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Hardy’s paradox tested in the spin-orbit Hilbert space of single photons
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We test experimentally the quantum “paradox” proposed by L. Hardy [Phys. Rev. Lett. 71, 1665 (1993)] by
using single photons instead of photon pairs. This is achieved by addressing two compatible degrees of freedom
of the same particle, namely, its spin angular momentum, determined by the photon polarization, and its orbital
angular momentum, a property related to the optical transverse mode. Because our experiment involves a single
particle, we cannot use locality to logically enforce noncontextuality, which must therefore be assumed based only
on the observables’ compatibility. On the other hand, our single-particle experiment can be implemented more
simply and allows larger detection efficiencies than typical two-particle ones, with a potential future advantage
in terms of closing the detection loopholes.
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I. INTRODUCTION

Since the famous publication by Einstein, Podolsky, and
Rosen (EPR) [1], which posed the problem in its clearest form,
the quantum theory has repeatedly eluded any simple realistic
interpretation. Although EPR actually aimed at demonstrating
quantum theory incompleteness, the subsequent celebrated
Bell’s theorem showed that no possible theory assuming
additional “hidden variables” in order to describe the under-
lying reality could be in agreement with quantum predictions,
provided one also made the very plausible assumption of
“locality” [2] for the behavior of such hidden variables. The
difference between the predictions of quantum theory and
those of all possible local realistic theories could be quan-
tified in well-defined “inequalities” concerning measurement
outcome probabilities [2,3] and hence could be tested in actual
experiments, which systematically confirmed the validity of
quantum predictions (see, e.g., Ref. [4] and references therein).
Later, Bell’s and EPR’s assumption of locality was linked to
the more general concept of “noncontextuality.” The latter
is the assumption that measurement results (even individual
results, not only probabilities) for a given observable are
independent of the choice of other compatible observables that
are measured at (about) the same time [5]. The importance of
this generalization was highlighted by the Kochen-Specker
(KS) theorem [6], which states that for any physical system,
prepared in any possible state (including separable states
showing no special correlations, unlike EPR states), there
exists a finite set of observables such that it is impossible
to preassign them noncontextual results (i.e., independent of
which other compatible observables are jointly measured)
respecting the predictions of quantum theory.

The thought experiment ideated by Hardy [7], “one of the
strangest and most beautiful gems yet to be found in the
extraordinary soil of quantum mechanics,” in the words of
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Mermin [8], provides yet another way to highlight the conflict
between the predictions of quantum mechanics and any
noncontextual realistic interpretation. Like the Greenberger,
Horne, and Zeilinger (GHZ) proposal [9], Hardy’s paradox ide-
ally relies only on testing a set of certainty or impossibility (“all
versus nothing”) statements, as opposed to the quantitative
assessment of probabilities needed to test the original Bell’s
theorem, thus providing a form of “Bell’s theorem without
inequalities.” On the other hand, Hardy’s paradox has some
advantages with respect to the GHZ one: only two, instead of
three, compatible observables are required and only a partial,
as opposed to maximal, degree of entanglement is needed. In
fact, Hardy’s paradox can be considered to be intermediate
between the EPR-like paradoxes (including the GHZ one),
requiring a maximally entangled state, and the KS paradox,
which applies to any state, including separable ones [10].

A number of experimental tests of Hardy’s paradox
have been carried out hitherto [11–18], adopting different
approaches, but all based on measuring the properties of
two separated particles (usually photons). Therefore, these
tests mainly emphasize nonlocality, similar to the experiments
testing Bell-like inequalities. If we instead choose to focus on
the more general concept of contextuality, we may also carry
out experiments involving different degrees of freedom of the
same particle. This approach has already been taken several
times in the past for experimentally testing the EPR, GHZ, and
KS paradoxes (see, e.g., [19–24]), but to our knowledge it has
not been applied before to Hardy’s paradox. Here, we carry
out a single-particle experimental test of Hardy’s paradox by
measuring two compatible degrees of freedom of the same
photon, namely, its spin angular momentum (SAM) and its
orbital angular momentum (OAM). As for other experiments
involving different degrees of freedom of the same particle,
we cannot use locality to logically enforce noncontextuality,
which must therefore be assumed based only on the observ-
ables’ compatibility (which might be tested with separate
experiments). On the other hand, a single-photon experiment
such as ours is simpler to implement and may allow much
larger detection efficiencies than typical two-photon ones.
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This paper is organized as follows. Section II recalls the
basic idea of Hardy’s paradox and illustrates its implementa-
tion in a spin-orbit four-dimensional Hilbert space of a single
photon. Our experiment and its results are then described in
Sec. III. Brief conclusions follow in Sec. IV. In addition,
the Appendix gives a proof of the statistical inequality that
can be used to extend Hardy’s paradox to the case in which
experimental noise and imperfections preclude an all-versus-
nothing test.

II. HARD’S PARADOX FOR THE POLARIZATION
AND OAM OF A PHOTON

Hardy’s paradox in our specific single-photon implementa-
tion can be sketched as follows. Alice and Bob must measure
the properties of the photon, and they agree on splitting the
work: Alice will measure the photon polarization state and Bob
will measure its OAM. However, Alice can choose between
two different polarization measurement setups, providing
either one of two mutually incompatible observables that
we will define in detail later on: for the time being, let us
just call them � and �′. In practice, Alice makes her setup
choice by rotating a set of birefringent plates placed before
a polarizing beam splitter (PBS). Similarly, Bob can choose
between two different OAM measurement setups, providing
either one of the two mutually incompatible observables � and
�′. Bob’s choice is performed by selecting different hologram
patterns visualized on a spatial light modulator (SLM). For
both Alice and Bob, all observable measurements have only
two possible outcomes, which will conventionally be labeled
with the values ±1. Alice’s observable choice is not supposed
to affect Bob’s measurement in any way and vice versa because
the experimental procedures act on independent degrees of
freedom of the photon. This corresponds to saying that � and
�′ are compatible with � and �′.

Alice and Bob carry out a large number of measurements
over an ensemble of identically prepared photons, each time
randomly choosing the observable to be measured for each
degree of freedom. In this way, they estimate from the
experimental frequencies the probabilities P of different pairs
of properties for the photon. In particular, they observe the
following properties in their results:

P1. The outcome � = +1 and � = +1 never occurs, that
is, P�,�(+1, + 1) = 0.

P2. The outcome � = −1 and �′ = −1 never occurs, that
is, P�,�′ (−1, − 1) = 0.

P3. The outcome �′ = −1 and � = −1 never occurs, that
is, P�′,�(−1, − 1) = 0.

As we shall prove further below, for any realistic noncon-
textual model, these three properties should logically imply
the validity of the following fourth property:

P4. The outcome �′ = −1 and �′ = −1 never occurs, that
is, P�′,�′(−1, − 1) = 0.

In contrast, Alice and Bob find that, in a sizable fraction
of their measurements, the outcome �′ = −1 and �′ = −1
is indeed obtained, thus contradicting P4. This is Hardy’s
paradox.

The proof of P4 from P1–P3 is very simple. In a realistic
noncontextual model, Alice’s and Bob’s measurement out-
come events can be represented as Venn diagrams, which may

FIG. 1. (Color online) Venn diagrams for the events � =
+1,�′ = −1,� = +1, and �′ = −1, satisfying conditions P1, P2,
and P3. The sets �′ = −1 and �′ = −1, being internal to disjoint
sets, cannot intersect, so that P4 follows immediately.

be drawn on a plane that spans the underlying (hidden) reality
determining all observable results. The Venn sets associated
with the outcomes � = +1,�′ = −1,� = +1, and �′ = −1
are shown in Fig. 1. From property P2 we infer that each time
Bob measures �′, finding �′ = −1, then if Alice measures �,
she would certainly find � = +1. In other words, the event
�′ = −1 implies the event � = +1, which is represented by
the fact that the Venn set for the event �′ = −1 is internal
to that for the event � = −1, as shown in Fig. 1. Similarly,
from P3 we infer that the event �′ = −1 implies the event
� = +1; that is, the Venn set of the event �′ = −1 is
internal to that of the event � = +1. Now property P1 implies
that the Venn sets of events � = +1 and � = +1 have no
intersection, as shown in Fig. 1. It is now evident from Fig. 1
that the sets of events �′ = −1 and �′ = −1 cannot intersect
either, from which we deduce property P4. It should be noted
that the simultaneous presence of Venn sets for the results
of incompatible observables, such as � and �′, reveals a
counterfactual aspect of the presented reasoning because no
single event can yield results for both observables since they
require different setups. However, we are actually assuming
that, even when not measured, all observables’ values have a
definite probability in each event.

Let us now illustrate the quantum-mechanical description
of the experiment, and based on that, we shall also specify the
details of the state preparation and observable definitions to
be used. Indeed, for a proper choice of states and observables,
quantum mechanics can satisfy P1, P2, and P3 and violate
P4, in agreement with observations and in contradiction to a
noncontextual realistic interpretation.

To start with, the photon must be prepared in the following
partially entangled spin-orbit quantum state:

|ψ〉 = cos (γ )|L〉p| − 1〉o − sin (γ )|R〉p| + 1〉o, (1)

where the subscripts p and o denote the polarization and OAM
Hilbert spaces Hp and Ho, respectively; |L〉p = | + 1〉p and
|R〉p = | − 1〉p denote the left-handed and right-handed cir-
cular polarization states, corresponding also to the eigenstates
of the SAM operator Ŝz with eigenvalues ±1 (in units of �);
and |m〉o are the eigenstates of the OAM operator L̂z with
eigenvalue m (also in units of �), where m is any integer.
The angle γ controls the degree of entanglement between the
polarization and OAM degrees of freedom. The OAM Hilbert
space is infinite-dimensional, but in this paper we shall restrict
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FIG. 2. (Color online) (a) Graphical representation of the photon Hardy state (1) for γ = 24.9◦ on the higher-order spin-orbit Poincaré
sphere [25,26]. The inset shows the simulated transverse distribution of polarization (represented by the small ellipses) and intensity (represented
by the color brightness) for the optical mode of such a Hardy state. (b) Photon states in the Hilbert subspaces of polarization (top row) and
OAM (bottom row), represented as arrows on Poincaré (Bloch) spheres. These states define the measured observables in Hardy’s paradox test.
The mathematical expressions of these states are given in Eq. (2).

our attention to a two-dimensional subspace of Ho spanned
by m = ±1. In this way, Hp and Ho are isomorphic and
describe two standard qubit spaces, defined in separate degrees
of freedom of the photon. We may think of state (1) as a generic
state in the four-dimensional spin-orbit Hilbert space H =
Hp × Ho, up to “local” unitary operations acting separately on
the polarization and OAM degrees of freedom. Only separable
states (corresponding to γ = nπ/2, with n being any integer)
and maximally entangled states (γ = π/4 + nπ/2) cannot be
used for implementing the Hardy paradox, as we shall see.
In particular, in the following we shall restrict γ to the range
0 < γ < π/4.

Let us now define the observables to be measured by Alice
and Bob. In two-dimensional Hilbert spaces, all observables
can be defined by giving a pair of orthogonal states that form a
basis. So let us first introduce the following four states in each
qubit Hilbert subspace:

|+〉i = N (
√

sin γ | + 1〉i + √
cos γ | − 1〉i),

|−〉i = N (−√
cos γ | + 1〉i + √

sin γ | − 1〉i),
|+′〉i = N ′(

√
cos3 γ | + 1〉i +

√
sin3 γ | − 1〉i), (2)

|−′〉i = N ′(−
√

sin3 γ | + 1〉i +
√

cos3 γ | − 1〉i),
where N = (sin γ + cos γ )−1/2 and N ′ = (sin3 γ +
cos3 γ )−1/2 and i = p,o. The observable operators are
then defined as follows:

�̂ = |+〉p〈+|p − |−〉p〈−|p,

�̂′ = |+′〉p〈+′|p − |−′〉p〈−′|p,

�̂ = |+〉o〈+|o − |−〉o〈−|o, (3)

�̂′ = |+′〉o〈+′|o − |−′〉o〈−′|o.
These definitions correspond to saying that in order to measure,
for example, �, Alice must project the photon state onto |+〉p
and |−〉p. If the first projection (which is actually a filtering
operation in the experiment) succeeds, then the observable
value is +1; otherwise, it is −1. Similar procedures apply to
all other observables.

Let us now calculate the quantum predictions for the four
probabilities appearing in properties P1–P4. They are given

by P�,�(+1, + 1) = |〈+|p〈+|o|ψ〉|2 and similar expressions.
A simple calculation shows that the probabilities appearing in
P1, P2, and P3 are indeed zero but that the probability in P4
is given by

P�′,�′ (−1, − 1) = |〈−′|p〈−′|o|ψ〉|2

=
[

sin 4γ

4(cos3 γ + sin3 γ )

]2

, (4)

which is nonzero for the range 0 < γ < π/4 (hence, for
all partially entangled states, excluding only separable and
maximally entangled ones). In particular, the probability (4)
is maximized for γ ≈ 24.9◦, for which P�′,�′(−1, − 1) =
[(1 + √

5)/2]−5 ≈ 9%. Hence, this is the best working point
to test the paradox experimentally. The state given in Eq. (1)
with this choice for γ can be represented by the vector drawn
on the spin-orbit Poincaré sphere [25,26] shown in Fig. 2(a)
together with the transverse structure of the corresponding
optical mode. The polarization and OAM states appearing in
Eqs. (2) are shown in Fig. 2(b) as vectors in the Poincaré (or
Bloch) spheres representing the corresponding qubit Hilbert
subspaces.

III. EXPERIMENT

The full layout of the experimental apparatus of our
experiment is shown in Fig. 3. The pump pulses are emitted
at an 82-MHz repetition rate by a Ti:sapphire mode-locked
laser, centered at the wavelength λ = 795 nm. The pulses are
frequency doubled by second-harmonic generation (SHG) in
a β-barium borate (BBO) nonlinear crystal, cut for type I
phase matching, and are then used to generate photon pairs
by spontaneous parametric down conversion (SPDC) in a
second BBO nonlinear crystal, cut for type II degenerate phase
matching. The photons were coupled to a single-mode optical
fiber to clean the spatial mode and were sent to the main
apparatus. After compensating for the polarization rotations
induced by the fiber, the photons are split by a PBS, and one
photon is detected by a silicon avalanche photodiode (AD) and
used as a trigger. The other photon is used for Hardy’s test in
a heralded single-photon regime.
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FIG. 3. (Color online) Experimental setup. The SHG and SPDC stages are used to prepare the heralded photon used in the Hardy test and
its trigger companion, as explained in the text. In the main setup, the heralded photon is prepared in a controlled polarization state and then
converted into a spin-orbit partially entangled state by the q plate. To carry out the tomography of this state and the Hardy test, the photon was
then projected (filtered) with another sequence of wave plates and a polarizer for the polarization measurement (Alice) and by diffraction on a
computer-generated hologram (hologram patterns used for filtering specific states are shown in the left inset) screened on a SLM, followed by
spatial filtering in the zero OAM mode and photon detection. The photon counts coming from the trigger detector (D1) and the heralded photon
detector (D2) were sent to a coincidence box to record the number of photon coincidences occurring in a given time window. Abbreviations:
C-BOX, coincidence box; Di , single-photon detector; DM, dichroic mirror; f, lens; H, half-wave plate; IF, bandpass interference filter; M,
mirror; Q, quarter-wave plate; QP, q plate; P, polarizer; SLM, spatial light modulator.

In order to prepare the photon input state, we used the
q-plate technology [27,28], which provides a simple and
convenient method for entangling polarization and OAM
degrees of freedom [29]. In this work, we exploit a q

plate with q = 1/2 to generate partially entangled states,
rather than maximally entangled ones. A q plate, tuned
electrically to maximal conversion efficiency [30], operates
the spin-orbit optical transformations |L〉p|0〉o → |R〉p| + 1〉o
and |R〉p|0〉o → |L〉p| − 1〉o. Hence, in order to generate the
state (1), we only need to prepare the input photon in the zero
OAM mode, as obtained after passing through a single-mode
fiber, using elliptical polarization cos (γ )|R〉p − sin (γ )|L〉p
and then pass it through the q plate. The parameter γ , fixing
the degree of entanglement in the final state, was adjusted using
a sequence of birefringent wave plates: a half-wave plate with
the optical axis rotated at an angle γ /2 from the direction of
the input polarization, a quarter-wave plate with the axis set at
π/4, and another half-wave plate at −π/8 (see Fig. 3).

We checked the quality of the prepared state by car-
rying out a full quantum tomography based on projecting
(filtering) the state on a set of mutually unbiased bases in
both polarization and OAM Hilbert spaces and then using a
standard maximal likelihood estimator for the best fit. The
polarization filtering was carried out by using a second set of
birefringent wave plates followed by a polarizer. The OAM
filtering was based on a standard holographic method [31]
by diffracting the photons on a set of computer-generated
holograms (optimized for fidelity [32,33]) visualized on a

SLM and then filtering the zero OAM component within
the first-order diffracted photons. Figures 4(a)–4(c) show the
experimentally reconstructed density matrix ρ̂ψ = |ψ〉〈ψ | of
the generated spin-orbit state (1) for γ = 0, γ = π/8, and
γ = π/4. The corresponding concurrence, as a measure of the
degree of entanglement [34], was also determined for seven
values of γ , and the results are shown in Fig. 4(d).

To carry out the Hardy test, we then set γ = 24.9◦ in order
to maximize the probability (4), as explained above. While
heralded photons prepared in this state are sent in the main
apparatus, we made a series of projective measurements of the
observables Sz,�,�′ in the polarization subspace and Lz,�,�′
in the OAM subspace. In particular, the probabilities of detect-
ing specified spin-orbit states were assessed experimentally
by counting the number of photon coincidences between the
test photon and the trigger photon in a given time window of
100 s. We first measured the probabilities of the four spin-orbit
basis states |L〉p| + 1〉o,|L〉p| − 1〉o,|R〉p| + 1〉o,|R〉p| − 1〉o,
which are eigenstates of Ŝz and L̂z. The results are shown in
Fig. 5(a) and are in reasonable agreement with the quantum
predictions obtained from state (1). More precisely, while the
counts for states |L〉p| − 1〉o and |R〉p| − 1〉o were consistent
with theory within experimental uncertainties, the counts for
state |R〉p| + 1〉o were about 25% smaller than theory, and
there was a 3% fraction of counts for state |L〉p| + 1〉o, which
in theory should have vanishing probability.

Next, we measured the four probabilities appear-
ing in properties P1–P4 entering Hardy’s paradox
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FIG. 4. (Color online) Experimental characterization of partially entangled spin-orbit single-photon states defined in Eq. (1). Experimental
reconstructed density matrix for three different values of the entanglement parameter γ : (a) γ = 0, (b) γ = π/8, and (c) γ = π/4. The associated
state fidelities are F = 0.985 ± 0.004, F = 0.984 ± 0.004, and F = 0.956 ± 0.005, respectively. (d) Concurrence value of Schmidt’s state as
a function of γ . The red points are the experimental data, and the red (light gray) solid line is an interpolating function used as a guide for the
eye, while the blue (dark gray) solid line is from theory. The concurrence value for the Hardy state at the optimal angle γ = 24.9◦ is equal
to 0.36.

by performing a projective measurement on the four
states |+〉p|+〉o,|−′〉p|−〉o,|−〉p|−′〉o, and |−′〉p|−′〉o. The
experimental results are given in Fig. 5(b). The count fre-
quency of state |−′〉p|−′〉o was found to be (7.4 ± 0.2)%
(specified errors are estimated as standard deviations computed
assuming Poissonian statistics and ignoring other possible
sources of errors) versus a quantum prediction of 9%. The
other states presented much smaller, but nonvanishing, count
frequencies: (2.1 ± 0.1)%, (0.45 ± 0.06)%, and (1.0 ± 0.1)%,
respectively, for states |+〉p|+〉o,|−′〉p|−〉o, and |−〉p|−′〉o.
This outcome, probably due to an imperfect state preparation
and/or to some residual cross talk in the OAM and polarization
measurements, makes it impossible to apply the simple

all-versus-nothing reasoning presented above for Hardy’s
paradox. But this is normal for an experimental test, as no
experimental result can be perfectly zero because of the
unavoidable noise and other experimental imperfections.

To take into account experimental imperfections, one
must replace the all-versus-nothing paradox with a Bell-like
inequality, as discussed by Mermin [8], for example (on this
issue, see also [35]). More precisely, the inequality arising in
Hardy’s paradox is the following one (see the Appendix for a
proof):

P�′,�′ (−1, − 1) � P�,�(+1, + 1) + P�′,�(−1, − 1)

+P�,�′ (−1, − 1). (5)
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FIG. 5. (Color online) Experimental verification of Hardy’s para-
dox using state (1) for the input photon with γ = 24.9◦.
(a) Coincidence count rates for the four spin-orbit basis states. The
measurement time window was 100 s, and the mean total number
of coincidences was Ntot = 12 000 ± 110, corresponding to the rate
Ctot = 120.0 ± 1.1 coincidences/s. (b) Coincidence count rates for
the measurement of spin-orbit states (2), which define the observables
�,�′,�, and �′. The ratio of the reported coincidence rate values
with Ctot gives the experimental frequencies and the estimates of the
probabilities for the photon to be in the corresponding state.

This inequality should hold true in any noncontextual realistic
model and is trivially satisfied in the ideal noiseless case given
by properties P1–P4. But it is violated by quantum predictions.
Our results reported above also violate the inequality by
over seven standard deviations, thus confirming the contextual
behavior of quantum mechanics.

IV. CONCLUSIONS

In synthesis, we have demonstrated the generation of
partially entangled spin-orbit states of single photons and
have exploited such states to carry out an experimental test
of Hardy’s paradox. Although ideally Hardy’s paradox is an
all-versus-nothing statement, so that a single event could be
enough to prove that its assumptions must be wrong, in practice
experimental noise forces the use of an inequality and of a
statistical verification, similar to the case of a Bell inequality
test. In our experiment, we verified that the inequality was
violated with high statistical confidence. This proves that
a noncontextual realistic model of the system cannot be
true. Noncontextuality in our single-particle experiment was
assumed based on the observable compatibility and not on

observables spatial separation. While this is a conceptual
limitation of our test, the use of a single particle demonstrated
in our approach has some other advantages. The first is that the
experiment is much simpler to implement. We used a heralded
photon regime, but a similar demonstration could be based on
an attenuated light source, thus making it even simpler. Simple-
to-perform experiments testing the conceptual paradoxes of
quantum mechanics may have a strong educational value. A
second advantage is that the quantum detection efficiency for a
single-photon detection can be made significantly larger than
for the two-photon case. This, in turn, could be exploited in
the future to carry out Hardy-like tests that are free from other
assumptions, such as the fair-sampling hypothesis, or other
detection-related loopholes that may undermine their validity,
similar to the case of Bell inequalities (on this issue see, e.g.,
Refs. [4,36,37]).
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APPENDIX: PROOF OF THE HARDY INEQUALITY

We derive here inequality (5), which is to be satisfied by
any realistic and noncontextual statistical model for Hardy’s
paradox. Realism of the model means that we can assign
probabilities to the set of elementary events corresponding to
each possible result of the measurement of the observables
�,�,�′,�′, even when they are not measured. Because
each measurement can have only the results ±1, we have
16 probabilities associated with each event. The difference
between a realistic statistical model and quantum mechanics
stems from the fact that, in the former, probabilities can be
assigned to any σ algebra of the elementary events, while this
is impossible in quantum mechanics in general. For example,
any realistic statistical model assigns values (eventually 0 or
1) to all 16 probabilities Pn (n = 1, . . . ,16) of the fourfold
joint measurements of �, �′, �, and �′, as reported in
Table I, which is impossible in quantum mechanics because the

TABLE I. Set of all possible values for the four observables �,
�′, �, and �′ and the corresponding symbols for the probabilities.

Probability � �′ � �′ Probability � �′ � �′

P1 −1 −1 −1 −1 P9 +1 −1 −1 −1
P2 −1 −1 −1 +1 P10 +1 −1 −1 +1
P3 −1 −1 +1 −1 P11 +1 −1 +1 −1
P4 −1 −1 +1 +1 P12 +1 −1 +1 +1
P5 −1 +1 −1 −1 P13 +1 +1 −1 −1
P6 −1 +1 −1 +1 P14 +1 +1 −1 +1
P7 −1 +1 +1 −1 P15 +1 +1 +1 −1
P8 −1 +1 +1 +1 P16 +1 +1 +1 +1
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primed observables do not commute with the unprimed ones.
Besides realism, the model noncontextuality corresponds to
the assumption that the results of measurements on a given
observable are independent of possible joint measurements
carried out on other compatible observables. This means that
each probability Pn depends on the observables pertaining to
the system under study and not on the context in which the
measurements are performed. In particular, Pn cannot depend
on parameters characterizing the measurement apparatus or the
environment. Noncontextuality is always assumed in classical
physics, and it is implicit in the probabilities Pn in Table I,
independent of their actual values. From the probabilities Pn,

we may easily calculate the probabilities defining properties
P1–P4, relevant for Hardy’s paradox. We obtain

P�,�(+1, + 1) = P11 + P12 + P15 + P16,

P�′,�(−1, − 1) = P1 + P2 + P9 + P10,
(A1)

P�,�′ (−1, − 1) = P1 + P3 + P5 + P7,

P�′,�′ (−1, − 1) = P1 + P3 + P9 + P11.

Observing that all probabilities on the right-hand side of the
last expression in Eqs. (A1) are already present on the right-
hand side of the first three equations, we find inequality (5).
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