fields:

Fig. 1. Structured, fully transmissive waveguide and resonator
configuration, forming a SCISSOR. E1 is the incident field, E4
is the field injected into the disk, E3 is the field after one pass
around the resonator, and E2 is the transmitted field.
2002 Optical Society of America
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Fig. 2. (a) Transmission, (b) build-up factor, (c) effective phase shift acquired on transmission, and (d) phase sensitivity [derivative of (c)]
plotted versus the internal phase shift for a waveguide-coupled resonator with a finesse of 10p.
Ẽ2~v! 5
r 2 exp@if~v!#

1 2 r exp@if~v!#
Ẽ1~v!, (4)

Ẽ3~v! 5
itexp@if~v!#

1 2 r exp@if~v!#
Ẽ1~v!. (5)

The transmission uẼ2 /Ẽ1u2 is equal to unity for all values
of v, and thus the field traversing the device simply ac-
quires a transmitted phase shift F that exhibits the fol-
lowing frequency dependence:

Ẽ2~v! 5 exp@iF~v!#Ẽ1~v!, (6)

F~v! 5 p 1 f~v! 1 2 arctan
r sin f~v!

1 2 r cos f~v!
.

(7)

Near resonance, the transmitted phase shift F becomes
increasingly more sensitively dependent on the internal
phase shift f with increasing values of r. This increase
in the slope of F versus f is attained at the price of a
slower response time. In addition to the increased phase
sensitivity (dF/df), the circulating intensity becomes
more intense in comparison with the incident intensity as
a consequence of the coherent buildup of input power.
This intensity enhancement or buildup factor is derived
from Eq. (5) as

B~v! 5 UẼ3~v!

Ẽ1~v!
U2

5
1 2 r2

1 2 2r cos f~v! 1 r2

——→
r'1

B0

1 1 B0
2 sin2@ f~v!/2#

. (8)

Near resonance, the buildup factor is a sharply peaked
function of the internal phase shift f peaking at each in-
teger multiple of 2p rad. The peak of the buildup factor,
B0 5 (1 1 r)/(1 2 r), increases dramatically with r. A
convenient parameter characterizing the strength of the
resonance is the finesse, which we define as the free spec-
tral range (FSR) divided by the full width at half-depth of
the resonance peak.13 The finesse is related to the peak
buildup factor as F ' (p/2)B0 . The buildup factor and
the phase sensitivity (dF/df) are equal for all f. This is
not a coincidence; rather, the result is a consequence of
energy conservation: The increase in stored field energy
results from an equivalent compression in time, which de-
mands a lengthened response time. These fundamental
characteristics of resonators are summarized graphically
and plotted against the internal phase shift in Fig. 2.

3. LINEAR PROPAGATION EFFECTS
A pulse propagating though a single resonator acquires a
frequency-dependent phase shift that serves to delay or
distort the pulse shape. Arranging a sequence of resona-
tors coupled to an ordinary waveguide can modify the ef-
fective propagation constant of the guide. The modified
effective propagation constant can be defined as the accu-
mulated phase per unit length and is composed of the
propagation constant of the waveguide plus a contribu-
tion from the transmitted phase of the resonators. For a
resonator spacing of L, the effective propagation constant
becomes

k0~v! 5 n0v/c 1 F~v!/L. (9)

A plot of the dispersion relation (propagation constant
versus radian frequency) for various values of the cou-
pling parameter r is shown in Fig. 3. The deviation in
the curve from a straight line for an ordinary (dispersion-
less) waveguide will lead to periodic changes in the group
velocity and group-velocity dispersion (GVD) with a peri-
odicity of c/n0R.

A pulsed waveform can be decomposed into the product
of a slowly varying envelope A(t) and a carrier wave with
frequency v0 as E(t) [ 1

2A(t)exp@ikeff(v0)z 2 iv0t# 1 c.c.
The relationship of the carrier frequency to some reso-
nance frequency sets the central operating point on the
dispersion relation curve and thus prompts the definition
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of a normalized detuning (actually, the internal phase
shift of the carrier wave) f0 5 (v0 2 vR)TR , where TR
5 FSR21 is the resonator transit time and vR is the clos-
est resonance frequency. The transfer function of a
single resonator can be expanded in two embedded Tay-
lor’s series, one for the transmitted phase shift (expanded
about the normalized detuning f0), and one for the expo-
nential (expanded about the transmitted phase shift of
the carrier F0):

H~v! 5 exp~iF !

5 exp~iF0!H 1 1 (
n51

` in

n! F (
m51

` 1

m!

dmF

df m U
f0

3 ~f 2 f0!mG nJ . (10)

Using this formal expansion, we relate the transmitted
field to the incident field and make the assumption that
the transmitted phase shift induced by each resonator is
distributed over the spacing L so that the effective propa-
gation constant is independent of propagation distance at
the macroscopic scale. The field at some point zj11 sepa-
rated an infinitesimally small distance dz from the field
at another zj is given by a similar equation that distrib-
utes the resonator contribution and includes that of the
waveguide:

Ẽj11~v! 5 expF iS n0v0

c
1

F0

L D dzG H 1 1 (
n51

` in

n! Fn0

c
Dvdz

1 (
m51

` 1

m!

dz

L

dmF

df mU
f0

~f 2 f0!mG nJ Ẽj~v!.

(11)

Taking the Fourier transform of this equation results in a
difference equation relating the pulse envelopes at the
two points:

Aj11~t ! 5 Aj~t ! 1 (
n51

` in

n! F i
n0

c
dz

]

]t

1 (
m51

` 1

m!

dz

L

dmF

dvm U
f0

S iTR

]

]t D
mG n

Aj~t !.

(12)

Fig. 3. Dispersion relation (propagation constant versus fre-
quency) for light propagation in a SCISSOR with differing values
of the self-coupling coefficient r. For generality, the waveguide
contribution of constant slope k0 has been subtracted from the
effective propagation constant keff .
Finally, we make the differential approximation @Aj11(t)
2 Aj(t)#/dz → dA/dz and allow dz to go to zero.14 This
procedure yields a linear propagation equation for the
pulse envelope:

dA

dz
5 F2

n0

c

]

]t
1 i (

m51

` 1

m!

1

L

dmF

dvmU
f0

S iTR

]

]t D
mGA.

(13)

We isolate and examine the different terms in this equa-
tion in what follows.

A. Group-Velocity Reduction
The increased phase sensitivity on resonance is related to
an increased group delay per resonator. This extra delay
distributed amongst the resonators is responsible for a
slower group velocity. The inverse of the group velocity
is proportional to the frequency derivative of the propaga-
tion constant,

keff8 5
dkeff

dv
5

n0

c
1

1

L

dF

dv

5
n0

c F1 1
2pR

L S 1 2 r2

1 2 2r cos f0 1 r2D G
——→

f050,r'1

n0

c S 1 1
4R

L
FD . (14)

The group velocity 1/keff8 is seen to be composed of contri-
butions from propagation in the waveguide and discrete
delays introduced by the resonators. The component of
the group-velocity reduction that is introduced by the
resonators is proportional to the finesse and can dominate
the waveguide component for moderate values of the fi-
nesse.

B. Group-Velocity Dispersion
While propagation in the waveguide itself is assumed to
be dispersionless, strong dispersive effects are induced by
the resonator contribution. The GVD is proportional to
the second frequency derivative of the effective propaga-
tion constant,

keff9 5
dkeff

2

dv2 5
1

L

d2F

dv2 5
TR

2

L

22r~1 2 r2!sin f0

~1 2 2r cos f0 1 r2!2

——→
f056pFA3

7
3A3F2TR

2

4p2L
. (15)

While the GVD coefficient is zero on resonance, apprecia-
bly strong normal (positive) or anomalous (negative) val-
ues of the dispersion can be obtained on the red (lower) or
blue (higher) side of resonance. The dispersion maxima
occur at detunings f0 5 6p/FA3, where the magnitude
of the GVD is proportional to the square of the finesse.
This induced structural dispersion can be many orders of
magnitude greater than the material dispersion of typical
optical materials.15 For example, a 10-ps optical pulse
propagating in a sequence of resonators with a finesse of
10p, FSR of 10 terahertz (;5 mm diameter), and a spac-
ing of 10 mm experiences a GVD coefficient keff9 of roughly
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100 ps2/mm. In general, this structural dispersion can
be as much as 7 orders of magnitude greater than mate-
rial dispersion in conventional materials such as silica fi-
ber (20 ps2/km). Figure 4 shows the pulse evolution for a
10-ps pulse propagating through 100 resonators, each
tuned to the anomalous dispersion maximum.

C. Higher-Order Dispersion
Higher orders of dispersion may be derived from Eq. (13),
each subsequently possessing a maximum that is propor-
tional to the cavity lifetime FTR to the nth power. Spe-
cifically, the third-order dispersion coefficient is

keff- [
1

L

d3F

dv3

5
TR

3

L

22r~1 2 r2!@~1 1 r2!cos f0 2 3r 1 r cos 2f0#

~1 2 2r cos f0 1 r2!3

——→
f050,r'1

2
4

p3

F 3TR
3

L
. (16)

It is important to note that all orders of dispersion become
significant when the pulse bandwidth is nearly as wide as
the resonance bandwidth.

4. NONLINEAR PROPAGATION EFFECTS
A. Nonlinear Phase Shift
In addition to inducing a strong group delay and disper-
sion, a resonator may enhance a weak nonlinearity. If
the resonator possesses a nonlinear refractive index, i.e.,
Kerr nonlinearity, then the internal phase shift will be in-
tensity dependent. For simplicity we neglect the nonlin-
earity of the waveguide in what follows, since it is ex-
pected to be small. The intensity-dependent contribution
of the resonators to the internal phase shift is given by
g2pRuẼ3u2, where g represents the strength of the intrin-
sic nonlinear propagation constant. This parameter is, of
course, traditionally fixed for a given material system and
can be as low as 0.002 m21 W21 for standard single-mode
silica fiber or as high as 102 m21 W21 in an air-clad GaAs
or chalcogenide-glass-based waveguide.16 Near reso-
nance, the transmitted phase shift is sensitively depen-
dent on the internal phase shift, which is in turn depen-
dent on an enhanced circulating intensity. The combined
action of these effects gives rise to a dually enhanced ef-

Fig. 4. A weak pulse tuned to the dispersion maxima disperses
while propagating in a SCISSOR. A 10-ps FWHM hyperbolic se-
cant pulse tuned for maximum anomalous GVD (B 5 0.13) en-
ters the system consisting of 100 resonators each with a 5-mm di-
ameter and finesse of 10p, spaced by 10 mm. Note that the peak
power is reduced by a factor of ;4 after propagating only 1 mm
as a consequence of the strong induced dispersion.
fective nonlinear propagation constant geff , calculated
from the derivative of the transmitted phase shift with re-
spect to the input intensity:

geff [
1

L

dF

duẼ1u2

5
1

L

dF

df

df

duẼ3u2

duẼ3u2

duẼ1u2

5
g2pR

L S 1 2 r2

1 2 2r cos f0 1 r2D 2

——→
f050,r'1

g
8R

pL
F2.

(17)
As can be seen from this equation, the increased phase
sensitivity (or group-velocity reduction) and the buildup
of intensity contribute equally to quadratically enhance
the nonlinear propagation constant with respect to the
finesse.17 To properly account for the all the third-order
Kerr nonlinear contributions of the spectral components
of three fields, a double convolution of the three interact-
ing fields is performed in the spectral domain. In the
time domain the double convolution operation is equiva-
lent to multiplication. This allows for the straightfor-
ward addition of a nonlinear contribution18 to the internal
phase shift term in the linear propagation equation [Eq.
(13)]:

dA

dz
5 H 2

n0

c

]

]t
1 i (

m51

` 1

m!

1

L

dmF

df m U
f0

3 S g2pRBuAu2 1 iTR

]

]t D
mJ A. (18)

For two nonlinearly interacting resonant pulses, the re-
sults derived here for the self-phase modulation (SPM) ef-
fect apply to the cross-phase modulation effect equiva-
lently.

B. Solitons
We next examine the nonlinear propagation equation that
retains only the lowest-order dispersive and nonlinear
terms in Eq. (18) and shift the time coordinate to the ref-
erence frame of the pulse (t 5 t 2 keff8 z). We find that, in
this limit, the pulse evolution is governed by a nonlinear
Schrödinger equation with effective GVD and SPM pa-
rameters:

]

]z
A 5 2i

1

2
keff9

]2

]t2 A 1 igeffuAu2A. (19)

Soliton solutions exist provided that the enhanced nonlin-
earity and induced dispersion are of opposite signs.
While the sign of the enhanced nonlinearity is predeter-
mined by the sign of the intrinsic nonlinearity, the sign of
the induced dispersion is, as was previously shown in Eq.
(15), determined by the sign of the normalized detuning
from resonance. The fundamental soliton solution for
this equation is

A~z, t! 5 A0 sech~t/TP!exp~i1/2geffuA0u2z !, (20)

where the amplitude and pulse width are related accord-
ing to uA0u2 5 ukeff9 u/geffTP

2, below which the pulse is se-
verely distorted by all orders of dispersion. The finite re-
sponse time of the resonator places a lower bound on the
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pulsewidth TP . We define a scaling factor B to be the ra-
tio of the pulse bandwidth @2 arcsech(1/A2)/p2TP# to the
resonator bandwidth (1/FTR), such that B
5 @2 arcsech(1/A2)/p2#FTR /TP . We also define a non-
linear strength parameter as G 5 (4/p2)F2guA0u2R.
With these definitions a simple relation holds between G
and B for the fundamental soliton operating at the
anomalous dispersion peak19:

G 5
p

2A3 arcsech2~1/A2 !
B2 ' B2. (21)

Higher-order dispersive and nonlinear terms become in-
creasingly significant when either B or G approach unity.

To test the validity of this approximation, we have con-
ducted rigorous time-domain simulations20 in an attempt
to propagate solitons. In Fig. 4 we showed the pulse evo-
lution of a low-power 10-ps FWHM hyperbolic secant
pulse tuned for maximum anomalous GVD (B 5 0.13) in
a chalcogenide-glass-based system. The system con-
sisted of 100 resonators spaced by 10 mm each with a
5-mm diameter and finesse of 10p. As can be seen, the
temporal pulse profile is greatly dispersed. Figure 5
shows the pulse evolution for the same system but with a
peak power of 125 mW, corresponding to the fundamental
side-coupled integrated spaced sequence of resonators
(SCISSOR) soliton (G 5 0.0196). As can be seen, the
pulse shape is well preserved on propagation. Many of
the familiar characteristics of fundamental solitons such
as robustness, reshaping, pulse compression, and pulse
expansion have been observed in simulations to carry
over from the continuous-medium case. Higher-order
solitons, satisfying G ' N2B2, where N is an integer, are
readily observed in simulations but are unstable because
of higher-order dispersive nonlinear effects present in this
system.21 We return to this point in the Subsection 4.C.

Dark solitons that consist of an intensity dip in an oth-
erwise uniform continuous-wave field can also be sup-

Fig. 5. A pulse with amplitude corresponding to the fundamen-
tal soliton propagates in a SCISSOR without dispersing. The
same parameters were used as in Fig. 4, but with a peak power of
125 mW (G 5 0.0196) in a chalcogenide-glass-based system.

Fig. 6. A negative pulse in a uniform intensity background with
parameters corresponding to the fundamental dark soliton
propagates in a SCISSOR without dispersing. The incident field
distribution was a hyperbolic tangent with twice the pulse width
of the bright soliton and a background power that was one fourth
that of its peak power in Fig. 5.
ported if the enhanced nonlinearity and induced disper-
sion are of the same sign (on the other side of resonance).
Figure 6 shows the propagation of the fundamental dark
SCISSOR soliton (a hyperbolic tangent field distribution)
tuned to the normal dispersion peak.

C. Self-Steepening
In Subsection 4.B we neglected the frequency dependence
of geff . One of the effects resulting from the frequency-
dependent nature of geff is an intensity-dependent group
velocity. This effect leads to the phenomenon of self-
steepening (SS) of a pulse, where the peak of a pulse trav-
els slower than (1SS) or faster than (2SS) its wings.
The SS coefficient s may be derived22 from Eq. (18), but it
is more readily obtained from the frequency derivative of
the nonlinear coefficient:

s 5
geff8

geff
5

2

B
dB
dv

——→
f056p/FA3

7
A3FTR

p
. (22)

While it is difficult to isolate this effect from induced GVD
in a sequence of resonators (see Fig. 11 below) to form a
steepened pulse, it plays an important role in the breakup
of higher-order solitons. The known phenomenon of soli-
ton decay18 involves the breakup of an Nth-order breath-
ing soliton into N fundamental solitons of differing pulse
amplitudes and widths. Figure 7 shows a situation in
which a second-order SCISSOR soliton with a launched
peak power of 500 mW undergoes decay and splits into
two stable fundamental SCISSOR solitons. The solitons
are well isolated in time and uncorrupted by a back-
ground or pedestal. One of them possesses a higher peak
power and narrower width than the original, demonstrat-
ing the potential for pedestal-free optical pulse compres-
sion. The effects of induced SS in a sequence of resona-
tors can take place for picosecond and even nanosecond
pulses because, unlike in the case of intrinsic SS, the rela-
tive strength of SS to SPM is not governed by how close
the pulse width is to being a single optical cycle, 2p/v0 ,
but rather how close the pulse width is to being a single
cavity lifetime FTR . For the 10-ps pulse propagating in
a SCISSOR with the above parameters, the non-
dimensional SS parameter (S/TP) is 0.173. In order to
observe the same effect with traditional intrinsic SS, a
30-fs pulse would be required.

Fig. 7. A higher-order breathing soliton is unstable under the
influence of the resonator-induced intensity-dependent group ve-
locity (SS). Here a second-order soliton splits into two stable
fundamental solitons on propagation in a SCISSOR. The inci-
dent field distribution was the same as in Fig. 5 but with four
times the peak power.
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D. Multistability and Saturation
In the previous section we added the SS correction to the
nonlinear coefficient that resulted from the frequency de-
pendence of geff . Relation (17) was implicitly derived
with the assumption of low intensity; now we examine the
intensity dependence of geff and find that the circulating
intensity and geff are in fact interdependent. The circu-
lating intensity depends on the buildup factor, which in
turn depends on the circulating intensity from the nonlin-
ear detuning contribution. As a result nonlinear resona-
tors can possess memory and multistable branches in the
input–output relationships within certain operating
regimes.23 When operated near resonance, the onset of
multistability occurs when the circulating power is high
enough to generate a single-pass nonlinear phase shift of
2p rad. Saturation resulting from intensity-dependent
detuning’s pulling the resonator off resonance generally
takes place well before this effect. Working on the lower
branch of the multistable relation for positive detunings,
we find that the saturation of the effective nonlinear
propagation constant is well fitted by a (1 1 I/Is)

21 type
of saturation model, which is given explicitly as

geff~ uAu2! ——→
r'1

g
2pR

L
Bf0

2

1 1

g2pRBf0

2

2p 2 F0
uAu2

, (23)

where the saturating intensity near resonance is uASu2

5 p/geffL. The saturating intensity is lower for higher
detunings from resonance. A generalized nonlinear
Schrödinger equation incorporating every effect discussed
so far takes the following form:

]

]z
A 1 keff8

]

]t
A 5 2i

1

2
keff9

]2

]t2 A 1
1

6
keff-

]3

]t3 A

1 iS 1 1 is
]

]t D geffuAu2

1 1 uAu2/uASu2 A.

(24)

E. Nonlinear Frequency Mixing
The characteristics of frequency mixing processes such as
harmonic generation and four-wave mixing can also be
enhanced by waveguide-coupled resonators. As a gen-
eral rule, the scaling of the enhancement of these pro-
cesses can be inferred by including contributions from
each intensity involved (lying within a resonance) and the
interaction length. Each contributes a factor propor-
tional to the finesse.

Four-wave mixing is a third-order nonlinear process
that annihilates two photons at one frequency and gener-
ates two photons at higher and lower frequencies. Four-
wave mixing can give rise to modulation instability
whereby a low-contrast amplitude ripple grows by the
amplification of sidebands at the expense of the central
frequency. In a dispersive medium, four-wave mixing is
stifled owing to phase mismatch. However, in an anoma-
lous dispersive medium positive SPM generates new fre-
quency components that compensate for the mismatch.18

If the process is allowed to continue, the modulation
depth increases until a train of solitons stabilizes. Fig-
ure 8 shows the increase in modulation depth for a seeded
1% amplitude ripple of 100 GHz with propagation dis-
tance for a sequence of 60 resonators. The peak of the
effective instability gain, gm 5 2geffuA0u2, occurs at some
modulation frequency

Vm 5 6A2geffuA0u2/ukeff9 u, (25)

provided that this value does not exceed the resonance
bandwidth. The gain is enhanced by the square of the fi-
nesse.

Until this point we have restricted our attention to
pulses whose bandwidth is of the order or less than that
of a single resonance peak. Copropagating pulses with
carrier frequencies lying within differing resonance peaks
can enhance four-wave mixing processes with frequency
separations of pump and signal equal to an integer num-
ber of FSRs. Because the efficiency of idler generation
depends on the pump intensity and signal intensity, and
grows quadratically with length, the efficiency scales as
the fourth power of the finesse.24 We expect such effects
to be important in systems that have low intrinsic disper-
sion such that the FSR is independent of frequency so
that the three enhancement linewidths coincide with sig-
nal, pump, and idler frequencies. Finally, the efficiency
of harmonic generation processes may be increased.25

The efficiency of second-harmonic generation, for ex-
ample, would be enhanced cubically with the finesse.

5. FURTHER IMPLICATIONS
A. Attenuation
Until this section we have assumed that loss is negligible;
here we return to examine the effects of attenuation on
the performance of microdisk phenomena. Attenuation
in microesonators is in general detrimental. Internal at-
tenuation reduces the net transmission, buildup, and
(in general) the nonlinear response. It also broadens
the resonance limiting the achievable finesse.26 Attenu-
ation in microresonators typically arises from three
mechanisms: intrinsic absorption, radiation loss,27 and
scattering. Intrinsic absorption can typically be ren-
dered insignificant over millimeter-sized propagation
distances by choosing an appropriate material system at
a given wavelength. Additionally, since the circulating
intensity can greatly exceed the incident intensity,
intensity-dependent absorption processes such as two-

Fig. 8. Demonstration of modulation instability in a SCISSOR.
The input field consists of 800 mW of cw power with a 1% power
ripple. The SCISSOR parameters are chosen such that the peak
of the instability gain is at the input modulation frequency of 100
GHz. Note that the modulation frequency given by Eq. (25)
need not be a resonance frequency of the structure.



728 J. Opt. Soc. Am. B/Vol. 19, No. 4 /April 2002 Heebner et al.
photon absorption may be significant in resonators. Two-
photon absorption may be minimized by proper selection
of a material with a bandgap that is greater than twice
the incident photon energy.28 Whispering-gallery
modes of a disk and modes of a ring waveguide suffer
from bending or radiation loss, which is increasingly im-
portant for small resonators with low refractive-index
contrast. Figure 9 plots the radiation-loss-limited finesse
of a free uncoupled resonator versus the normalized ra-
dius for various refractive-index contrasts. Scattering
can take place in the bulk or on the surfaces. Surface
scattering is typically the dominant loss mechanism and
results from roughness on the microresonator edges,
which in practice cannot be made perfectly smooth.29

The surface perturbations phase match the guided mode
to radiating modes. Figure 10(a) shows a finite-
difference time-domain30 simulation of a five-resonator
SCISSOR with 50-nm sidewall roughness, displaying
strong scattering losses and weak circulating inten-
sity. In Fig. 10(b) a lower sidewall roughness of 30 nm
results in negligible scattering loss and strong-intensity
buildup.

Resonators have the ability to modify and in some cases
enhance certain figures of merit. A common figure of
merit is the ratio of the nonlinear coefficient to the linear
absorption. While the nonlinear coefficient is quadrati-
cally dependent on the finesse, the linear absorption,
much like the group-velocity reduction, exhibits only a
linear proportionality. As a result, the figure of merit is
enhanced proportional to the finesse.31 Gain may be
implemented where possible to combat attenuation.
More interestingly, a dispersion-decreasing system may
be used to propagate a SCISSOR soliton in an attenuat-
ing structure. In this case the pulse width is kept con-
stant as the amplitude decreases by means of an exponen-
tial decrease in dispersion down the length of the
structure.

B. Phase Depth
Within a FSR, a single resonator can impart only a maxi-
mum phase depth of 2p rad. This limitation has impor-
tant implications for the maximum delay and chirp and
the nonlinear phase that can be imposed on a pulse per
resonator. As the imparted phase nears only p/2 rad,
higher-order effects become increasingly significant such
that the system can no longer be treated perturbatively.
The extent of group-velocity reduction that can be
Fig. 9. Radiation-loss-limited finesse of the lowest-order radial TE and TM whispering-gallery modes of a dielectric cylinder of index n1
in a medium of index n2 plotted versus normalized radius (n1v/c)R. The family of diagonal curves represents varying refractive-index
contrasts (n1 /n2). The family of nearly vertical curves corresponds to whispering-gallery mode resonances, each characterized by an
azimuthal mode number m. The plots were obtained by numerical solution of the dispersion relation for whispering-gallery modes.
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Fig. 10. Finite-difference time-domain method of solving Maxwell’s equations for a SCISSOR structure composed of 5 microresonators.
A TE field of wavelength 1.55 mm is launched into the 0.4-mm-wide waveguide evanescently side coupled to a disk with a diameter of 5.1
mm. The refractive index of the air-clad disk and guide is 2. Exclusive coupling to the m 5 16 azimuthal whispering-gallery mode is
achieved by careful selection of parameters. (a) Strong scattering losses result due to roughness associated with a 50 nm grid. (b)
Scattering losses are made negligible by use of a 30-nm grid. Consequently, a buildup factor of 16 and finesse of 25 are achieved in this
structure.
achieved in a SCISSOR is limited by how high the finesse
can be made. A SCISSOR with an ultrahigh value of fi-
nesse can be used to slow a pulse appreciably, but that
pulse must be long enough that it is at least of the order of
the finesse times the transit time of a single resonator.
Thus the maximum delay per resonator is fixed and equal
to one pulse width at best. The same is true for the in-
duced GVD. A high GVD coefficient (proportional to F2)
can be obtained if the finesse is made very large. How-
ever, the increasing finesse places an increasing restric-
tion on the pulse bandwidth Dv (proportional to 1/F). As
a result, the imposed spectral chirp per resonator,
1/2keff9 Dv2L, is independent of finesse and dependent only
on the scaling factor B. If the requirement is to broaden
a pulse by N pulse widths, then the minimum number of
resonators needed (occurring at B ; 1) is roughly N.
This is an important point: an ultrahigh finesse is not
required for designing dispersive devices based on resona-
tors. However, while reducing the resonator size and in-
creasing the finesse in inverse proportion maintains the
same resonator bandwidth and thus the same linear prop-
erties, the nonlinear properties are enhanced. This is of
fundamental importance, since a low threshold power and
small number of resonators is desirable in practice. As a
result of saturation, it is difficult to achieve an effective
nonlinear phase shift of p rad from a single resonator
when operating on resonance. It is achieved only in the
limit as the resonator’s internal phase shift is power de-
tuned completely by p rad, resulting in an external phase
shift of p rad as well. As a result of this saturation, one
completely loses the advantage of resonant enhancement.
A phase shift of p/2 is, however, much easier to attain be-
fore the saturation takes place and requires a power de-
tuning of only f 5 p/F. A nonlinear external phase
shift of p may be readily obtained from a single resonator,
taking advantage of enhancement by ensuring that the
resonator is initially red detuned by p/F and allowing the
resonator to be power detuned through resonance for a to-
tal value of p rad. We expect these universal restrictions
to be important in the design of SCISSOR systems and
other photonic structures containing microresonators.

C. Analogous Systems
We now turn our attention to comparing and contrasting
the geometry and propagation characteristics of our sys-
tem with that of other well-known systems in optical
physics.

In certain respects, the SCISSOR soliton is analogous
to the gap32 or more general Bragg33 soliton, which re-
sults from nonlinear pulse propagation within or near the
photonic bandgap of a distributed feedback structure.
The SCISSOR structure itself bears some similarity to a
coupled-resonator optical waveguide,34 which consists of a
two- or three-dimensional array of intercoupled resona-
tors and no side-coupled waveguide. Because each con-
stituent resonator of a SCISSOR is an all-pass filter, feed-
back is present within each resonator but not among
resonators. Alternatively, there is no intended mecha-
nism for light to couple into the counterpropagating
modes of the microresonator or guide. As a result, there
is no frequency at which light is restricted from propagat-
ing, and thus the structure does not possess a photonic
bandgap. Nevertheless, the SCISSOR structure displays
enhanced nonlinear optical response for much the same
reason that a photonic bandgap structure can produce en-
hanced nonlinearity. Because of this, it is not necessary
for the resonators to be periodically spaced: only the av-
erage density of resonators is important. The addition of
a second guide on the other side of the resonator array,
however, opens the possibility for interresonator feedback
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and the existence of a photonic bandgap. This type of
structure is interesting in its own right,35 and its propa-
gation characteristics will be reserved for separate
investigation.36

Many properties of our system are analogous to those
found in atomic systems. In both cases light is coupled
into and out of discrete resonators without loss or disper-
sion but with delay. It is known from studies of slow
light propagation in atomic systems displaying electro-
magnetically induced transparency that the width of the
induced transparency window in atomic systems with N
interacting atoms is reduced37 by a factor that scales as
N21/2. This fundamental limitation on bandwidth re-
sults from the fact that near the frequency of maximum
transmission the transmission decreases quadratically
with detuning. Such a limitation is absent in a fully
transmissive SCISSOR geometry used to propagate soli-
tons, but a fundamental limitation is imposed by fourth-
order dispersion. A careful analysis shows that the
bandwidth reduction in a SCISSOR structure with N in-
teracting resonators scales much slower, as N21/4. A se-
quence of resonators might someday be useful in studying
the properties of slow light in the regime where acoustic
and optical group velocities are of the same order of
magnitude.38,39 To slow the group propagation to this
level in silica, a finesse of ;105 is required.

6. CONCLUSION
Passive, nonlinear resonators are still a relatively largely
untapped area of research. At present, many single-
microresonator systems with excellent optical properties
have been constructed.40–44 In many of these cases, ex-
tending the fabrication techniques to construct long se-
quences of such devices to yield large-scale integration of
photonic devices45 is achievable. Additionally, it would
also be possible to fabricate SCISSOR devices by coupling
silica glass microsphere resonators to an optical wave-
guide. The modes of glass spheres have been shown to
possess high values of finesse (105),11 which could be use-
ful in slow light applications. However, excercising pre-
cise control of the resonator diameter and coupling coeffi-
cient would be more difficult than for a SCISSOR formed
by use of lithographic techniques. In this paper we have
described some of the linear and nonlinear transfer char-
acteristics of single microresonators and the propagation
characteristics of sequences of microresonators. Figure

Fig. 11. Functional dependence of the (a) group-velocity reduc-
tion, (b) GVD, (c) third-order dispersion, (d) SPM coefficient, and
(e) SS coefficient on the normalized detuning f for a SCISSOR.
The parameters have been scaled such that the curves are uni-
versal and fit within the same plot limits.
11 summarizes the main characteristics in a graphical
manner as a function of detuning. The application of
thermal or electrical fields to the resonators makes it pos-
sible to control the detuning or coupling coefficients. We
envision that such structures could be used as artificial
media to study and apply nonlinear Schrödinger equation
pulse propagation effects on an integrated chip where the
propagation parameters may be chosen or modified in
real time. Other applications might include a testbed for
studies of slow-light phenomena, variable optical delay
lines,46 clean pulse compression on a chip without pedes-
tal formation by means of the soliton decay mechanism,
and soliton-based optical switching and routing with low-
energy pulses. Although all of these concepts have been
implemented in various geometries and material systems,
the SCISSOR system has the potential for providing a
highly compact, integrated optical platform for such phe-
nomena. We expect that, as manufacturing techniques
continue to improve, microresonator-tailored waveguides
such as the SCISSOR system will become important pho-
tonic devices.
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