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Summary. — Over the past three decades, quantum mechanics has allowed the
development of technologies that provide unconditionally secure communication. In
parallel, the quantum nature of the transverse electromagnetic field has spawned the
field of quantum imaging that encompasses technologies such as quantum lithog-
raphy, quantum ghost imaging, and high-dimensional quantum key distribution
(QKD). The emergence of such quantum technologies also highlights the need for
the development of accurate and efficient methods of measuring and characterizing
the elusive quantum state itself. In this paper, we describe new technologies that
use the quantum properties of light for security. The first of these is a technique
that extends the principles behind QKD to the field of imaging and optical rang-
ing. By applying the polarization-based BB84 protocol to individual photons in an
active imaging system, we obtained images that are secure against any intercept-
resend jamming attacks. The second technology presented in this article is based on
an extension of quantum ghost imaging, a technique that uses position-momentum
entangled photons to create an image of an object without directly obtaining any
spatial information from it. We used a holographic filtering technique to build a
quantum ghost image identification system that uses a few pairs of photons to iden-
tify an object from a set of known objects. The third technology addressed in this
document is a high-dimensional QKD system that uses orbital-angular-momentum
(OAM) modes of light for encoding. Moving to a high-dimensional state space in
QKD allows one to impress more information on each photon, as well as introduce
higher levels of security. We discuss the development of two OAM-QKD protocols
based on the BB84 and Ekert protocols of QKD. The fourth and final technology
presented in this article is a relatively new technique called direct measurement that
uses sequential weak and strong measurements to characterize a quantum state. We
use this technique to characterize the quantum state of a photon with a dimension-
ality of d = 27, and measure its rotation in the natural basis of OAM.

PACS 01.30.Rr – Surveys and tutorial papers; resource letters.
PACS 42.50.Ex – Optical implementations of quantum information processing and
transfer.
PACS 42.50.Tx – Optical angular momentum and its quantum aspects.
PACS 42.50.-p – Quantum optics.

(∗) E-mail: mehul.malik@univie.ac.at
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1. Key concepts

1.1. Introduction – Here we introduce certain key concepts that are essential to under-
standing current research in quantum information and especially the experiments that
are described in later sections. While the field of quantum mechanics (QM) is vast, there
are certain ideas that underlie almost all quantum technologies today. For example,
the quantum no-cloning theorem [1] states that one cannot create a perfect copy of an
arbitrary single quantum state. This seemingly simple theorem has led to applications
such as quantum cryptography [2], which offers encryption with unconditional security
—a feat considered impossible with classical physics. Similarly, quantum entanglement,
long considered one of the “spookier” concepts in quantum mechanics, has allowed the
development of quantum technologies such as quantum lithography [3,4] —the ability to
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Fig. 1. – A cartoon depicting the “Schrödinger’s cat” thought experiment [6].

make measurements more sensitive and lithographic patterns finer than those allowed by
classical physics.

While it is important to understand the formal theory behind these concepts, it is
perhaps more important to gain intuition for what really is going on in quantum mechan-
ics. The chief difficulty in understanding or explaining QM is that of language. Modern
day English (or any other language) is steeped in the language of classical mechanics.
This makes sense of course, as we experience the world through our five senses, which
are essentially classical detectors. It would be absurd to describe the iconic apple that
supposedly fell on Newton’s head in terms of the apple’s wave function. How do we,
then, go about trying to explain the highly counterintuitive aspects of QM using our
everyday Newtonian language?

In the beginning of book VII of Plato’s The Republic [5], Socrates describes a cave
whose inhabitants are chained and forced to look upon a wall since they were born, not
knowing anything else. Behind them, a fire burns and casts shadows of objects moving in
front of it upon the cave wall. These people, having been forced to gaze only at the wall,
can see just these shadows, and not the objects themselves or the fire. Plato uses this
allegory to describe the nature of the philosopher as a person who has been freed from
these chains and can see the true nature of reality. One could argue that the quantum
mechanical world is like Plato’s cave. Limited by our classical senses, we can only see
the “classical” shadows of the wave function. The quantum physicist then rises as the
freed philosopher, empowered to see the “true nature” of reality!

The broad and fantastical imagery of Plato’s cave allegory allows one to visualize the
divide between the classical and quantum world using classical language. However, it
is perhaps too broad to describe individual concepts in QM. In order to do that, one
needs a metaphor for a quantum state itself. In 1935, Erwin Schrödinger proposed a
thought experiment that has come to be called “Schrödinger’s cat”. In it, Schrödinger
describes a cat that has been put in a box that contains a tiny amount of radioactive
substance that has an equal probability of decaying and not decaying. If it decays, it
sets off a geiger counter that triggers a hammer that breaks a vial of poison that kills
the cat (see fig. 1). If the box is closed, the tiny amount of radioactive substance can be
expressed for a certain instant in time as simultaneously being in a state of decay and
not having decayed, putting the cat in a similar state of being alive and dead. On one
hand, this thought experiment raises many deeper issues in QM such as the macroscopic
limits of superposition and the role of the observer in collapsing the wave function. On
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Fig. 2. – A schematic of Young’s double-slit experiment performed with electrons. Plates (a)-(e)
show the buildup of an interference pattern at the single electron level. Thus, each electron only
interferes with itself.

the other hand, it is extremely useful for illustrating many fundamental concepts in QM
using a simple, visual metaphor. Throughout this section, we will refer to Schrödinger’s
cat whenever possible in an effort to provide some intuition for the topic at hand.

1.2. Superposition and no-cloning . – Schrödinger’s cat is an archetypal metaphor for
quantum superposition. In the language of quantum mechanics, the state of the cat is
written as

(1) |cat〉 =
1√
2

[
|dead〉 + |alive〉

]
.

The act of opening the box constitutes a measurement, which collapses the wave
function of the cat into one of the two states, dead or alive. Here we are using language
associated with the Copenhagen interpretation of quantum mechanics, which describes
reality in terms of probabilities associated with observations or measurements. While
Schrödinger’s cat lies in the domain of gedankenexperiments, realistic proposals have
been made to put small living objects such as viruses into a quantum superposition [7].
Perhaps the simplest real world example of superposition is found in Young’s famous
double-slit experiment when applied to particles. Many electrons are fired one at a time
through a set of narrow slits. The resulting pattern measured on a screen on the other
side of the slits shows distinct peaks and valleys (fig. 2). Care is taken to ensure that
only one electron is present in the setup at any given time. How, then, can each electron
independently know where to land in order to create an interference pattern usually
associated with waves?

The answer lies in interpreting each electron as being in a probabilistic mixture of
going through both slits at the same time. To paraphrase Dirac, “each electron only
interferes with itself”. This experiment was the first to illustrate the principle of wave-
particle duality, which states that all matter has a wavelength equal to h/p, where h is
Planck’s constant and p the momentum of any particle. Thus, one can see how particles
with a very small mass (such as electrons) would have a measurable wavelength. The
double-slit experiment has been performed with molecules as large as buckyballs (with a
diameter of about 0.7 nm), steadily bringing the idea of quantum superposition into the
macroscopic domain.
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Current technology allows us to perform Young’s double-slit experiment with light as
originally intended, but at the single photon level. As expected, one sees the familiar
buildup of interference fringes on an electron-multiplying CCD camera, one photon at
a time (as seen for electrons in fig. 2). Besides being in a superposition of two slits
or positions, photons can be easily put into many other types of superpositions. For
this reason, they form the building blocks for many proof-of-principle experiments in
quantum optics and quantum information. Perhaps the simplest quantum superposition
of a photon is that of polarization, where the state of the photon is written as

(2) |ψ〉 =
1√
2

[
a|H〉 + b|V 〉

]
,

where |H〉 and |V 〉 refer to the horizontal and vertical quantum states of polarization.
The coefficients a and b are, in general, complex coefficients of probability known as
probability amplitudes. This type of superposition state is known as a qubit, as it serves
as a fundamental unit of quantum information. Just like a classical bit can have a
value 0 or 1, a qubit can be in a superposition of 0 and 1. The modulus-squares of
the probability amplitudes |a|2 and |b|2 dictate the probability of finding the photon in
either state |H〉 or |V 〉. The relative phase between a and b governs the phase relationship
between the H and V components, which can be interpreted as a measure of the ellipticity
of polarization. A diagonally or anti-diagonally polarized photon can be written as
superposition of horizontally and vertically polarized states as

|D〉 =
1√
2

[
|H〉 + |V 〉

]
,(3)

|A〉 =
1√
2

[
|H〉 − |V 〉

]
.

Thus, in this case, the coefficients a and b are unity, except for state |A〉, where the
coefficient of |V 〉 has a minus sign. The states |D〉 and |A〉 are “mutually unbiased”
with respect to the |H〉 and |V 〉 states, as measuring one of them in the H/V basis is
equally likely to give an outcome of H and V . Throughout this article, we will deal
with superpositions of other properties of a photon, such as its position, momentum, and
orbital angular momentum.

The no-cloning theorem, postulated by Wootters and Zurek in 1982 [1], states that
one cannot create a perfect copy of an arbitrary quantum state. When applied to our
metaphor of Schrödinger’s cat, this means that one cannot create a second “cat su-
perposition” that is identical to the first, without opening the box and destroying the
first superposition. In their simple proof, Wootters and Zurek used an example of a
device that perfectly clones a polarization qubit. In order to do so, they assume the
device can independently clone a |H〉 photon as well as a |V 〉 photon. However, when
an arbitrary superposition state such as that shown in eq. (2) is fed into this device, it
creates a two-photon state that, in general, cannot be a replica of the original. Despite
its simplicity, the ramifications of the quantum no-cloning theorem were huge. Just two
years later, Bennett and Brassard applied this theorem to create the field of quantum
cryptography [2]. If one cannot perfectly clone a quantum state, then why not use it to
securely send information? In this manner, two parties using quantum states for com-
munication could detect any tampering, as an eavesdropper could not create copies of
their communication states without introducing some error in the protocol.
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(a)

(b)

Rochester

“Conjoined Kittens”

“Entangled Cats”

Vienna

Fig. 3. – (a) A pair of conjoined kittens are separated by skilled veterinarians at birth and grow
up to strangely feel each others pain. (b) When put into identical Schrödinger boxes, these cats
constitute an entangled state. When one cat is measured to be alive, one knows immediately
that the other cat is alive (and vice-versa), no matter how far apart they are.

1.3. Entanglement . – Since it was first proposed in a seminal paper by Schrödinger in
1935 [8], the phenomenon of entanglement has captured the imaginations of physicists
and philosophers alike, and has made itself manifest as one of the most counterintuitive
aspects of quantum mechanics. We can use a variation of the Schrödinger’s cat metaphor
to illustrate the concept of entanglement. Imagine the freak occurrence of a birth of a
pair of conjoined kittens (fig. 3(a)). These kittens are separated at birth by the finest
veterinarians in the land. However, due to some unexplained unnatural phenomenon,
the kittens grow up to share each others feelings and pain. Now, imagine putting both
of these cats into identical Schrödinger boxes. One box is kept in Rochester, while the
other is sent to Vienna (fig. 3(b)). If the Rochester box is opened and the cat is found to
be alive, we know instantly that the cat in the Vienna box is also alive (and vice versa)!
The state of the cats can be written as

(4) |cats〉 =
1√
2

[
|dead〉R|dead〉V + |alive〉R|alive〉V

]
.

This state indicates the cats share a highly correlated, or entangled state. By measuring
the state of one of the cats, one non-locally collapses the state of the other cat. It is
crucial to point out that this non-local relationship is not causal, i.e., one cannot kill the
Vienna cat by shooting the Rochester cat. Only the different outcomes of measurement
are perfectly correlated.

Of course, it is not realistic to imagine such a situation in real life. However, the
phenomenon of entanglement is readily seen in the laboratory setting in the form of
entangled photons. The strong correlations found in entangled photons have allowed
great headway in experimental quantum mechanics, facilitating experiments ranging from
the most fundamental to the very applied. Polarization-entangled photons have been
used to obtain some of the most exacting experimental violations of Bell’s inequality [9-
11]. Time-energy entangled photons have found large application in various non-classical
techniques such as quantum cryptography [12] and quantum teleportation [13]. The
strong spatial correlations found in position-momentum entangled photons have given
rise to the field of quantum imaging and have allowed the development of techniques
such as quantum lithography [3,14] and ghost imaging [15].

In direct analogy with the above entangled Schrödinger cats state, one can entangle
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a pair of photons in their polarization to create the state

(5) |ψ〉 =
1√
2

[
|H〉1|H〉2 + eiφ|V 〉1|V 〉2

]
,

where φ is the phase between the H and V states. If one were to measure the polarization
of one these photons to be horizontal, one would know immediately that the polarization
of the other is horizontal, and vice versa. Interestingly, when φ = 0 or some multiple of
2π, this state can be written in the diagonal-anti-diagonal (D/A) basis by substituting
eqs. (3) into the above equation and simplifying to

(6) |ψ〉 =
1√
2

[
|D〉1|D〉2 + |A〉1|A〉2

]
.

The correlations seen in H and V polarizations are perfectly preserved in the mutually
unbiased basis of D and A polarization. This aspect of entanglement is crucial for distin-
guishing it from classically correlated states. Photons similarly entangled in position will
retain these correlations when observed in the conjugate basis of momentum. However, in
this case the correlations are opposite, i.e. position-entangled photons are anti-correlated
in momentum. In the momentum representation, the state of position-momentum en-
tangled photons is written as [16,17]

(7) |ψ〉 =
∫ ∫

dq1dq2Φ(q1,q2)|q1〉1|q2〉2,

where the vector qi is the transverse component of the wave vector ki, and |qi〉 represents
the state of a single photon in momentum space (i.e. a plane wave mode). This definition
uses the paraxial approximation |q| � |k| and the normalized function Φ(q1,q2) is
defined as

(8) Φ(q1,q2) =
1
π

√
2L

K
v(q1 + q2)γ(q1 − q2).

Here, γ(q) is a phase-matching function and v(q) is the angular spectrum of the pump
beam. For a pump beam with a narrow angular spectrum, this function is large only
when the argument is zero, i.e. q1 = −q2. This describes a state strongly anti-correlated
in momentum. The same state can be written in position space, which we do later in
sect. 4.

Another property of photons that can be entangled is their orbital angular momentum
(OAM). While the topic of OAM is discussed in detail in the next section, it is worth
mentioning some key points here. Just as momentum entanglement manifests as mo-
mentum anti-correlations, OAM entangled photons also exhibit OAM anti-correlations.
The state of these photons is written as

(9) |ψ〉 =
∑

�

c�|�〉|−�〉.

As OAM exists in a discrete, infinite-dimensional space, the entangled state is written
in a simpler form as a sum over all possible � modes. The range of � modes in an OAM-
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entangled state usually depends on experimental considerations such as aperture sizes
and the pump beam waist.

Entangled photons are readily produced via the process of spontaneous parametric
down-conversion (SPDC). In this process, one photon conventionally known as the pump
(p) is annihilated in a second-order (χ(2)) nonlinear crystal and two photons are created,
known as the signal (s) and idler (i) photons. This process is governed by the conser-
vation of energy and momentum, and the frequencies and wave vectors of the photons
involved are related as follows:

ωp = ωs + ωi,(10)

kp = ks + ki.

Entanglement will play a strong role in sects. 3 and 4, where we utilize it for techniques
such as quantum-secured surveillance and quantum ghost image identification.

1.4. Orbital Angular Momentum. – It is well known that light carries both spin and
orbital angular momentum (OAM). The spin angular momentum of light is associated
with its circular polarization. Such circularly polarized light was shown to exert a torque
on a suspended wave plate by Beth in 1936 [18]. In the language of quantum mechanics,
each circularly polarized photon carries a spin angular momentum of �. Subsequently,
Allen et al. extended this idea to OAM and showed that light also carries an angular
momentum of ��, where � is the azimuthal mode index of the Laguerre-Gaussian mode
solution to the paraxial wave equation [19].

By making a paraxial approximation to the Helmholtz equation (Δ2 + k2)E(k) = 0,
we can write the paraxial wave equation

(11)
(

∂2

∂x2
+

∂2

∂y2
+ 2ik

∂

∂z

)
E(x, y, z) = 0.

This equation is satisfied by the cylindrically symmetric Laguerre-Gaussian modes, whose
normalized amplitude is described as

LGp
� (ρ, θ, z) =

√
2p!

π(|�| + p)!
1

w(z)

[ √
2ρ

w(z)

]|�|
L�

p

[
2ρ2

w2(z)

]
(12)

× exp
[
− ρ2

w2(z)

]
exp

[
− ik2ρ2z

2(z2 + z2
R)

]

× exp
[
i(2p + |�| + 1) tan−1

(
z

zR

)]
ei�θ,

where zR is the Rayleigh range, w(z) is the beam radius, k is the wave vector magnitude,
and L�

p is the associated Laguerre polynomial. The quantities � and p are the azimuthal
and radial quantum numbers respectively. Allen et al. showed that each photon in such
a Laguerre-Gaussian beam carries a well defined OAM of �� in vacuum.

The ramifications of the quantized nature of OAM modes are huge. Theoretically,
OAM modes reside in a discrete, infinite-dimensional Hilbert space. The dimensionality
of this space is only limited by the physical size of apertures. The quantum nature of
the spin angular momentum, or polarization, has allowed the use of photons as carriers
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of quantum information, or qubits. The ability to use the OAM of photons for encoding
quantum information opens up the potential to encode vastly more amounts of infor-
mation per photon. Further, it also provides increased security in quantum information
protocols. These key points are discussed further in sect. 5. Photons carrying more
than two bits of quantum information are referred to as qudits, where d refers to the
dimensionality of the Hilbert space.

In this article, we will focus on pure vortex modes, which are OAM modes with a
spatially uniform amplitude. This allows for a simpler theoretical treatment, and lets
one use the full aperture of the transmitter. Vortex modes can be written as

(13) Ψ� = A0W (r/R) exp(i�θ),

where A0 is the spatially uniform field amplitude, W (x) is an aperture function such
that W (x) = 1 for |x| ≤ 1 and zero otherwise, r and θ are the radial and azimuthal
coordinates, and � is the azimuthal quantum number. The radial quantum number p
is zero in these modes. This allows us to isolate the azimuthal phase dependance for
further study. The wavefronts of five vortex modes (� = 0,±1,±2) are shown in fig. 4.
The helical nature of the phase fronts is apparent in this figure, and shows why they
are referred to as vortex modes. Figure 4 also shows X-Y cross-sections of the phase
profiles. These cross-sections clearly show how the phase winds � times from 0 to 2π in
the azimuthal direction for a mode with azimuthal quantum number �. There is a phase
singularity at the very center of these modes, which results in the intensity having a null
at the center. This is the reason that these modes are sometimes referred to as “donut”
modes. Throughout this article, a reference to an “OAM mode” implies a vortex mode
as defined above.

As the set of OAM modes is complete and orthonormal, one can express any spatial
mode with rotational symmetry in terms of its component OAM modes. Another set of
orthonormal modes can be formed by taking a finite number of OAM modes N = 2L+1
and adding them coherently according to the relationship

(14) Θn =
1√

2L + 1

L∑
�=−L

Ψ� exp
(

i2πn�

2L + 1

)
.

This second set modes is called the angular position, or ANG basis. These modes are
so named because their intensity profile looks like an angular slice that moves around the
center of the beam as one changes the relative phases of the component OAM modes.
It is important to note that the number of ANG modes in the basis will be equal to
the number of OAM modes used to form the basis. As an example, we show simulated
intensity and phase for the set of five ANG modes composed of the OAM modes with
� = 0,±1,±2 in fig. 5. These modes are given by the formula

(15) Θn =
1√
5

2∑
�=−2

Ψ� exp
(

i2πn�

5

)
,

which is simply a special case of eq. (14). As the set of ANG modes is composed of an
equal superposition of OAM modes, they form a basis that is mutually unbiased (i.e.
a MUB) with respect to the OAM basis. This point is important for application in
quantum key distribution and will be discussed in the next section.
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Fig. 4. – The wavefronts and transverse phase structure of five vortex modes with azimuthal
quantum numbers: (a) � = +2, (b) � = +1, (c) � = 0, (d) � = −1, and (e) � = −2.
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Fig. 5. – Simulated intensity and phase for the set of five angular position (ANG) modes com-
posed of OAM modes with � = 0,±1,±2.
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1.5. Weak values. – Weak values were first introduced in a seminal paper by Aharanov,
Albert, and Vaidman in 1988 [20]. In general, weak values are complex numbers that
one can assign to the powers of a quantum observable operator Â using two states: an
initial, preparation state |i〉, and a final, post-selection state |f〉. The n-th order weak
value of Â has the form

(16) An
w =

〈f |Ân|i〉
〈f |i〉 ,

where the order n corresponds to the power of Â that appears in the expression.
Weak values have long been considered an abstract concept. However, since their

introduction 25 years ago, they have gradually transitioned from a theoretical curiosity
to a practical laboratory tool. In a recent review, we show how these peculiar complex
expressions appear naturally in laboratory measurements [21]. In order to do so, we
derive them in terms of measurable detection probabilities.

In a standard prepare-and-measure experiment, the probability of detecting an event
is given by P = |〈f |i〉|2 where |i〉 corresponds to the initial and |f〉 to the final state.
If we introduce an intermediate unitary interaction Û(ε) = exp(−iεÂ) that modifies the
initial state, the detection probability also changes to Pε = |〈f |i′〉|2 = |〈f |Û(ε)|i〉|2. If ε

is small enough, we can consider Û(ε) to be “weak”. In this case, the operator Û can
be expanded in a Taylor series. The detection probability above can then be written as
(shown here to first order):

Pε = |〈f |Û(ε)|i〉|2 = |〈f |(1 − iεÂ + . . .)|i〉|2(17)

= P + 2ε Im〈i|f〉〈f |Â|i〉 + O(ε2).

Assuming |i〉 and |f〉 are not orthogonal (i.e. P �= 0), we can divide both sides of the
previous equation by P to obtain

(18)
Pε

P
= 1 + 2ε Im Aw − ε2

[
Re A2

w − |Aw|2
]
+ O(ε3),

where Aw is the first-order weak value and A2
w is the second-order weak value as defined

above in eq. (16). Here, we arrive at our operational definition: weak values characterize
the relative correction to a detection probability |〈f |i〉|2 due to a small intermediate
perturbation Û(ε) that results in a modified detection probability |〈f |Û(ε)|i〉|2. When
the higher order terms in the expansion given in eq. (18) can be neglected, one has a
linear relationship between the probability correction and the first order weak value,
which we call the weak interaction regime. The conditions under which the higher order
terms cannot be neglected are discussed in detail in ref. [21].

In general, weak values are complex quantities. In order to measure a weak value, one
has to measure both its real and imaginary parts. In most laboratory measurements of
the weak value, one uses a coupled system of observables in order to do so. Such a system
is composed of two parts —a “system” observable, whose weak value we are interested
in measuring, and a “pointer” observable, which provides us with information about the
system observable. For example, in the experiment of Ritchie et al. [22], the authors use
a coupled system of photon polarization and position. This system is illustrated in fig. 6
by an experimental setup where the polarization of a photon is weakly coupled to its
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Collimating 
Lens

Collimating 
Lens

HWP QWP

Polariser CCD
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Imaging Lens

Fourier Transform 
Lens

Fig. 6. – An experiment illustrating how weak values are measured by using a coupled system of
two observables. (a) A collimated Gaussian beam from a single mode fiber (SMF) is prepared
in an initial polarization state by a quarter-wave plate (QWP) and half-wave plate (HWP). A
polarizer is used for post-selection into a final polarization state. A CCD is used for measuring
the position-dependent beam intensity. (b) A birefringent crystal inserted between the wave
plates and polarizer displaces the beams by a small amount. A lens is used for imaging the
output face of the crystal onto the CCD in order to measure the real part of the polarization
weak value. (c) A lens is used for imaging the far-field of the crystal face onto the CCD in order
to measure the imaginary part of the polarization weak value (figure redrawn from ref. [21]).

position by a thin birefringent crystal. In this setup, the polarization state is prepared
by a half-wave and quarter-wave plate, and post-selected by a polarizer. The position
state is prepared in a gaussian mode by collimating light from a fiber, and post-selected
by either imaging or Fourier-transforming the mode onto a CCD detector. The real and
imaginary parts of the polarization weak value are obtained by making appropriate post-
selections on the photon position or momentum, which result in the real or imaginary
parts of the polarization weak value being isolated.
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Such a system is described by a symmetric combination of the real and imaginary
parts of the weak values of polarization (Sw) and momentum (pw):

(19)
Pε

P
− 1 ≈ 2ε

�
[Re Sw Im pw + ImSw Re pw] .

Here, the real and imaginary parts of the polarization weak value are isolated by using
two experimental configurations. In one configuration, a post-selection of the photon
position is performed such that the momentum weak value is purely imaginary. This
corresponds to imaging the crystal face onto the detector, as shown in fig. 6(b). In this
case, the real part of the momentum weak value in eq. (19) goes to zero, which effectively
isolates the real part of the polarization weak value. In the second configuration, a post-
selection of the photon momentum is performed, which results in the momentum weak
value being purely real. This corresponds to looking at the far-field of the crystal face
with a Fourier-transform lens, as shown in fig. 6(c). In this case, the imaginary part of the
momentum weak value in eq. (19) goes to zero, which effectively isolates the imaginary
part of the polarization weak value. This example is analyzed in more detail in ref. [21].

In this manner, any system of two coupled observables can be used to measure the
weak value of one of the observables. For example, by making appropriate post-selections
on the polarization degree of freedom, one could isolate and measure the real and imagi-
nary parts of the momentum weak value. This is indeed the technique used in the direct
measurement method that is explained in sect. 2.4.

2. – Quantum technologies today

2.1. Introduction. – The Heisenberg uncertainty principle lies at the heart of most
modern quantum technologies. The ultimate limits of measurement precision are set
by this principle and have been reached through the use of quantum resources such as
entanglement and squeezed light [23, 3, 24]. The uncertainty principle also bounds the
probability of simultaneously measuring two complementary observables, such as position
and momentum. By extending this idea to discrete properties of a photon such as its
polarization, the field of quantum secure communication was developed [2,12]. Quantum
concepts such as superposition and entanglement have expanded the fields of information
theory and computing to remarkable frontiers [25, 26]. Clearly, quantum mechanics has
had a profound impact on modern technology. However, most of these technologies
still live in the domain of proof-of-principle experiments on the lab bench. Given the
rate of technological progress today, it will not be long before we see technologies such
as practical quantum computing and long-distance quantum communication become a
reality. In this section, we briefly describe three quantum technologies that form the
backbone of this article —quantum key distribution, quantum ghost imaging, and direct
measurement.

2.2. Quantum key distribution. – Quantum key distribution (QKD) was first proposed
by Bennett and Brassard in 1984 as a method by which two parties, Alice and Bob, could
share a random string of bits with one another with unconditional security [2, 27]. A
third party, Eve, with the intention of eavesdropping on Alice and Bob’s communication
channel, would be unable to do so without introducing a certain amount of statistical
error in the channel. This is best illustrated by the use of a simple example. Let us
say Alice wants to convey a bit value of 1 or 0 to Bob. She will then choose at least
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two mutually unbiased bases in which to represent this bit value. For polarization, two
such bases are the horizontal-vertical (H/V ) basis and the diagonal-anti-diagonal (D/A)
basis. These are known as “mutually unbiased bases” (MUBs) because one can express
each state in one basis as an equally weighted sum of the states in the other. We can
invert eqs. (3) from sect. 1 to write states in the H/V basis as a sum of states in the
D/A basis:

|V 〉 =
1√
2

[
|D〉 − |A〉

]
,(20)

|H〉 =
1√
2

[
|D〉 + |A〉

]
.

Let us say Alice picks the H/V basis for encoding. Then, state |H〉 corresponds to 0
and state |V 〉 corresponds to 1. Alice sends a bit value of 0 encoded as an |H〉 state. If
Eve intercepts the communication channel and measures this state in the correct H/V
basis, she will obtain the correct bit value. However, if she measures the state in the
incorrect D/A basis, she will have an error half the time. This is because when measuring
an |H〉 state in the D/A basis, Eve has an equal probability of measuring a |D〉 or an
|A〉 state, which in turn correspond to 0 or 1. This results in an error of 50% when Eve
measures in the wrong basis. Combined with the 50% chance of Eve picking the wrong
basis leads to a total error probability of 25%.

For the protocol to work, Alice randomly picks between the H/V and D/A bases for
encoding. She then transmits these states to Bob. Bob measures these states in the same
manner as Eve, by also randomly picking between the H/V and D/A bases. Just like
Eve, Bob will also get an error with 25% probability. To remove these errors, Alice shares
her basis choices through a public channel after Bob has made all his measurements. Bob
then discards all the measurements that he made where his basis choice did not match
Alice’s. This procedure is known as “sifting”.

After the sifting procedure, Alice and Bob ideally share an error-free string of bits.
Now let us reinsert Eve, who intercepts and resends all of Alice’s states to Bob. Like
Bob, Eve also measures these states by randomly picking between the H/V and D/A
bases. Again, like Bob, Eve gets an error rate of 25%. She then resends her measured
states to Bob in the basis she measured them in. By doing so, she introduces errors than
cannot be removed by the sifting process. For example, after sifting, Alice and Bob both
have a bit value measured in the H/V basis. If Eve also measured and resent that bit in
the H/V basis, she would have introduced no error. However, if she measured and resent
that bit in the D/A basis, she would have introduced an error half the time, leading to
a total error rate of 25%.

Thus, Alice and Bob can determine if Eve had intercepted and resent their states by
sacrificing a small part of the key and checking the error rate. If they obtain an error rate
less than 25%, they can assume their protocol was secure. If they obtain an error rate
greater than or equal to 25%, they assume an eavesdropper was present and abandon
the protocol. In this manner, Alice and Bob can generate a secure key using the method
of QKD.

The intercept-resend attack explained above is illustrated by means of a table in fig. 7.
All possible outcomes (post-sifting) are shown for the case when Alice picks an |H〉 photon
to encode a 0. The cases where Bob has an error, i.e. he registers a |V 〉 photon, are shown
as purple cells. These occur with a probability of 0.125 + 0.125 = 0.25. It is clear from
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Fig. 7. – A table showing the different possible outcomes in an intercept-resend eavesdropping
attack when Alice and Bob use a 4 state, 2 MUB protocol. As shown, Eve introduces a 25% error
between Alice and Bob after the sifting procedure (i.e. Alice and Bob discard all mismatched
basis measurements).

this table that an intercept-resend eavesdropping attack by Eve will introduce an error
of 25% between Alice and Bob.

The two main protocols used to perform QKD are known as the BB84 protocol [2]
and the Ekert protocol [12], named after their founders Charles Bennett, Gilles Brassard,
and Artur Ekert. The procedure described above is known as the BB84 protocol and
relies on the impossibility of cloning single photons for security [1]. Recent work has
cleverly extended this protocol for use with weak coherent pulses which are susceptible
to a photon number splitting eavesdropping attack. In this extension known as the
decoy state protocol, Alice randomly modulates the mean photon number of her pulses
and later shares this information with Bob [28]. The decoy state protocol is discussed
further in sect. 5. The second main QKD protocol invented by Artur Ekert relies on
the quantum correlations in entanglement for security. Alice and Bob initially share
correlated photons from a common entanglement source. Any eavesdropper intercepting
and resending either Alice or Bob’s photons disturbs the fragile entanglement, which
introduces errors as before. This loss of entanglement can also be checked via other means
such as a test of Bell’s inequalities [10] and entanglement witnesses [29]. Schematics for
both these protocols are shown in fig. 8.

The security analysis in the Ekert protocol is identical to that of BB84. The main
difference appears in the passive selection of states by Alice and Bob and the location
of the source. In BB84, the source is located at Alice and she actively picks states
to send to Bob. In Ekert, both Alice and Bob make passive measurements in their
chosen measurement bases. In addition, the source of entangled photons can be spatially
separated from both Alice and Bob. The lack of active preparation can be considered
a technological advantage of Ekert over BB84, especially since entangled sources are
available rather easily today.
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Fig. 8. – Schematics for (a) prepare and measure BB84 QKD protocol and (b) entanglement-
based Ekert QKD protocol.

2.3. Quantum ghost imaging . – Ghost imaging, also known as coincidence imaging,
was first implemented with position-momentum entangled photons [15, 30]. The strong
position and momentum correlations shared by such photons allow one to perform imag-
ing without a spatially resolving detector. This process is depicted in fig. 9(a). The
entangled photons are generated by pumping a β-Barium Borate (BBO) crystal with a
pump laser (not shown). The entangled signal and idler photons generated in the type
II downconversion process are orthogonally polarized, and can be separated with a po-
larizing beamsplitter (PBS). The crystal face is imaged both onto an object and onto a
“ghost” image plane through the PBS. The signal photon, as it has come to be called, is
then allowed to fall onto a spatially non-resolving bucket detector. As its name implies,
the bucket detector collects all the signal photons that make it past the object. The
idler photons, on the other hand, are imaged from the ghost image plane onto a spatially
resolving detector (CCD). A sharp image is obtained in the coincidence counts of the
CCD and the bucket detector. The term “ghost image” was coined for this phenomenon
based on the fact that the image was formed without directly obtaining any spatially
resolved image information from the object itself [15].

It was soon shown that ghost imaging relied solely on the spatial correlations of the
two light fields. The same effect was reproduced by using randomly but synchronously
directed twin beams of classical light [31]. A benefit of using entangled photons was found
to be that imaging could be performed both in the near and far fields, without having
to change the source [32, 33]. This is a direct consequence of the fact that entangled
photons have strong correlations in both position and momentum, which correspond to
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Fig. 9. – (a) An ideal quantum ghost imaging scheme that uses a CCD gated by a bucket detector
for creating a “ghost” image of an object without directly gaining any spatial information from
it. (b) In reality, CCDs that can detect single photons are not commonplace. Hence, a scanning
fiber tip is used in place.

correlations in the near and far fields respectively. In the case of ghost imaging with an
entangled source, the choice of whether to measure in the image plane or the diffraction
pattern is left to the observer, instead of being determined by the source. Subsequently,
even this property of ghost imaging with an entangled source was mimicked by using
a pseudothermal source [34]. The twin speckle patterns created by shining an intense
beam of light through a ground glass plate and a beamsplitter were found to have strong
spatial correlations in both the near and far fields [32].

In practice, both the quantum and thermal ghost imaging methods require the use of
many single-photon pairs or random speckle patterns to obtain an image. Also, long pro-
cessing times are needed for scanning an avalanche photodiode in the quantum case [15]
(fig. 9(b)) or averaging many speckle patterns on a CCD camera in the thermal case [34].
These requirements have made the practical applicability of such schemes difficult. Due
in part to this, ghost imaging has steadily inhabited the domain of proof-of-principle
experiments. Studies of ghost imaging through turbulence [35, 36] and ghost imaging
experiments using compressive sensing [37-39] have been performed. More recent efforts
to exploit the quantum correlations of spatially entangled photons have led to new tech-
niques for sub-shot-noise imaging [40]. A very recent experiment was able to use induced
coherence between entangled photons from two separate sources in order to image an ob-
ject with photons that never interacted with it [41]. It is clear that the field of quantum
imaging still has many new insights to offer and unexplored ideas yet to be discovered.
In sect. 4, we extend the ghost imaging technique described in this section into a ghost
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image identification scheme. Instead of using a scanning fiber tip to measure the image,
we use a hologram as an “image sorter”. In this manner, a known set of objects can
identified by a pair of entangled photons, one of which interacts with the object and the
other with the image sorting hologram. This technique is much faster than building a
ghost image pixel by pixel, and maximizes the amount of image information carried by
each photon.

2.4. Direct measurement . – Weak values first aroused interest in the context of ampli-
fying a small detector signal. By making an appropriate post-selection, the weak value
can be made very large, which allows an experimenter to easily estimate the unknown
small parameter ε. However, this amplification is achieved at the cost of a large loss due
to the post-selection process. Due to this, the benefits of weak value amplification as
compared to standard statistical techniques have been studied in detail [42, 43]. More
recently, weak values have been used in an alternative technique for measuring a quan-
tum state. Conventionally, a quantum state is measured through the indirect process of
quantum tomography [44]. Like its classical counterpart, quantum tomography involves
making a series of projective measurements in different bases of a quantum state. This
process is indirect in that it involves a time consuming post-processing step where the
density matrix of the state must be globally reconstructed through a numerical search
over the many allowed alternatives. Due to this, tomography is prohibitive for mea-
suring high-dimensional multipartite quantum states such as those of orbital angular
momentum.

Recent work has shown that a quantum state can be expanded into sums and products
of complex weak values, which are proportional to the probability amplitudes of the
state [45-47]. As these weak values are measurable quantities, a quantum state can
thus be determined directly without the need for the complicated post-processing step
involved in tomography. A particularly notable application of such an expansion is the
direct determination of the complex components of a pure quantum state |ψ〉 expanded
in a particular measurement basis {|a〉} [45-47]. This is accomplished by the insertion of
the identity and multiplication by a strategically chosen constant factor c = 〈b|a〉/〈b|ψ〉,
where the auxilliary state |b〉 must be unbiased with respect to the entire basis {|a〉} such
that 〈b|a〉 is a constant for all a. With this choice we have

(21) c|ψ〉 = c
∑

a

|a〉〈a|ψ〉 =
∑

a

|a〉 〈b|a〉〈a|ψ〉〈b|ψ〉 .

That is, each scaled complex component c〈a|ψ〉 of the state |ψ〉 can be directly measured
as a complex weak value of the projection operator Π̂a = |a〉〈a| using the unbiased
auxilliary state |b〉 as a post-selection. After determining these complex components
experimentally, the state can be renormalized to eliminate the constant c up to a global
phase. For mixed states, one can additionally vary the auxilliary state |b〉 within a
mutually unbiased basis to determine the Dirac distribution for the state directly using
the same technique [46,47].

We can use our previous example of a polarized beam going through a birefringent
crystal (fig. 6) to illustrate this idea. We showed earlier how we can isolate and measure
both the real and imaginary parts of the polarization weak value Sw in this experiment.
In order to apply our setup to characterize the polarization quantum state, we must
perform the post-selection in a basis mutually unbiased with respect to the weak mea-
surement basis. Specifically, as the birefringent crystal in our example performs a weak
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Fig. 10. – A schematic outlining the direct measurement experiment of Lundeen et al. [45] where
the authors measured the wave function in the position basis by using polarization as a pointer.

measurement in the H/V basis, we must orient the post-selecting polarizer in the D/A
basis (which is mutually unbiased with respect to the H/V basis). This is the exact
procedure used in the polarization state characterization experiment of ref. [47] and dis-
cussed in further detail in ref. [21].

In the pioneering experiment of Lundeen et al. [45], the authors first used this tech-
nique to measure the wave function of an ensemble of identically prepared photons in
the position basis. Following the theoretical treatment above, one can expand the wave
function |Ψ〉 in the position basis in terms of weak values. By inserting the identity
|x〉〈x| and multiplying by a constant factor c = 〈p |x 〉 / 〈p |Ψ 〉, one can write the wave
function as

(22) c|Ψ〉 = c

∫
dx|x〉〈x|Ψ〉 =

∫
dx|x〉 〈p|x〉〈x|Ψ〉

〈p|Ψ〉 =
∫

dx 〈πx〉W |x〉.

In this manner, the wave function at a particular position x is found to be proportional
to the weak value at that position

(23) cΨ(x) = 〈πx〉W .

In order to measure the position weak value, Lundeen et al. used polarization as a
pointer. As explained in sect. 1.5, the weak value of a particular observable can be
measured by coupling that observable to a pointer observable. As shown in fig. 10, the
authors performed a weak measurement of the position x of a photon by rotating the
polarization at x by a small angle with a sliver of half-wave plate (HWP). A strong mea-
surement of the conjugate variable of momentum was performed by Fourier-transforming
with a lens and post-selecting value p = 0 of momentum. By measuring the rotation of
the polarization vector in the linear and circular polarization bases, the authors were
able to measure the real and imaginary parts of the position weak value. From this, they
obtained the real and imaginary parts of the wave function, which then gave them the
amplitude and phase as a function of x. They verified this measurement by comparing it
to a regular measurement with a Shack-Hartmann wavefront sensor. We use this direct
measurement technique in sect. 6 to measure the wave function of a high-dimensional
quantum state in the OAM basis.
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Fig. 11. – A sketch comparing the (a) quantum key distribution and (b) quantum-secured
imaging protocols. (Figure redrawn from ref. [50], c© 2012 American Institute of Physics.)

The primary benefit of this tomographic approach is that minimal post-processing is
required to construct the state from the experimental data. The real and imaginary parts
of each state component directly appear in the linear response of the measurement device
up to appropriate scaling factors. The downside of this approach is that the auxiliary
state |b〉 must be chosen carefully so that the denominator 〈b|ψ〉 or 〈p|Ψ〉 (and hence the
detection probability) does not become too small and break the weak interaction approx-
imation used to determine the weak values [48]. This restriction limits the generality of
the technique for faithfully determining a truly unknown |ψ〉. For a more comprehensive
review of recent work on this topic, see ref. [21].

3. – Quantum-secured surveillance

3.1. Quantum-Secured Imaging . – Active imaging systems such as radar and lidar are
susceptible to intelligent jamming attacks, where the light used for querying an object
is intercepted and resent. In this manner, an object can send false information to the
receiver belying its true position or velocity, or even creating a false target [49]. In this
section, we show how one can detect such jamming attacks by using quantum states of
light modulated in polarization. The BB84 protocol of quantum key distribution (QKD)
uses such quantum states to generate a random key with unconditional security [2].
By randomly modulating the polarization of single photons in two mutually unbiased
polarization bases, the sender (Alice) can send a stream of 1s and 0s to the receiver
(Bob). Any eavesdropper trying to gain information about the polarization of a photon
will have to perform a measurement, thus unalterably changing the polarization state
and introducing errors that Alice and Bob can detect. In this manner, the eavesdropper
will reveal herself (fig. 11a).

We extend this idea to an imaging system, where the object to be imaged now plays
the role of the eavesdropper. Alice and Bob constitute the imaging system, and are
hence located in the same place (fig. 11b). If the object intercepts and resends any of
the imaging photons, it will introduce errors in the polarization encoding that can be
detected by Alice and Bob. In a two-dimensional polarization-based QKD system, the
minimum error introduced by an eavesdropper using an intercept-resend attack is equal
to 25%. We apply this same error bound to our imaging system. As shown in fig. 12, a
HeNe laser is intensity modulated by an acousto-optic modulator (AOM) to create pulses
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Fig. 12. – Schematic of our quantum-secured imaging experiment. An object is securely imaged
with single-photon pulses modulated in polarization. Security is verified by measuring the error
between sent and received polarizations. (Figure redrawn from ref. [50], c© 2012 American
Institute of Physics.)

with less than one detected photon on average. A half-wave plate (HWPa) mounted on a
motorized rotation stage randomly switches the polarization state of the photon among
horizontal, vertical, diagonal, and anti-diagonal (|H〉, |V 〉, |D〉, and |A〉). The single-
photon pulses are incident on the object, which consists of a stealth aircraft silhouette
on a mirror. They are then specularly reflected from the object towards our detection
system. In fig. 12, a non-zero reflectance angle is shown for clarity. An interference filter
(IF) is used to eliminate the background. A second rotating half-wave plate (HWPb)
and a polarizing beam-splitter (PBS) perform a polarization measurement in either the
horizontal-vertical (H/V ) or diagonal-anti-diagonal (D/A) basis. Two lenses are used
after the PBS to create four images corresponding to the four measured polarizations on
an electron-multiplying CCD camera (EMCCD), which serves as a spatial single-photon
detector.

Fig. 13. – Laboratory demonstration of quantum-secured imaging. (a) When there is no jamming
attack, the received image faithfully reproduces the actual object, which is shown in the inset.
(b) In the presence of an intercept-resend jamming attack, the received image is the “spoof”
image of a bird. However, the imaging system can always detect the presence of the jamming
attack, because of the large error rate in the received polarization. In (a) the error rate is 0.84%,
while in (b) it is 50.44%. A detected error rate of > 25% indicates that the image received has
been compromised. (Figure redrawn from ref. [50], c© 2012 American Institute of Physics.)
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Figure 13(a) and (b) show two images formed using this system. The first image of a
stealth aircraft has a measured polarization error of 0.84%. This means that 0.84% of the
time in the image, the measured polarization of a received photon was different from the
photon polarization sent. Since this is less than the error bound of 25%, this image can
be considered secure. The second image shows results from a simulated intercept-resend
attack where the object simply blocked all the incoming photons, and resent photons in
state |H〉 with modified information indicating the image of a bird. The polarization
error measured in this case is 50.44%, which is very close to the expected value of 50%.
Since this is greater than the error bound of 25%, it indicates that the object was actively
jamming the imaging system.

3.2. Quantum-secured LIDAR. – We can apply this quantum-secured protocol to a
lidar system that uses the time-of-flight information of a light pulse to measure the
velocity of a moving object. In ref. [50], we propose such a system based on the Ekert
protocol of QKD. In our system, one photon from an entangled pair is kept locally. The
second photon travels to the object and back. Any intercept-resend attack by the object
can be detected by testing the presence of entanglement in the system via a test of Bell’s
inequalities. The loss of entanglement would indicate that the lidar system system is
being actively jammed. This lidar system is discussed in more detail in ref. [50]. While
our quantum-secured protocols are certainly limited by cloaking techniques that do not
modify the polarization state of a photon, they can be easily integrated into modern
optical ranging systems given the current state of QKD technology.

4. – Quantum ghost image identification

4.1. Introduction. – Holograms are a hallmark of science fiction movies, often used to
instill a sense of futuristic reality where one can create three-dimensional objects made
entirely of light. While realistic 3D holograms are indeed a technology of the future,
simpler holograms are more commonplace than one may think. For example, holograms
are used as security marks on identity and credit cards. Holograms are also used for
recording large amounts of information onto a medium. A simple hologram can be
formed by interfering two mutually coherent waveforms, which can be written in terms
of their amplitude and phase as [51]

A(x, y) = |A(x, y)|eiφA(x,y),(24)

R(x, y) = |R(x, y)|eiφR(x,y).

Here, A is an arbitrary unknown field and R is a known reference field. In the developing
process, the interference pattern written onto the hologram is given by the intensity
I(x, y) = |A(x, y) + R(x, y)|2 as follows:

I(x, y) = |A(x, y)|2 + |R(x, y)|2 + A(x, y)†R(x, y) + A(x, y)R(x, y)†(25)
= |A(x, y)|2 + |R(x, y)|2 + 2|A(x, y)||R(x, y)| cos

[
φR(x, y) − φA(x, y)

]
.

Here, the first two terms depend only on the intensities of each field while the third
term depends on their relative phases. In this manner, a hologram stores information
about both, the amplitude and the phase of the unknown waveform A. By sending the
reference waveform R through the developed hologram, the unknown waveform A can
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Fig. 14. – A cartoon showing (a) the construction and (b) the operation of a two-object multi-
plexed hologram as an image sorter.

be reconstructed. In fact, we use this technique in sect. 5 to create fields with a helical
phase structure, also known as orbital angular momentum modes.

4.2. Holograms as image sorters. – The wavefront reconstruction process described
above can be employed in reverse. Instead of recreating the waveform A by sending
reference R into the hologram, one can send waveform A into the hologram to recreate
reference R. In this manner, a hologram can be used to “identify” an image from a set
of images. The resulting output can be written as a product of the original waveform
with the transmission function given by the intensity of the hologram

A(x, y)I(x, y) = A(x, y)|A(x, y)|2 + A(x, y)|R(x, y)|2(26)
+|A(x, y)|2R(x, y) + A2(x, y)R(x, y)†

If a plane wave is used as the reference beam, the first two terms in the above equation
are simply an attenuated version of the original unknown waveform propagating in the
normal direction. We refer to this as the “zero-order” output from the hologram. The
third term gives us the recreated reference beam R, which also carries the intensity
distribution of the original waveform |A|2. The fourth term refers to a virtual reference
beam R†. A similar hologram can be constructed for two arbitrary fields A and B, with
two difference reference fields R1 and R2. Such a hologram is referred to as a multiplexed
hologram, and can be used an image sorter for distinguishing two images for each other.

A cartoon showing the construction and operation of such a multiplexed hologram is
shown in fig. 14(a) and (b). First, the holographic material is exposed with an interference
pattern formed by interfering field A originating from object A with a reference plane
wave R1. Then, this procedure is repeated for object B with a reference plane wave R2

from a different direction (fig. 14(a)). The hologram is then fixed (or developed) to make
the interference pattern permanent. This multiplexed hologram then acts as an image
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Fig. 15. – CCD images showing the output from a four-object multiplexed hologram sorting
objects (a)-(d). Panel (e) shows the output when a collimated field is sent into the hologram.
Notice that a strong zero-order field (indicated by the vertical black arrow) is present in all
cases.

sorter, converting a field from object A into reference R1 and one from object B into
reference R2 (fig. 14(b)). The output from such a hologram made for 4 different objects
is shown in fig. 15. CCD images of the output for each object (a-d) show a strong
zero-order output in the normal direction (indicated by a black arrow), and a strong
diffracted component in the direction of the original plane wave associated with object
(a-d). In fig. 15(e), the output obtained when a collimated beam with uniform amplitude
is input into the hologram is shown. As can be seen, all four diffracted orders are present,
as image information for all four objects is present in the input. While these images show
the hologram operating at high light levels, we use the same hologram in the next section
to perform ghost image identification with single photons. Many of these predictions have
been verified in recent publications [52,53].

4.3. Ghost image identification with correlated photons . – In this section, we describe
a quantum ghost imaging scheme that uses the aforementioned holographic filtering tech-
nique to identify an object from a large basis set of objects [53]. As a proof-of-principle
experiment, we demonstrate this method for both a set of two and a set of four spatially
non-overlapping objects. We do so by replacing the CCD in the idler arm of the standard
ghost imaging setup described in sect. 2.3 with a holographic sorter. The ghost image
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Fig. 16. – Experimental setup for quantum ghost image identification. DM is a dichroic mirror
for blocking the pump laser; IF is an interference filter with 10 nm bandwidth, centered at
727.6 nm. The dotted lines indicate the imaging process for a point object. (Figure adapted
from ref. [53].)

is obtained from the coincidence counts of the bucket detector and the beams diffracted
by the hologram. In this manner, we are able to determine which object from our pre-
established set is in the signal arm without directly acquiring any spatial information
about it. In our analysis, we change the naming system by referring to the signal arm
as the “object” arm and the idler arm as the “ghost” arm. The object arm is the path
taken by the object photon and contains the object followed by the bucket detector. The
ghost arm is the path taken by the ghost photon and contains a holographic sorter and
single-photon detectors (fig. 16).

Let us first describe the two-object case. The measurement in the object arm is
carried out by the object-bucket detector combination. The object photon is either
transmitted into the bucket detector, labelled R in fig. 16, or is blocked by the object.
The measurement in the ghost arm is carried out by the hologram-detectors combination.
The ghost photon is diffracted into either detector A or B. If object a is present in the
object arm and transmits an object photon into bucket detector R, the corresponding
ghost photon will always be diffracted by the hologram into detector A. This is due to
the strong position correlations between the two photons. A similar explanation holds
for object b.

Our experimental setup for the two-object case is sketched in fig. 16. The holographic
sorter is created by multiplexing the two spatially non-overlapping objects a and b with
reference beams incident at different angles. It is recorded with a collimated HeNe laser
at 633 nm on a silver-halide plate. The entangled photon pairs are created by degenerate
SPDC in a collinear type-II phase matched BBO crystal pumped by a cw beam from an
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Fig. 17. – Image-identification results for the two-object case. (a) Data for each object-detector
combination is normalized by the maximum coincidence count for the corresponding object.
(b) T/A ratio is calculated by dividing the total coincidences by the accidental coincidences for
each object-detector combination. (Figure adapted from ref. [53].)

argon-ion laser operating at a wavelength of 363.8 nm. The pump beam is well collimated
with a divergence of less than 0.31 mrad and a beam waist of 3 mm. A dichroic mirror
placed after the crystal blocks the pump laser light. A polarizing beam splitter separates
the object photon from the ghost photon. The distance between the crystal and the
object (and the ghost image plane) is 45 cm. The imaging condition is met by placing
a 10-cm-focal-length lens 15 cm after the crystal. The ghost image plane then acts as
a “virtual object” for the hologram. This imaging process is illustrated in fig. 16 with
dotted lines for a point object at the crystal. In the unfolded or Klyshko interpretation
of the setup [30], one can understand the object as being imaged onto the crystal face,
which is then imaged onto the ghost image plane, and consequently imaged onto the
hologram. A more detailed theoretical analysis of the imaging process for entangled
two-photon fields can be found in ref. [54]. Perkin-Elmer avalanche photodiodes and a
coincidence circuit with a window of approximately 12 ns are used for the detection.

When a coincidence count correctly identifies the object, we refer to it as a true case
(A-a or B-b), and the opposite as a false case (A-b or B-a). The normalized experimental
results for each object are graphed in fig. 17(a). The data for each detector are normalized
by the number of coincidence counts recorded by that detector for a true case. It is clear
from this figure that our experimental system has high contrast between true and false
cases. The ratio between total and accidental coincidence counts (T/A ratio) for each
object-detector combination serves as a measure of the system fidelity [52] and is graphed
in fig. 17(b).

We repeat this experiment for an object space of four objects. An angularly mul-
tiplexed hologram was created for the four spatially non-overlapping objects shown in
fig. 18(c) using the same method as before. The image sorting operation of this holo-
gram at high light levels is discussed in the previous section. The normalized coincidence
counts and the T/A ratios for each object-coincidence combination are plotted in fig. 18.

Ghost image identification using a holographic sorter clearly has many advantages
over other ghost imaging schemes. First, a hologram provides an all-optical method of
sorting images that can overcome the limitations of slow CCD frame rates [55]. Second,
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Fig. 18. – (a) and (b) Graphs of ghost-image-identification results for the four-object case.
(c) The four spatially non-overlapping objects used in our experiment. (Figure adapted from
ref. [53].)

distinguishing among objects of a known set is much faster than building an image pixel
by pixel. This approach has practical applications in situations where the objects to be
distinguished fall into a relatively small class of objects. Third, an advantage of using
quantum ghost image identification appears in the applicability of this method when ex-
tremely low light levels are required. One can classify this as a type of “stealth imaging”,
where a minimum number of photons is used in order to avoid optical eavesdropping or
letting the object become aware of its detection. The small number of photons used
in quantum ghost image identification make it an excellent candidate for such imaging
schemes. When combined with the quantum-secured imaging technique that is discussed
in sect. 3, quantum ghost image identification could prove especially valuable for securely
identifying an object while economizing the number of photons used.

Matched filters have been used for pattern recognition for many years [56]. Highly
overlapping objects can be sorted with a high confidence factor using matched filters made
with holograms [51]. While our experiment addresses only non-overlapping amplitude
objects, in principle it is possible to construct matched filters that distinguish among
complicated and overlapping objects. However, the efficiency of the identification process
is reduced for such sets of objects, and more than one photon pair is needed to distinguish
unambiguously among them [57].

In conclusion, we have shown that it is possible to discriminate among non-overlapping
objects using a small number of correlated photon pairs, without gaining any spatially
resolved information about the objects themselves. Although we have performed this
experiment for object spaces of two and four objects, it is possible to expand the size of
the object space markedly. Multiplexed holograms have been designed to store as many
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as 10000 images [58]. However, as the object space increases, limitations on coincidence
counts will be imposed by large crosstalk and low diffraction efficiency. The possibility of
using thick holograms to remedy such problems is a topic worth exploring in the future.

5. – High-dimensional quantum key distribution

5.1. Introduction. – Since Bennett and Brassard introduced the first quantum key
distribution (QKD) protocol in 1984 [2], the field of QKD has rapidly developed to
the extent that QKD systems are commercially available today. Secure transmission of a
quantum key has been performed over 148.7 km of fiber [59] as well as over 144 km of free
space [60]. One of the limiting aspects of these key distribution systems is that they use
the polarization degree of freedom of the photon to encode information [59,60]. The use
of polarization encoding limits the maximum amount of information that can be encoded
on each photon to one bit. In addition, it places a low bound on the amount of error an
eavesdropper can introduce without compromising the security of the transmission [61].
Because of these limitations, there has been great interest in exploring other ways to
encode information on a photon that would allow for higher data transmission rates and
increased security [62,63].

In this section, we report results on the use of orbital angular momentum (OAM)
modes of a photon in QKD. The motivation for doing so is that OAM modes span a
discrete, infinite-dimensional basis. Hence, there is no limit to how much information
one can send per photon in such a system. The large dimensionality of this protocol
also provides a much higher level of security than the two-state approach [61]. How-
ever, in a practical communication system using OAM modes, the maximum number of
modes that can be used is limited by the size of the limiting aperture in the system.
This occurs because the radius of an OAM mode increases with the mode number. In
this section, we discuss the advantages of increasing the dimensionality of the Hilbert
space for a QKD system in detail. Then, we explain how we use holograms to generate
the high-dimensional modes we use in our system. A significant part of any quantum
communication system is the efficient sorting of single photons carrying information.
we describe the approach we use to sort photons carrying OAM. Finally, we describe
two high-dimensional QKD systems that use OAM modes for encoding, which we are
currently in the process of building. Since our system uses spatial modes, it is highly
susceptible to turbulence. Recently, there have been several theoretical studies on how
atmospheric turbulence affects OAM modes [64-68]. In addition, many recent exper-
iments have been performed that study the effects of atmospheric turbulence on the
channel capacity of an OAM communication channel at high light levels [69-71].

5.2. Advantages of high dimensionality

5.2.1. Channel capacity of an ideal channel. The amount of information that can be
carried by a channel is related to the concept of entropy. Generally, entropy is understood
as a measure of disorder in a system. For example, in the context of thermodynamics,
the entropy of a glass of ice water increases as its reaches room temperature and the
ice melts. Similarly, in information theory, entropy is understood as a measure of ran-
domness of a variable. First applied to the field of communication systems by Claude
E. Shannon [72,73], the Shannon entropy of a random variable can be thought of as
a measure of its uncertainty before we learn its value. Another way of understanding
this is in terms of the information gained after learning the value of the variable. The
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Fig. 19. – Shannon entropy of a coin toss as a function of fairness.

Shannon Entropy is defined as

(27) H(X) = H(p1, . . . , pN ) = −
∑

n

pn log2(pn),

where pn is the probability of the n-th outcome of the variable X. A simple example is a
coin toss. A fair coin has equal probability of resulting in a “heads” or “tails” outcome.
This results in a maximum entropy of 1 as follows:

(28) H(X) = H(pheads, ptails) = −(0.5 × log2(0.5) + 0.5 × log2(0.5)) = 1 bit.

If the coin we are using is unfair such that it has a 3/4 probability of resulting in “heads”
and 1/4 probability of resulting in “tails”, its Shannon entropy is reduced to 0.81 as
follows:

(29) H(X) = −(0.75 × log2(0.75) + 0.25 × log2(0.25)) = 0.8113 bit.

The plot in fig. 19 shows the entropy of a coin toss as a function of the fairness of
the coin (the probability of getting “heads”). A fair coin has a 0.5 probability of getting
“heads” in a toss. In the limits of a completely unfair coin, the entropy goes to zero.
This makes sense if you think of the entropy in terms of the information gained. If the
coin toss always results in the same outcome, no net information is gained. Another
way of understanding this definition of entropy is in terms of the resources needed to
store information. For a 50-50 fair coin, we need at least 1 bit per toss to store this
information. For an unfair coin as shown in eq. (3), we need at least 0.8113 bit per toss
to store the information.

Now lets extend this idea to a communication channel. Imagine a channel where the
sender encodes a message by picking “heads” or “tails” on a coin and then sending the
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Fig. 20. – Channel capacity of a communication channel as a function of the number of sym-
bols N .

coin to the receiver. A completely random message can be thought of as the result of
many tosses of a fair coin. A communication channel employing such a 2-symbol encoding
can then at most carry 1 bit of information. If the channel is biased towards one result
(i.e. the coin is unfair), the amount of information that can be carried by this channel is
reduced from 1 bit. For now, lets consider an ideal channel that employs an N -symbol
encoding, with each symbol being equally likely to occur (pn = 1/N). The maximum
amount of information that such a channel can carry is given by simplifying eq. (27):

(30) H(X) = −
∑
N

1
N

log2

(
1
N

)
= log2(N).

As shown in fig. 20, the channel capacity increases logarithmically as a function of
the number of symbols, or the channel dimension, N . As mentioned in the introduction
above, QKD systems conventionally use the polarization degree of freedom of a photon
for encoding. Polarization is inherently a two-dimensional state space, as there are
only two orthogonal polarizations in any given polarization basis (for e.g., horizontal
and vertical, or left-circular and right-circular). For polarization, the maximum channel
capacity is then limited to log2(2) = 1 bit/photon. However, for an OAM-based QKD
system employing 25 OAM modes, the channel capacity is increased to log2(25) = 4.64
bits/photon, which is almost 5 times the capacity of the polarization-based system!

5.2.2. Enhanced security in QKD. As explained in sect. 2, a QKD link between two
parties (Alice and Bob) is susceptible to eavesdropping. However, due to the quantum no-
cloning theorem [1], an eavesdropper (Eve) cannot perfectly replicate a quantum system
without destroying it. Thus, an eavesdropper using the simplest form of eavesdropping
—intercept and resend— will introduce statistical errors in the channel that can be
measured by Alice and Bob. For this reason, Alice and Bob must attribute all errors
in their channel to Eve. If their measured error rate is equal to or higher than that
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Fig. 21. – Bob’s allowed error rate for an intercept-resend eavesdropping attack as a function
of system dimension N for M = 2 MUBs (dashed blue line) and the maximum of M = N + 1
MUBs (solid red line).

expected from an eavesdropper using a known method of eavesdropping, their protocol
is no longer secure and they must abandon it.

In sect. 3, we discuss the error bound for a polarization-based quantum-secured imag-
ing system in detail (eB < 25%). Similarly in polarization-based QKD, if Alice and Bob
measure an error rate greater than or equal to 25%, they must abandon their protocol.
However, it is important to note that this error rate was derived for a QKD system using
two mutually unbiased bases (MUBs). In general, the maximum number of MUBs in
an N -dimensional QKD system is equal to N + 1, for when N is a prime number [74].
For the polarization-based implementation of the BB84 protocol [2], N is equal to 2 and
there are three available MUBs —the horizontal-vertical (HV) basis, the diagonal-anti-
diagonal (DA) basis, and the left-circular-right-circular (LR) basis. A polarization-based
QKD system can use all three MUBs for encoding. Such a protocol is referred to as the
“six-state protocol” [75]. The use of three instead of two MUBs has two effects. First,
the data rate drops by 50%. This is because Alice and Bob will now prepare and measure
in the same MUB only 1/3 of the time (as opposed to 1/2 the time) and will discard 2/3
of the data in the sifting process. Second, the error bound increases from 25% to 33%.
This is because Eve has a higher probability of measuring in the wrong MUB now that
there are three MUBs, and hence has a higher probability of introducing errors in the
transmission.

In general, the error bound for an intercept-resend attack in an N -dimensional system
with M MUBs in given by [61]

(31) eB(N,M) =
(

1 − 1
M

)(
1 − 1

N

)
.

Using this equation, we plot the error bound for an intercept-resend eavesdropping attack
as a function of system dimension for M = 2 MUBs (dashed blue line) and the maximum
of M = N + 1 MUBs (solid red line) in fig. 21. It is clear that the allowed error rate
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Fig. 22. – Bob’s allowed error rate for finite coherent eavesdropping attacks as a function of
system dimension N . The allowed error rate is independent of the number of MUBs used.

goes up markedly with system dimension. For very large N , the error rate goes to 0.5
and 1.0 asymptotically for these two cases. Clearly, using more MUBs is beneficial for
security, but has an adverse effect on data rates.

While the allowed error rate can be quite high for intercept-resend attacks on high-
dimensional QKD systems, a stricter bound is imposed on the error rate in the case of
finite coherent eavesdropping attacks. In these attacks, Eve coherently manipulates a
finite number of qudits in order to gain information about the key [76]. While the details
of such attacks are outside the scope of this article, the error introduced by them on a
QKD system follows the inequality [61]

(32) (1 − eB) log(eB) + eB log
(

eB

N − 1

)
> −1

2
log(N).

Notice that in contrast with intercept-resend attacks, the error rate for coherent attacks
depends only on system dimension N and is independent of the number of MUBs, M .
This equation can be numerically solved to produce values of the error bound eB as a
function of system dimension N . We used the “FindInstance” function in Mathematica
to find values of the error bound, which are plotted in fig. 22. As can be seen, the allowed
error rate for coherent attacks is indeed much stricter than that allowed for intercept-
resend attacks. However, even in this case, there is a clear increase in the allowed error
rate for larger system dimensions, N . For example, the allowed error rate for 16 modes
is equal to 0.29, as opposed to 0.11 for 2 modes. This serves as ample motivation for
using a high-dimensional encoding scheme for QKD such as that of OAM.

5.3. Generating OAM and ANG modes. – Since OAM modes have a helical phase, a
straightforward way of generating beams carrying OAM is by using a phase plate whose
optical thickness varies in a similar fashion. These so called “spiral phase plates” are
commercially available today but are quite expensive, costing upwards of a thousand
dollars per plate. This is because of the high precision required to manufacture them. In
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Fig. 23. – Phase profiles showing the addition of (a) an OAM mode with � = +3 with a plane
wave mode generating a forked hologram and (b) an ANG mode with n = 5 (N = 11) with the
same plane wave mode generating an ANG hologram. Holograms like these are implemented on
spatial light modulators (SLMs) to generate arbitrary superpositions of OAM and ANG modes.

order to create an � = ±1 spiral phase plate, for example, one must create a refractive
index variation in glass that varies as λθ/π, where θ is the azimuthal position. Due to this
manufacturing difficulty, there has been increased interest in the development of other
techniques for generating OAM modes. Here we describe the technique of holography,
which is the one we use in our lab.

As explained in sect. 4, a hologram is formed by interfering two wavefronts. One
of these wavefronts is usually a plane wave incident at a particular angle, and is con-
ventionally referred to as the reference beam. The second wavefront can take on any
structure. The interference pattern between these two wavefronts is written onto a holo-
graphic material, which is then developed to form a permanent hologram. In sect. 4, we
used such a hologram as an image sorter. In this process, the second (more complicated)
wavefront is sent through the developed hologram, producing a wavefront propagating
in the direction of the original reference beam. One can easily flip this procedure around
and use the same hologram to create the second complicated wavefront. This is carried
out by sending a plane wave at the exact angle of the original reference beam, which
interferes with the hologram to create the original, complicated wavefront.

In this manner, we can create a hologram that can be used for generating an arbitrary
superposition of OAM modes. In fig. 23(a), we show the phase profiles of an � = +3 OAM
mode, a plane wave, and the their sum (mod 2π). The OAM mode phase winds around
the center of the beam with three 2π jumps, as expected. The phase of the plane wave
mode resembles a linear grating. The combined phase shows a peculiar phase structure
at its center. This is commonly referred to as a “forked” hologram. First proposed in
1992 [77], it is a standard method for generating beams with phase singularities or OAM
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Fig. 24. – System used for generating an arbitrary superposition of OAM modes. A spatially
filtered and collimated HeNe laser beam is incident on a “forked” diffraction hologram imple-
mented on an SLM. A 4f system of lenses (L2 and L3) along with a pinhole is used to remove
background noise from the SLM. The OAM mode is obtained in the image plane of the SLM.

beams. The number of dislocations in the fork corresponds to the azimuthal quantum
number of the OAM mode. For a negative OAM mode, the fork is upside down. When
a plane wave is incident on such a hologram at the angle of the original plane wave or
“blaze” of the hologram, an OAM mode with � = 3 is generated propagating normal to
the hologram. A similar hologram can be used for generating angular position (ANG)
modes, which are simply a complex superposition of OAM modes that resemble a wedge
rotating around the center of the beam (see sect. 1 for a detailed discussion). The set of
ANG modes formed by combining 11 OAM modes is given by

(33) Θn =
1√
11

5∑
�=−5

Ψ� exp
(

i2πn�

11

)
.

As can be seen above, this set is formed by coherently adding OAM modes with an
azimuthal quantum number � ≤ ±5. One should note that the coefficient for each
OAM mode in this superposition is equal, which is what makes the basis of ANG modes
mutually unbiased with respect to the OAM basis. Specifically, if an ANG mode photon
is measured in the OAM basis, it has an equal probability to appear in any of the
component OAM modes, and vice versa. A hologram used for generating an ANG mode
with n = 5 is shown in fig. 23(b).

In our experiment, we generate OAM and ANG modes by implementing such holo-
grams on a Holoeye PLUTO phase-only spatial light modulator (SLM) in conjunction
with a 4f system of lenses [78, 79]. A schematic for this system is shown in fig. 24. A
HeNe laser is spatially filtered through a single mode fiber (SMF) and collimated by a
lens (L1). This collimated, Gaussian beam is incident on an SLM with a forked diffrac-
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Fig. 25. – Upper row: Holograms written onto the SLM to generate OAM and ANG modes.
Lower row: CCD images of the corresponding modes generated. These are OAM mode numbers
� = −1, 3, and 5, and ANG mode numbers n = 1, 5, and 9. (Figure redrawn from [69], c© 2012
The Optical Society.)

tion grating as shown in fig. 23(a). The beam diffracts off the SLM and is sent through a
4f system of lenses (L2 and L3) with a pinhole in between the two lenses. The purpose
of this pinhole is to pick out the first diffracted order of the blazed hologram. The reason
for doing so is that the zeroth order contains a lot of noise in the form of unwanted re-
flections from the SLM. A primary contributor to this is the periodic gap between SLM
pixels, which also acts like a diffraction grating. By blazing the hologram in both x and
y and picking off the first order of diffracted light in the Fourier plane, we eliminate this
background noise [78]. Figure 25 shows some of the holograms we use in our setup and
CCD images of the OAM and ANG modes generated by them.

5.4. Sorting OAM and ANG modes. – One of the key hurdles to using OAM modes to
perform QKD has been the need of a method of efficiently sorting single photons carrying
OAM modes. This problem has eluded the scientific community for over a decade. A
standard method for measuring the OAM content of a photon has been to project out
each OAM mode. This procedure simply involves using the forked diffraction grating
backwards (similar to the image sorter in sect. 4). An OAM mode with � = +2 incident
on a forked diffraction grating with � = −2 will generating a plane wave (with � = 0)
traveling in a specific direction. When sent through a lens, this plane wave will produce
a peak at p = 0. Any other OAM mode with �′ �= +2 sent through the same forked
diffraction grating will not produce a plane wave, instead generating an OAM mode
with �′′ = �′ − 2. This OAM mode, when Fourier transformed by a lens, will have a null
at p = 0 (the Fourier transform of an OAM mode is also an OAM mode). By placing a
small aperture or fiber at the focus of this lens, a forked hologram can be used to test
for a particular OAM mode. However, this procedure destroys the photon under test,
and is thus limited to an efficiency of 1/N , where N is the number of OAM modes to be
measured.

The first method for efficiently sorting photons carrying OAM used a set of rotated
Dove prisms in the arms of a Mach-Zehnder interferometer (MZI) [80]. In this interfero-
metric method, photons with even � were obtained from one MZI port, while photons with
odd � were obtained from the other. By cascading such OAM “parity” checking MZIs,
and cleverly inserting OAM parity shifting spiral phase plates (or holograms) between
them, this method could, in principle, be used to efficiently sort single photons carrying
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Fig. 26. – A schematic illustrating the OAM mode sorting procedure. The unwrapper element
(R1) unwraps the helical phase of an input OAM mode, transforming it into a finite-sized
plane wave mode with a tilt. The phase corrector element (R2) removes residual aberrations
introduced during the mode transformation. A lens (L1) converts the tilted plane wave modes
into somewhat spatially separated position modes. A fan-out element (R3) implemented on an
SLM creates 3 adjacent copies of the finite plane wave mode, albeit with a phase offset between
them. A final fan-out phase corrector element (R4) removes this phase offset between the copies.
A lens (L2) then focus these larger plane wave modes into well separated position modes at the
CCD camera (figure adapted from [84]).

OAM. However, the problems associated with this method are almost obvious —besides
the problem of scaling to large OAM dimensions, the use of many optical components
would reduce the efficiency of the method by absorption of photons.

Clearly, a more elegant solution was required, which was introduced recently by a
method that uses a geometric transformation to convert an OAM mode with an azimuthal
phase variation ei�φ to a tilted plane wave mode with a position phase variation ei�x [81].
The tilt of the plane wave mode is proportional to the OAM quantum number � of
the OAM mode. In this manner, OAM modes can be sorted by first converting them
into tilted plane waves, and then Fourier transforming the plane waves into separated
position modes. Two custom refractive elements [82] are used to optically map polar
coordinates (r, ϕ) in the input plane to rectilinear coordinates in the output plane (x, y)
via the log-polar mapping x = a(ϕ mod 2π) and y = −a ln(r/b). Here, a and b are
scaling constants that define the size of the converted mode [83]. The first element, the
unwrapper (R1), maps intensities according to the coordinate transformation. A second
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element, the phase corrector (R2), corrects a residual aberration. Thus, optical waves
with helical phase fronts are transformed into tilted plane waves, which can be sorted at
the focus of a lens. This process is illustrated in fig. 26 for one input OAM mode.

The two custom elements used in our setup were diamond machined with a Nanotech 3
axis ultra precision lathe in combination with a Nanotech NFTS6000 fast tool servo [82].
The program used for the machining was written with DIFFSYS, which is a commercially
available software. The program converted the input data given by a set of Cartesian
coordinates (x, y, z) into files usable by the lathe and servo tools. The optical thickness
of the first, unwrapping element can be written as a function of (x, y) as

(34) Z1(x, y) =
a

f(n − 1)

[
y arctan(y/x) − x ln(

√
(x2 + y2)/b) + x − 1

2a
(x2 + y2)

]
.

Here, f is the focal length of the lens integrated into both elements. This lens performs
the Fourier transform operation that is required between the unwrapping and phase
correcting procedures [81]. The two free parameters, a and b, dictate the size and position
of the transformed beam. The optical thickness of the second, phase correcting element
can be similarly written as

(35) Z2(x, y) = − ab

f(n − 1)

[
exp

(
− u

a

)
cos

(
v

a

)
− 1

2ab
(u2 + v2)

]
.

Here, u and v are spatial Cartesian coordinates in the output plane. The distance between
these two elements must be exactly f , and the elements must be aligned precisely along
the same optical axis. For this reason, they are mounted in a cage system with fine
position and rotation controls. A schematic of the optical thickness in 3D as well as
photographs of the elements used in our setup is shown in fig. 27.

While this method is substantially better at sorting OAM modes than previous meth-
ods, it is still limited to working approximately 80% of the time [82]. In other words,
for a photon with OAM ��, there exists an approximately 20% probability of detecting
it with OAM m�, m �= �. This is because the “unwrapped” plane wave has a finite
extent, which results in a diffraction limited spot at the focus of a lens. These spots have
about 20% overlap with neighboring spots, and hence about 20% crosstalk. Clearly, this
is not good enough for QKD, as any errors must be attributed to an eavesdropper. If
we get an error 20% of the time, this already places a strict bound on the allowed en-
vironmental error our system can handle. Further, it reduces the benefits of going to a
higher-dimensional state space.

In two recent papers [84,85], we showed that the technique of Berkhout et al. [81] can
be combined with a holographic beam-splitting technique to sort OAM modes with only
about 5% crosstalk. The principle behind our method is straightforward —by generating
multiple, adjacent copies of the transformed plane wave mode, we increase its effective
size. When this larger plane wave is sent through a lens, it is Fourier transformed into
a smaller spot than before. More specifically, the spot size is reduced by N , where N
is the number of copies. The fan-out element introduced in ref. [86] is a phase grating
designed to diffract an incoming beam into N uniformly spaced orders, each having the
same spatial profile and equal energy. For perfect beam splitting, an optical element has
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Fig. 27. – (a) and (c) Schematics showing the optical thickness of the two elements R1 and R2
as a function of position. (b) and (d) Photographs of the two elements R1 and R2 used in our
setup, machined out of PMMA. (Figure redrawn from [82], c© 2012 The Optical Society.)

to transform an incoming plane wave into a field distribution given by

(36) U(x, y) =
N∑

m=1

Ameiφme−i2πsmx/λ,

where Am is the amplitude, φm is the phase, and sm is the angle of propagation of the
N copies. The fan-out element (R3) is the optimal design in the family of phase-only
holograms which can approximately achieve this task [87]. Generally, the fan-out element
introduces a relative phase φm between the different copies. These are removed with a
phase-correcting element (R4) in the Fourier plane of the fan-out element (fig. 26). The
multiple copies are then Fourier transformed with a lens to a narrower spot than before.
This process is illustrated in fig. 26 for a 3 copy fan-out. Using the specific values of
Am and φm given in refs. [86, 87], we can achieve an efficiency of more than 99% while
splitting the beam into nine copies. The one-dimensional phase profiles of the 3 and 9
copy fan-out holograms are plotted in fig. 28(a) and (b) respectively.

The same fan-out procedure can be used for sorting ANG modes as well [84, 85]. In
this case, the plane of the first phase correcting element (R2) is imaged onto the plane
of the fan-out (R3). Figure 29 shows simulation results comparing the fan-out enhanced
OAM and ANG mode sorter with the previous versions of the sorter without the fan-
out [81,82]. The decrease in the lateral size of the sorted position modes, and hence the
crosstalk, is very clear. We have experimentally tested our sorting method for 25 OAM
modes (� = ±16) and 25 ANG modes. The crosstalk matrices for both of these cases
are shown in fig. 30(a) and (b). One can see how the sorting process starts to break
down for OAM modes with large �. For a mode number of N = 25, we were able to
achieve a mutual information of 4.16 bits/pulse in the ANG basis and 4.18 bits/pulse in
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Fig. 28. – One-dimensional phase profiles of the fan-out holograms used for creating (a) 3 copies
and (b) 9 copies. The profiles show a section (420 pixels) of the SLM.

the OAM basis. The ideal mutual information for 25 modes is equal to log2(25) = 4.64
bits/pulse, which goes to show how close we are to the theoretical limit. In our test, we
made measurements at high light levels using a HeNe laser and a Canon 5D Mark III
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Fig. 30. – Experimental results showing the intermodal crosstalk of a fan-out enhanced OAM
and ANG mode sorter. The sorter is tested for 25 OAM modes and 25 ANG modes (figure
adapted from [84]).

camera. In principle, this can be extended to the single photon level with an appropriate
multi-pixel single photon detector.

5.5. Proposed high-dimensional QKD systems. – In this section, we describe two types
of OAM-based QKD systems that could be built using the procedures for generating and
sorting OAM and ANG modes explained above. The first is based on a high-dimensional
version of the BB84 protocol [2], which uses two pairs of orthogonal polarization states
in two mutually unbiased bases (MUBs) for encoding. The second is a high-dimensional
variant of the Ekert protocol [12], which relies on the quantum correlations between
two polarization-entangled photons for security. We also describe the progress we are
making towards implementing the BB84-based OAM-QKD system in our lab. In the
next section, we discuss the limitations of our current system.

5.5.1. BB84 OAM-QKD with weak coherent pulses. As explained earlier in this section,
using more than two dimensions for encoding in QKD also increases the number of
possible MUBs one can use. Using more than two MUBs results in increased security,
but a reduced key generation rate. For this reason, we are restricting ourselves to the
two high-dimensional MUBs of OAM and ANG, introduced in sect. 1. A schematic of
our proposed QKD system is shown in fig. 31. We use a HeNe laser modulated by an
acousto-optical modulator (AOM) as our source. By adjusting the duration of the driving
pulse, we can use the AOM to carve out pulses of light containing less than one photon on
average. Due to the Poissonian statistics followed by coherent states, a highly attenuated
laser pulse will always contain more than one photon with some probability. This opens
up such a system to eavesdropping using photon-number splitting (PNS) attacks [88].
In the simplest version of the PNS attack, an eavesdropper can insert a beam splitter
into the channel and probabilistically split off a photon from pulses containing more
than one photon. As all photons in the same pulse encode the same qubit, Eve can gain
information about the qubit without destroying it or revealing herself. It is important
to note that in general, multi-photon pulses do not necessarily undermine the security
of a QKD system. However, they do limit the key generation rate, as more bits must be
discarded during the privacy amplification process [89].
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Fig. 31. – Proposed high-dimensional QKD setup using the BB84 protocol. Our source is a
HeNe laser operating at 633 nm that is modulated by an acousto-optic modulator (AOM) to
carve out pulses containing an average number of photons dictated by the decoy state protocol.
These pulses are tailored into OAM and ANG modes by a spatial light modulator (SLM) and
4f system. R1 and R2 are custom refractive elements used to transform the OAM and ANG
modes into plane wave modes. F1 and F2 are fan-out and phase correcting elements used to
enhance the sorting process. A beam splitter (NPBS) acts as a passive basis selector between
the OAM and ANG bases. The transformed modes are detected with arrays of single photon
avalanche detectors (SPADs).

Recently, a variation to the BB84 protocol was proposed which uses a simple technique
to counter PNS attacks. In this technique, known as the decoy state protocol [28], Alice
prepares an additional set of “decoy” states by randomly varying the number of photons
in each pulse. She also randomly chooses which pulses will be used as signal states
and which as decoy states. Thus, both the signal and the decoy states consist of pulses
containing a varying distribution of average photon number that is known to Alice. The
security lies in the fact that given a single n-photon pulse, Eve has no way of knowing
whether it originated as a signal or decoy. Thus, any attempt by Eve to remove photons
from a pulse will occur with the same probability for a signal as well as a decoy state.
However, since these two kinds of states have different photon number statistics, the
effect of removing a photon is different on both. By sharing the decoy state information
after the sifting process, and measuring the ratio of the number of detection events to
the number of signals originally sent for each kind of state, Alice and Bob can detect any
PNS attacks by Eve with a high probability. This protocol has been implemented with
many different intensities of decoy states [90,91]. However, the protocol using two states
—the vacuum and weak decoy state— has been shown to be optimal [92].

In our proposed QKD system, we modulate the intensities of our pulses according to
this protocol. The AOM is used to carve out pulses with varying intensities. Following
the AOM, a spatial light modulator (SLM), a pinhole, and a 4f system of lenses are
used for impressing OAM or ANG mode information onto each pulse (fig. 31). The
4f system also images the SLM onto Bob’s first detection plane at R1. Bob uses the
sorting procedure explained earlier in this section to measure a pulse either in the OAM
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or ANG basis. The non-polarizing beam splitter (NPBS) acts as a passive selector of
Bob’s measurement basis, randomly measuring pulses in either the OAM or ANG basis.
The same mode transforming elements (R1 and R2) are initially used to transform both
OAM and ANG modes. Following the NPBS, two sets of fan-out elements (F1 and F2)
carry out the beam-copying process for each basis. For the OAM basis, the output of
R2 is Fourier transformed by a lens (FT Lens) onto the fan-out element F1. For the
ANG basis, the output of R2 is imaged by a telescope system onto the fan-out element
F1. Following the phase-correcting elements (F2), two sets of single photon avalanche
detector (SPAD) arrays are used for detecting the photon states.

After Bob completes his measurements in the OAM and ANG bases, our high-
dimensional protocol follows the standard steps of the BB84 protocol. Alice and Bob
share their encoding and measurement basis choices with each other over a public chan-
nel. Using this information, they sift out the states where Bob did not measure in the
preparation basis used by Alice. Following this, Alice and Bob perform the procedures of
error correction [93] and privacy amplification [94]. Both these procedures merit detailed
discussion. However, these topics are outside the scope of this article. After privacy
amplification, Alice and Bob will share a secure key with enhanced security and an in-
creased generation rate via the use of a high-dimensional Hilbert space. An experimental
implementation of such a QKD protocol that achieved 2.1 bits/photon with 7 OAM and
ANG modes was recently published on the arXiv by our group [95].

5.5.2. Ekert OAM-QKD with entangled photons. The second proposed high-dimensional
QKD system is based on an extension of the Ekert protocol [12] to a high-dimensional
Hilbert space. As explained in sect. 2, the security of the Ekert protocol relies on the
strong quantum correlations shared by two members of an entangled pair. An eaves-
dropper trying to access information in this protocol disturbs these correlations, which
can be quantified through entanglement measures such as the CHSH inequality [10] or
the Schmidt number [96]. Bennett and Brassard argued that the Ekert protocol was
formally identical to the BB84 protocol, and thus entanglement was not necessary to
perform QKD. While this is true, the Ekert protocol simply provides an alternative
method to do QKD in a different architecture —the source is spatially separated from
Alice and Bob. Also, a subtle yet important difference is that there is no active state
preparation in the Ekert protocol. Alice and Bob simply rely on the probabilistic nature
of wave function collapse to assign a bit value to their measured state. For example, a
D-polarized photon encountering a polarizing beam splitter probabilistically goes into
either the H or the V port. This removes certain technological requirements from Alice,
as she no longer needs to employ expensive equipment such as a series of Pockels cells in
order to create specific polarization states. On the contrary, of course, the Ekert protocol
does require a maximally polarization-entangled state, which is fast becoming available
cheaply, and is used even at the undergraduate laboratory level [97].

To perform high-dimensional OAM-based QKD with the Ekert protocol, we require a
bright source of photons maximally entangled in OAM [98]. The state of OAM-entangled
photons generated in spontaneous parametric downconversion (SPDC) can be written as

(37) |Ψ〉 =
∞∑

�=−∞
c�|�〉A|−�〉B ,

where � is the azimuthal quantum number, c� is the probability amplitude, and A and
B refer to the signal and idler photon, respectively. As can be seen, OAM-entangled



316 M. MALIK and R. W. BOYD

R1R2

R1R2F1F2

F1F2

ALICE

BOB

FT Lens Sorter

FT Lens SorterFan-outs

Fan-outs

Telescope

Telescope

PBS405 nm Laser Diode

Coincidence Counter

PPKTP crystal

SPAD arrays

SPAD 
arrays

NPBS

NPBS

Collinear 
Type II SPDC

Fig. 32. – Proposed high-dimensional QKD setup using the Ekert protocol. Our source is a
diode laser operating at 405 nm that pumps a periodically poled Potassium Titanyl Phosphate
(PPKTP) crystal to generate type II downconverted photons at 810 nm exhibiting OAM entan-
glement. A polarizing beam splitter (PBS) separates the signal from the idler, directing one
to Alice and the other to Bob. Alice and Bob use a similar detection setup as in the BB84
protocol (fig. 31). R1 and R2 are custom refractive elements used to transform the OAM and
ANG modes into plane wave modes. F1 and F2 are fan-out and phase correcting elements used
to enhance the sorting process. A beam splitter (NPBS) acts as a passive basis selector between
the OAM and ANG bases. The transformed modes are detected with arrays of single photon
avalanche detectors (SPADs). Alice and Bob’s SPAD arrays are connected with a coincidence
counting circuit to ensure that only photons from the same entangled pair result in a signal.

photons are anti-correlated in OAM. Thus, if one photon of an entangled pair is measured
to have an OAM of +3�, its entangled partner photon must have an OAM of −3�. For
any realistic SPDC source, the OAM bandwidth (spiral bandwidth) does not extend to
±∞. This is because of the physical apertures in the system and finite size of the SPDC
crystal. However, considerable work has been done on tailoring the OAM spectrum
for use in quantum information [99, 100]. In an experimental realization, we plan on
using a periodically poled Potassium Titanyl Phosphate (PPKTP) crystal designed for
degenerate, type-II, collinear SPDC. The PPKTP crystal is pumped by a laser diode
at 405 nm to produced OAM-entangled photons at 810 nm. This source is based on an
OAM-entanglement source used at IQOQI in Vienna [101].

The signal and idler photons are separated from one another by a polarizing beam
splitter (PBS) and directed towards Alice and Bob, both of whom use a sorting procedure
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similar to the one described earlier for BB84-based OAM-QKD. Following the random
measurement of their respective photon in either the OAM or the ANG basis, Alice and
Bob use coincidence detection to ensure that their photons originated in the same entan-
gled pair. Thus, OAM anti-correlations and ANG correlations between these two photons
will ensure that Alice and Bob measure the opposite (for the OAM basis) or the same
(for the ANG basis) state at the end. Just as in polarization-entanglement-based QKD,
security must be proven by testing for high-dimensional OAM-entanglement. This has
been performed recently for an OAM dimensionality up to � = 11 by violating the gen-
eralized Bell-type parameter Sd by making projection measurements [99]. Interestingly,
we can use our sorting method to calculate this very parameter directly. This is because
the crosstalk terms (or the off-diagonal terms in the crosstalk matrix) obtained from the
sorting process can be related to the measurements required to obtain Sd [102,99]. One
should keep in mind that since our sorting process is not entirely perfect (approximately
5% crosstalk), the entanglement measure will not be entirely accurate either. If the Bell-
type parameter Sd is found to be greater than 2, we know that the state is still entangled
in OAM and no eavesdropper is present.

5.6. Limitations and outlook . – A chief limitation of our BB84 protocol-based OAM-
QKD system is that an SLM is used for the generation of OAM and ANG modes. SLMs
have a refresh rate of 60 Hz, which places a strict upper limit to how fast we can generate
a key. For comparison, state of the art polarization-based systems have shown key
generation rates exceeding 1 Mbit/s [103]. Clearly, in order to compete with polarization-
based QKD, we need a faster method of generating OAM and ANG modes. A promising
option is to use digital micro-mirror devices (DMDs), which are cheaply available and
can operate at up to 32 kHz speeds. DMDs are binary amplitude devices that, as the
name suggests, rely on tiny mirrors to turn parts of a beam on and off. Using a DMD
with a 4f system of lenses, one can convert an arbitrary amplitude pattern into a phase
pattern [104]. We have used such a device to generate OAM and ANG modes at speeds
of up to 3.2 KHz [105]. We are planning to replace the SLM currently being used for
OAM and ANG state preparation with this method.

Another limitation of our current system lies in our detection system. While in the
previous section we have proposed the use of SPAD arrays for detecting the transformed
modes, the shape of these modes creates a unique challenge for their detection. As can be
seen in fig. 33, after passage through the OAM sorter, the fan-out elements and a Fourier
transform lens, an OAM mode resembles a narrow line. Coupling this mode efficiently
into a fiber will be a challenge and will perhaps require the use of cylindrical lenses.
Optimization of the mode transformation process is also possible in order to obtain a
mode that is more easily coupled into a fiber. The development of CCDs that work at
the single photon level is progressing rapidly and will be key in the detection of such
modes.

6. – Direct measurement of a high-dimensional quantum state

6.1. Introduction. – Due in part to the no-cloning theorem [1], the measurement
of a quantum state poses a unique challenge for experimentalists. Conventionally, a
quantum state is measured through the indirect process of tomography [106], which
requires significant post-processing times to reliably reconstruct the state [107]. For this
reason, quantum tomography is an unfeasible method for measuring high-dimensional
quantum states such as those of orbital angular momentum (OAM) [108]. Recently, an
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Fig. 33. – A CCD image showing the mode structure of the transformed OAM mode, after
passing through the OAM sorter, the fan-out holograms, and a Fourier transform lens. Three
transformed OAM modes (� = −8, 0, +8) are shown.

alternative method called “direct measurement” was proposed that utilized sequential
weak and strong measurements to directly characterize a quantum state, i.e. without
any post-processing [45]. In this section, we review a recent experiment where we use
this method to characterize a high-dimensional quantum state in the discrete basis of
OAM [109]. Through weak measurements of orbital angular momentum and strong
measurements of angular position, we measure the probability amplitudes of a pure
quantum state with a dimensionality, d = 27. Further, we use our method to study the
relationship between the angular momentum operator and rotations of a quantum state
in the natural basis of OAM [110].

The act of measuring a quantum state disturbs it irreversibly, a phenomenon referred
to as collapse of the wave function. For example, precisely measuring the position of a
single photon results in a photon with a broad superposition of momenta. Consequently,
no quantum system can be fully characterized through a single measurement. An es-
tablished method of characterizing a quantum state involves making a diverse set of
measurements on a collection of identically prepared quantum states, followed by post-
processing of the data. This process, known as quantum state tomography [106], is akin
to its classical counterpart of imaging a three-dimensional object using two-dimensional
projections. For a simple quantum system such as a polarization qubit, quantum to-
mography can be similarly visualized as making projections onto different axes of the
Poincaré sphere in order to localize the state on the sphere [44]. A critical part of any
real tomographic process is the analysis that follows this series of measurements —in
order to obtain a physical quantum state, one must use lengthy numerical procedures
to search over all the different state possibilities [111]. The time required for this post-
processing step scales rather unfavorably with state dimension, and is catastrophically
large for multipartite high-dimensional states [107,108].

Photons carrying orbital angular momentum (OAM) are one such example of a high-
dimensional quantum state that has come to the forefront recently [112-114]. The dis-
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crete, infinite dimensionality of the OAM Hilbert space provides a larger information
capacity for quantum information systems [62, 69], as well as an increased tolerance to
eavesdropping in quantum key distribution [61]. Photons entangled in OAM [98,115,116]
are prime candidates not only for such high capacity, high security communication sys-
tems, but also for fundamental tests of quantum mechanics [99,117]. Thus, it is essential
that fast, accurate, and efficient methods for characterizing such high-dimensional states
be developed. Quantum state tomography of a pair of photons entangled in OAM, each
with a dimensionality of d = 8, was recently demonstrated —a process that took on the
order of days to complete [108].

In sect. 2.4, we reviewed a novel alternative to tomography called direct measurement.
In this technique, the complex probability amplitude of a pure quantum state is directly
obtained as an output of the measurement apparatus, bypassing the complicated post-
processing step required in quantum tomography. In the first implementation of direct
measurement [45], the position of an ensemble of identically prepared photons was weakly
measured, which caused a minimal disturbance to their momentum. A subsequent strong
measurement of their momentum revealed all the information necessary to characterize
their state in the continuous bases of position and momentum. A recent experiment
extended this idea to directly measuring the two-dimensional polarization state of a laser
beam [47]. Here, we apply this novel technique to characterize a photon in the discrete,
infinite-dimensional space of orbital angular momentum.

6.2. Theoretical description of direct measurement in the OAM basis. – In direct
analogy to a photon’s position and linear momentum, the angular position and OAM
of a photon form a conjugate pair [118]. We can express the state of our photon as a
superposition of states in the OAM or angular position basis as

(38) |Ψ〉 =
∑

�

a�|�〉 or |Ψ〉 =
∑

θ

bθ|θ〉,

where a� and bθ are the complex probability amplitudes in the OAM and angular position
basis respectively.

By multiplying our state by a strategically chosen constant c = 〈θ0 |� 〉 / 〈θ0 |Ψ 〉 and
inserting the identity, we can expand our state as

(39) c|Ψ〉 = c
∑

�

|�〉 〈� |Ψ 〉 =
∑

�

|�〉 〈θ0 |� 〉 〈� |Ψ 〉
〈θ0 |Ψ 〉 =

∑
�

〈π�〉w |�〉.

Here we have introduced the quantity 〈π�〉w, which is proportional to the probability am-
plitude a� from eq. (38). This quantity, known as the weak value, is defined as the average
result of a weak measurement of a quantum state, followed by a strong measurement, or
post-selection of another observable of the state [20, 21]. In general, weak values can be
complex and can lie significantly outside the eigenvalue range of the observables being
measured [22, 119]. In our direct measurement technique, the OAM weak value 〈π�〉w is
equal to the average result obtained by making a weak measurement of a projector in
the OAM basis (π̂� = |�〉〈�|) followed by a strong measurement in the conjugate basis
of angular position (θ = 0). In this manner, the scaled complex probability amplitudes
ca� can be directly obtained by measuring the OAM weak value 〈π�〉w for a finite set
of �. Following this procedure, the constant c can be eliminated by renormalizing the
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state |Ψ〉.

(40) |Ψ〉 =
1
c

∑
�

〈π�〉w |�〉.

In order to measure such weak values, previous demonstrations of direct measurement
have utilized a two-system Hamiltonian, where the system of interest is coupled to a
measurement pointer [45,47]. In this manner, the real and imaginary parts of the system
weak value are obtained by measuring the change in the pointer’s position and momentum
respectively [120]. This is well illustrated in the experiment of Salvail et al. [47], where
the authors coupled the polarization of a laser beam to its position through the use of
a birefringent crystal. By measuring the shift in the beam’s position and momentum,
they were able to measure its real and imaginary polarization components. In contrast,
we use the polarization of the photon as a measurement pointer [45]. By coupling a
photon’s OAM to its polarization, we perform weak measurements of OAM by rotating
the polarization of the OAM mode to be measured by a small angle. After sequential
weak and strong measurements are performed, the average change in the photon’s linear
and circular polarization is measured, which is proportional to the real and imaginary
parts of the OAM weak value.

Here we derive the relationship between the OAM weak value 〈π�〉w and expectation
values of the σ̂x and σ̂y Pauli operators eq. (51). The von Neumann formulation can be
used to describe the coupling between the OAM (system) and polarization (pointer) ob-
servables [121,120]. The product Hamiltonian describing this interaction can be written
as

(41) Ĥ = −g π̂� · Ŝy = −
(

g �

2

)
π̂� · σ̂y,

where g is a constant indicating the strength of the coupling, π̂� is the projection operator
in the OAM basis, and σ̂y is the Pauli spin operator in the y direction. The measurement
pointer is initially in a vertical polarization state

(42) |si〉 =
[
0
1

]

and the system is in an initial state |I〉. The initial system-pointer state is modified
by a unitary interaction Û = exp(−iĤt/�), which can be written using the product
Hamiltonian above as

(43) Û = exp
(

i gt π̂� · σ̂y

2

)
= exp

(
i sinα π̂� · σ̂y

2

)

Here we have substituted sin α in place of gt as a coupling constant. This refers to the
angle α by which we rotate the polarization of the OAM mode to be measured in our
experiment. When α is small, the measurement is weak. In this case, we can express
the operator Û as a Taylor series expansion truncated to first order in sinα. The initial
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state then evolves to

|Ψ(t)〉 =

(
1 − iĤt

�
− . . .

)
|I〉|si〉(44)

= |I〉|si〉 +
i sin α

2
π̂�|I〉σ̂y|si〉.

We can express the strong measurement as a projection into a final state |F 〉

(45) 〈F |Û |I〉|si〉 = 〈F |I 〉 |si〉 +
i sin α

2
〈F |π̂�|I〉σ̂y|si〉.

We can then divide by 〈F |I 〉 to get the final pointer polarization state

|sf 〉 = |si〉 +
i sinα

2
〈F |π̂�|I〉
〈F |I 〉 σ̂y|si〉(46)

= |si〉 +
i sinα

2
〈π�〉w σ̂y|si〉.

Notice that the weak value 〈π�〉w = 〈F |π̂�|I〉/ 〈F |I 〉 appears in the above equation.
Using this expression for the final state of the pointer, we can calculate the expectation
value of σ̂x as follows:

(47) 〈sf |σ̂x|sf 〉 = �����〈si|σ̂x|si〉 +
i sin α

2

[
〈π�〉w 〈si|σ̂xσ̂y|si〉 − 〈π�〉†w 〈si|σ̂yσ̂x|si〉

]
.

Using the substitution 〈π�〉w = Re{〈π�〉w} + i Im{〈π�〉w} and the initial state |si〉 from
eq. (42), the above equation can simplified further

〈sf |σ̂x|sf 〉 =
i sinα

2

[
Re{〈π�〉w}〈si|σ̂xσ̂y − σ̂yσ̂x|si〉(48)

+ i Im{〈π�〉w}〈si|������
σ̂xσ̂y + σ̂yσ̂x|si〉

]
= − sin α Re{〈π�〉w}〈si|σ̂z|si〉
= sinα Re{〈π�〉w}.

Similarly, we can calculate the expectation value of σ̂y as follows:

〈sf |σ̂y|sf 〉 = �����〈si|σ̂y|si〉 +
i sinα

2

[
〈π�〉w 〈si|σ̂yσ̂y|si〉 − 〈π�〉†w 〈si|σ̂yσ̂y|si〉

]
(49)

=
i sinα

2

[
Re{〈π�〉w}〈si|������

σ̂yσ̂y − σ̂yσ̂y|si〉

+ i Im{〈π�〉w}〈si|σ̂yσ̂y + σ̂yσ̂y|si〉
]

= − sin α Im{〈π�〉w}〈si|σ̂2
y|si〉

= − sin α Im{〈π�〉w}.
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Thus, we see that the real and imaginary parts of the OAM weak value 〈π�〉w are pro-
portional to the expectation values of the σ̂x and σ̂y Pauli operators (see eq. (51)):

〈π�〉w = Re{〈π�〉w} + i Im{〈π�〉w}(50)

=
1

sinα

[
〈sf |σ̂x|sf 〉 − i〈sf |σ̂y|sf 〉

]
.

6.3. Experimental weak measurement of OAM . – In order to perform a weak mea-
surement of OAM at the single photon level, one must first spatially separate the OAM
components of the single photon. Only then can one rotate the polarization of the OAM
mode to be measured by a small angle, which constitutes the weak measurement. Re-
cently, we proposed a technique to efficiently separate the OAM components of a single
photon [81, 84], which is discussed in detail in sect. 5. Here, we implement this mode
sorter technique using four phase-only elements (fig. 34, R1, R2, SLM2, and SLM3) to
separate the OAM components with less than 10% overlap. The first two elements, R1
and R2, are refractive holograms made out of Poly-methyl methacrylate (PMMA) that
are used to map polar coordinates (r, θ) to rectilinear coordinates (x, y) through the
log-polar mapping x = a(θ mod 2π) and y = −a ln (r/b) [82]. This results in the trans-
formation of an OAM mode with azimuthal phase variation ei�θ to a momentum mode
with position phase variation ei�x/a. These momentum modes are then Fourier trans-
formed by the lens L1 to position modes. At this stage, the component OAM modes
of the photon still have an overlap of about 20%. This is due to the finite size of the
transformed momentum mode, which is bounded by the function rect(x/2πa). A simple
way to decrease the overlap and hence the size of the position mode is to simply increase
the size of the momentum mode (while maintaining the phase ramp across it). We create
three adjacent copies of the momentum mode by implementing a fan-out hologram and
phase-corrector on SLM2 and SLM3 [86], also previously introduced in sect. 5. The one-
dimensional phase profile of the 3 copy fan-out hologram used here is shown in fig. 28. in
After passing through another lens L2, this results in well-separated OAM modes having
less than 10% overlap on average with neighboring components.

In the next step, we rotate the polarization of the OAM mode to be weakly measured
by an angle, α = π/9. In contrast to the dynamic method used by Lundeen et al. [45] in
which they physically moved a half-wave plate (HWP) sliver through the beam, we use a
static, programmable technique. A phase-only SLM acts as a variable phase retarder with
individually addressable pixels. By sandwiching such an SLM between two quarter-wave
plates (QWPs) whose extraordinary axes are aligned at π/4 radians to the SLM axis, one
can rotate the polarization of any part of the beam through an arbitrary angle [122]. As
shown in fig. 34, we use this technique to rotate the polarization of the OAM mode to be
weakly measured. Since we use SLM4 in reflection, only one quarter-wave plate (QWP0)
is needed. However, QWP1 and HWP1 are used to remove any ellipticity introduced
by reflection through the non-polarizing beamsplitter (NPBS). A strong measurement of
angular position is performed by a 10μm slit placed in the Fourier plane of lens L3. Since
the plane of the slit is conjugate to the plane (SLM4) where the OAM modes are spatially
separated, a measurement of linear position by the slit is equivalent to a measurement
of angular position.

The average change in the photon’s linear and circular polarization is proportional
to Re〈π�〉w and Im 〈π�〉w respectively. As shown in the previous section, for an initially
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Fig. 34. – Direct measurement of a high-dimensional quantum state. State Preparation: A
quantum state in an arbitrary superposition of orbital angular momentum (OAM) modes is
prepared by impressing phase information onto photons from an attenuated HeNe laser. Weak
Measurement: A particular OAM mode is weakly measured by rotating its polarization by a
small angle. This is accomplished by first separating the component OAM modes of the photon
via a geometric transformation and then performing the polarization rotation. This process is
depicted in the figure for one OAM mode. Strong Measurement: The angular position of the
photon is strongly measured by using a slit to post-select states with an angle θ = 0. Readout:
The OAM weak value 〈π�〉w is obtained by measuring the change in the photon polarization in
the linear and circular polarization bases (figure adapted from ref. [109]).

vertically polarized state, the OAM weak value is given by

(51) 〈π�〉w =
1

sin α

(
〈sf |σ̂x|sf 〉 − i〈sf |σ̂y|sf 〉

)
,

where α is the rotation angle, σx and σy are the Pauli operators in the x and y direc-
tions, and |sf 〉 is the final polarization state of the photon. In order to measure the
expectation values of σx and σy, we transform to the linear and circular polarization
bases with QWP2 and HWP2, and measure the two Stokes parameters with a polarizing
beamsplitter (PBS) and two single-photon avalanche detectors (SPADs). In this manner,
we directly obtain the scaled complex probability amplitudes ca� by scanning the weak
measurement through � values of ±13. Although the OAM of a photon exists in a dis-
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crete, unbounded Hilbert space, we are not able to go beyond a dimensionality of d = 27
as our mode transformation technique begins to break down for higher OAM modes.

6.4. Measuring the wave function in the OAM basis. – To test our method, we generate
single photon states by strongly attenuating a HeNe laser to the single photon level. These
photons are then tailored into a high-dimensional quantum state by impressing a specific
OAM distribution on them with SLM1 and a 4f system of lenses (fig. 34) [78]. We create
a sinc-distribution of OAM using a wedge-shaped mask on the SLM. Analogous to how
a rectangular aperture diffracts light into a sinc-distribution of linear momenta, a single
photon diffracting through an angular aperture of width Δθ results in a quantum state
with a sinc-distribution of OAM probability amplitudes [118]

(52) a� = k sinc
(

Δθ�

2

)
.

The first nulls of this OAM distribution lie at OAM values � = ±2π/Δθ. Using an angular
aperture of width 2π/9 rad (inset of fig. 35(b)), we create such an ensemble of identical
single photons and perform the direct measurement procedure on them. The measured
real and imaginary parts of the wave function are plotted in fig. 35(a) as a function of
�. From these, we calculate the probability density |Ψ(�)|2 and the phase φ(�), which
are plotted in figs. 35(b) and (c). The width of the sinc-squared fit to the probability
density is measured to be 9.26 ± 0.21, which is very close to the value of 9 predicted
from theory. The measured phase of the OAM distribution in fig. 35(c) has a tilted
quadratic shape that is acquired from propagation through the system. Interestingly,
π-phase jumps appear at the two minima of the sinc-squared probability density. This
is because the sinc distribution of probability amplitudes in eq. (52) changes sign from
positive to negative at these two points. Additionally, the phase error is large when the
amplitude goes to zero. This is because the noise due to the background and detector
dark counts overwhelms our signal in this regime. Theoretical fits to the phase and
probability density are plotted as blue lines.

6.5. The angular momentum operator as a generator of rotations. – Here, we use our
technique to study the effect of rotation on a single photon carrying a range of angular
momenta. Rotation of a quantum state by an angle θ0 can be expressed by the unitary
operator Û = exp(iL̂zθ0), where L̂z is the angular momentum operator. Operating on
our quantum state |Ψ〉 with Û , we get

(53) |Ψ′〉 = Û |Ψ〉 =
∑

�

k sinc
(

Δθ�

2

)
ei�θ0 |�〉.

Thus, the rotation of a state vector by an angle θ0 manifests as an �-dependent phase
ei�θ0 in the OAM basis. For this reason, the angular momentum operator is called the
generator of rotations in quantum mechanics under the paraxial approximation [110]. In
order to generate such a linear OAM-dependent phase, we create a rotated wave function
by rotating our angular aperture by an angle θ+ = π/9 rad (inset of fig. 36(b)). Then,
we perform the direct measurement procedure as explained in the previous section. The
real and imaginary parts of the rotated wave function as a function of � (fig. 36(a)) are
measured. The probability density and phase of the wave function are calculated from
these measured values and plotted in figs. 36(b) and (c). For clarity, we subtract the
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Fig. 35. – Experimental data showing direct measurement of a 27-dimensional quantum state in
the OAM basis. The state is created by sending single-photons through an angular aperture of
width Δθ = 2π/9 rad (inset of panel (b)). (a) The measured real (blue circles) and imaginary
parts (red triangles) of the wave function, (b) the calculated probability density |Ψ(�)|2, and
(c) the calculated phase φ(�) are plotted as functions of the OAM quantum number � up to a
dimensionality of � = ±13. π-phase jumps occur when the probability amplitude is negative
(not seen in the probability density). Theoretical fits to the probability density and phase are
plotted as a blue line (figure adapted from [109]).

phase of the zero rotation case (fig. 35(c)) from our measured values of phase, so the
effect of rotation is clear. Barring experimental error, the amplitude does not change
significantly from the unrotated case (fig. 35(b)). However, the phase of the single-
photon OAM distribution exhibits a distinct �-dependent phase ramp with a slope of
0.373 ± 0.007 rad/mode. This is in close agreement with theory, which predicts the
phase to have a form φ(�) = ±π�/9, corresponding to a phase ramp with a slope of
0.35 rad/mode. Errors in slope are calculated by the process of chi-square minimization.
This process is repeated for a negative rotation angle θ− = −π/9 rad, which results in a
mostly unchanged probability density, but an �-dependent phase ramp with a negative
slope of −0.404 ± 0.007 rad/mode (figs. 36 (d)-(f)).

These results clearly illustrate the relationship between phase and rotation in the
OAM basis in that every �-component acquires a phase proportional to the azimuthal
quantum number �. The measured slopes in both cases are slightly larger than those
expected from theory due to errors introduced in the geometrical transformation that
is used to spatially separate the OAM modes. The mode sorting process is extremely
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Fig. 36. – Experimental data showing the direct measurement of a high-dimensional quantum
state rotated by an angle θ± = ±π/9 rad (insets). (a) and (d) The measured real (blue circles)
and imaginary parts (red triangles) of the rotated wave functions. (b) and (e) The calculated
probability densities |Ψ(�)±|2. (c) and (f) The phase difference Δφ±(�) between the calculated
phase and the phase of the unrotated case. Theoretical fits to the probability densities and
phases are plotted as blue lines. Error bars larger than the symbols are shown (figure adapted
from [109]).

sensitive to misalignment, and a very small displacement of the transforming elements
R1 and R2 can propagate as a phase error.

6.6. Summary and outlook . – To summarize, we have measured the complex proba-
bility amplitudes that characterize the wave function in the high-dimensional bases of
orbital angular momentum and angular position. Using our technique, we have also mea-
sured the effects of rotation on a quantum state in the OAM basis. The rotation manifests
as an OAM mode-dependent phase and provides a clean visualization of the relationship
between the angular momentum operator and rotations in quantum mechanics.

While we have directly measured pure states of OAM, this method can be extended
to perform measurements of mixed, or general quantum states [46, 47]. By scanning the
strong measurement of angular position as well, one can measure the Dirac distribution,
which is informationally equivalent to the density matrix of a quantum state [123, 124].
Furthermore, by extending this technique to two photons, photons entangled in OAM
can be measured. In this case, one would need to perform independent weak and strong
measurements on each photon, followed by a two-photon coincidence-detection scheme
for the polarization measurement.

Direct measurement offers distinct advantages over conventional methods of quantum
state characterization such as tomography. This method does not require a global recon-
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struction, a step that involves prohibitively long processing times for high-dimensional
quantum states such as those of OAM. Consequently, the quantum state is more acces-
sible in that it can be measured locally as a function of OAM quantum number �, as in
our experiment. These advantages may open up avenues for measuring quantum states
directly in the middle of dynamically changing systems such as quantum circuits and
free-space quantum communication links.

7. – Conclusions

In the immensely technological world of today, security is perhaps something we take
for granted. However, security pervades through our quotidian tasks such as withdrawing
money from the ATM and checking email on our smartphones. The machine gun-toting
bank robbers of yesteryear have become a figment of Hollywood imagination, being re-
placed instead by individuals sitting behind a desk with an internet connection. The
threat of cyber crimes such as identity theft and account hacking have never been more
real, and nations are starting to realize that such concerns are not just limited to the indi-
vidual. Large amounts of money have been spent by countries in the past for developing
complex encryption algorithms that can be cracked by a sophisticated hacker.

Over the past thirty years, the simplest limitation of a quantum state has led to the
development of elegant technologies that allow unconditionally secure communication.
The fact that one cannot create a copy of a quantum state allows one to use it as “digital
bait”. A hacker who intercepts a secure quantum communication channel will disturb
the delicate quantum states used in the channel, thus revealing his or her presence. The
technologies reviewed in this article form part of this quantum revolution in security.
We have applied ideas borrowed from quantum key distribution protocols to the field
of optical imaging and surveillance. This promises a form of security for active imaging
systems such as lidar that has not been seen before. Quantum ghost imaging has long
been destined to the lab bench due the to impracticality of measuring an entire image at
the single photon level. By extending this scheme to the identification of a set of images,
we have made quantum ghost imaging easier to apply in the real world.

Quantum key distribution (QKD) is the bastion of secure quantum technologies, with
commercial short-range QKD systems available today. One branch of research in this
field is exploring the engineering extension of polarization-based QKD to longer and
longer distances, such as ground to satellite. We have taken a parallel approach in this
article, instead exploring alternative methods of encoding for QKD. QKD protocols using
polarization states for encoding are limited to how much information they can send per
photon, as well as how much eavesdropping error they can tolerate. By using the discrete,
infinite-dimensional state space of orbital angular momentum (OAM) for encoding, we
can build a QKD system that promises a vastly increased information capacity and a
significantly higher tolerance to error than conventional polarization-based QKD. In this
article, we have discussed the development of technologies that allow us to generate
and measure single photons carrying superpositions of OAM. Further, we have explored
our ability to use such states to perform communication in a real-world setting with
atmospheric turbulence. The development of working OAM-based QKD systems is the
next research goal in our lab, and we are making fast progress towards achieving it.

The accurate characterization of a quantum state is important for fields as diverse
as information science, physical chemistry, and foundational physics. A quantum state
is conventionally measured by the process of quantum state tomography. Recently, an
alternative to tomography was presented that used sequential weak and strong measure-
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ments in order to completely characterize a quantum state. In contrast with tomography,
this “direct measurement” method does not involve a time consuming post-processing
step. In this article, we have reviewed the first application of the direct measurement
technique for measuring a quantum state in a discrete, high-dimensional state space such
as that of OAM. This serves as a significant advance for this technique, which has been
previously used to characterize a photon in the continuous basis of position-momentum
and a classical beam in the two-dimensional basis of polarization. The technique of di-
rect measurement is especially advantageous when used for measuring high-dimensional
quantum states. This is because the post-processing time required for the tomography of
such states is prohibitive. Our experiment serves as the first application of direct mea-
surement that sets it clearly apart from tomography in this regard. Further, it displays
the potential this technique has for measuring quantum states directly in the middle of
dynamic quantum processes.

The quantum technologies presented in this article serve to advance the state of
the art of research in the fields of secure quantum communication, quantum imaging,
and quantum state characterization. In addition, by interfacing between these fields,
they show the potential that exists for the exchange of ideas and techniques across
these disciplines. It is likely that quantum technologies today are the beginning of a
technological revolution that will encompass more than just security.
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Proprietà letteraria riservata

Direttore responsabile: LUISA CIFARELLI

Prodotto e realizzato dalla Redazione del Nuovo Cimento, Bologna
Stampato da Compositori Comunicazione S.r.l. - Bologna
nel mese di Giugno 2014
su carta patinata ecologica chlorine-free
prodotta dalle Cartiere del Garda S.p.A., Riva del Garda (TN)

Questo periodico
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