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The direct measurement of a complex wave function has been recently realized by using weak values. In
this Letter, we introduce a method that exploits sparsity for the compressive measurement of the transverse
spatial wave function of photons. The procedure involves weak measurements of random projection
operators in the spatial domain followed by postselection in the momentum basis. Using this method, we
experimentally measure a 192-dimensional state with a fidelity of 90% using only 25 percent of the total
required measurements. Furthermore, we demonstrate the measurement of a 19 200-dimensional state, a
task that would require an unfeasibly large acquiring time with the standard direct measurement technique.
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The no-cloning theorem prohibits the exact determina-
tion of the quantum wave function from a single measure-
ment [1–3]. In contrast, a large ensemble of identically
prepared quanta can be used to estimate the wave function
through quantum state tomography (QST) [4–12]. QST
requires the measurement of d2 − 1 independent real
numbers for characterizing a d-dimensional system. The
rapid growth in the number of the required measurements
along with the time-consuming postprocessing make QST
increasingly more challenging as d grows [9,13].
Recently, there has been considerable interest in deter-

mining the wave function of a pure quantum state through
the use of weak values [14–19]. This method, known as
the direct measurement (DM) method, provides a conven-
ient procedure for estimation of a wave function. It has
been suggested that the DM method is an efficient means
for characterizing high-dimensional states due to the
simplicity of its realization and the absence of a time-
consuming postprocessing [14]. Yet, the measurement of
high-dimensional states remains a challenging task. Even
for the DM method the number of measurements that are
needed to characterize the state vectors grows linearly with
the dimension of the state. Further, a much larger ensemble
of identically prepared particles is required for the reliable
measurement of elements of the state vector in a high-
dimensional Hilbert space [20].
In this Letter, we introduce a method that combines the

benefits of the direct measurement method with a novel
computational technique known as compressive sensing
[21–26]. Utilizing our approach, the wave function of a
high-dimensional state can be estimated with a high fidelity
using a much smaller number of measurements than the
standard direct measurement approach. In the following we
first briefly discuss the direct measurement method and
then propose the compressive direct measurement (CDM)

method. We then describe our experimental implementa-
tion of the CDM method. In our experiment, we were able
to reconstruct a wave function with only a fraction of the
required measurements for a direct measurement with a
more than 90 percent fidelity.
A weak value is the expectation value of a weak

measurement followed by a postselection [27]. Consider
a weak measurement of the position operator π̂j ¼ jxjihxjj
at point xj followed by a postselection on the zero
momentum eigenstate joi. The weak value for the above
measurement is given by

πw ¼ hojxjihxjjψi
hojψi ¼ ψðxjÞ

ϕ0

ffiffiffiffi
N

p : ð1Þ

In deriving this formula we have used the Fourier transform
property ϕ0 ¼ hojψi, where N is the dimension of the
Hilbert space. We also treat ϕ0 as a real number as this can
always be accounted for by adding a constant phase to the
wave function. The above relation indicates that the wave
function can be extracted from the weak value, whose real
and imaginary parts can be read from the expectation values
of two conjugate variables of the pointer (see below) [28].
Note that the transition from the continuous spatial domain
to a discrete state vector has been achieved by dividing the
continuous coordinate into a finite number of pixels of
sufficiently small area.
We now generalize the formalism to a form suitable for

compressive sensing. A quantum measurement can be
mathematically described by the coupling between the
measured system and the measurement pointer. We utilize
a two-level pointer such as the polarization of photons. Let
the initial system-pointer state be
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jΩi ¼ jψi ⊗ jVi ¼
XN
i¼1

ψ ijxii ⊗ jVi: ð2Þ

Here, jψi is the wave function of interest. We have assumed
that the pointer is initially prepared in the vertical eigenstate
jVi. Consider a weak measurement of the sensing operator
Q̂m ¼ P

jQm;jπ̂j, which is a linear combination of the
position projectors π̂j weighted with coefficientsQm;j ∈ R.
The effect of this measurement can be described by making
a Taylor series approximation to the measurement’s evo-
lution operator

eiαQ̂m⊗σ̂y jΩi≃ jΩi þ α
X
j

Qm;jψ jjxji ⊗ jHi: ð3Þ

Here, σ̂y ¼ −ijHihVj þ ijVihHj is a Pauli matrix and α is a
constant parameter quantifying the weakness of the meas-
urement. Note that the polarization at each point xj is
rotated around the optical axis by the value Qm;jα.
The state of the pointer after postselection on joi is

given by

jsmi ¼ jVi þ α

ϕ0

ffiffiffiffi
N

p
X
j

Qm;jψ jjHi: ð4Þ

At this stage the information about the state vector ψ j is
encoded in the polarization of the postselected photons.
The expected values of the polarization of the postselected
state can be obtained as

σ̄x;m ≡ hsmjσ̂xjsmi ¼ κ
X
j

Qm;jRe½ψ j�; ð5Þ

σ̄y;m ≡ hsmjσ̂yjsmi ¼ −κ
X
j

Qm;jIm½ψ j�; ð6Þ

where σ̂x ¼ jHihVj þ jVihHj and κ ¼ ð2αÞ=ðϕ0

ffiffiffiffi
N

p Þ. In
the above relations, Re½ψ j� and Im½ψ j� are the real and the
imaginary parts of ψ j respectively. Combining the results
σ̄x;m and σ̄y;m to a complex value ϕm ¼ ð1=κÞ½σ̄x;m − iσ̄y;m�
and repeating the measurement several times we obtain
ϕ ¼ Qψ. The extended form of this equation reads

0
BBBBB@

ϕ1

ϕ2

..

.

ϕM

1
CCCCCA

¼

0
BBBBB@
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ψN

1
CCCCCA
: ð7Þ

Here, m ∈ f1∶Mg and n ∈ f1∶Ng where M is the total
number of sensing operators and N is the dimension of the
Hilbert state of the unknown wave function. To find the
wave function ψ we need to solve the above linear system
of equations. For the special case M ¼ N the set of

equations can be exactly solved for a nonsingular matrix
Q. However, we are interested in the case where M ≤ N.
The pseudoinverse of Q can be used as an optimal linear
recovery strategy to find a solution that minimizes the least
square error [29,30]

ψ ¼ Q†ðQQ†Þ−1ϕ: ð8Þ

However, a nonlinear strategy can be used to recover ψ
with a far superior quality using the idea of compressive
sensing. Consider a linear transformation represented by
the matrix T. If the wave function under the experimentϕ is
known to have very few nonzero coefficients under this
transformation, ψ can be recovered by solving the convex
optimization problem [29]

min
ψ 0

∥Tψ 0∥l1 ; subject to Qψ 0 ¼ ϕ; ð9Þ

where ∥ · ∥l1 represents the 1-norm. For this approach to
work, it is critical that the two bases, defined by Q and T,
are incoherent [29]. The coherence of the two bases is
defined by the square root of the dimension of the bases
times the highest fidelity between any pairs of states from
the two bases [31]. According to the theory of compressive
sensing if the coherence of the two bases is much smaller
than unity (dimensionless), by an overwhelming proba-
bility, the target wave function ψ can be recovered with
M ≥ O½K logðNÞ�measurements, whereK is the number of
nonzero components of Tψ [31]. Functions with spatial
correlations are shown to be extremely likely to have sparse
coefficients in discrete cosine transform or wavelet trans-
form domains [29,32]. However, a much simpler variant of
Eq. (9) can be used in practice to achieve results of
comparable quality [29,33]. In this method the target wave
function can be found by minimizing the quantity

min
ψ 0

X
j

∥∇ψ 0
j∥l1 þ

μ

2
∥Qψ 0 − ϕ∥2l2

: ð10Þ

Here, ∇ψ 0
j is the discrete gradient of ψ

0 at position xj and μ
is a penalty factor. Heuristically, the minimization of the
first term results in a smooth function while the second
factor minimizes deviations from the experimental results
ϕ. The optimal value of μ should be chosen considering the
specifics of the target wave function and the signal-to-noise
ratio of the experimental data. At the end we retrieve the
wave function from the solution of the optimization
problem as jψ 0i ¼ P

N
i¼1 ψ

0
ijxii.

Figure 1 shows the schematics of the experiment. A
vertically polarized Gaussian mode is prepared by spatially
filtering a He-Ne laser beam with a single mode fiber and
passing it through a polarizer. The polarization rotation is
performed using a spatial light modulator (SLM) in
combination with two quarter wave plates (WP1 and
WP2) [34,35]. The SLM provides the ability to rotate
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the polarization of the incident beam at every single pixel in
a controlled fashion. The postselection in the momentum
basis is done using a Fourier-transforming lens and a single
mode pinhole. We retrieve the real part of the weak value
using a combination of a half wave plate (WP3) and a
polarizing beam splitter (PBS). The beams from the output
ports of the beam splitter are coupled to single mode fibers
that are connected to avalanche photodiodes. Similarly, the
imaginary part of the weak value is measured by replacing
the half wave plate with a quarter wave plate (WP3).
We perform a random polarization rotation of either 20°

or zero at each pixel. The rotated polarization state is given
by cos θjVi þ sin θjHi where sin θ ¼ Qm;jα. This corre-
sponds to Qm;j values of 1 and 0 and α ¼ 0.349. For
different values of m, we load different pregenerated
sensing vectors Qm onto the SLM and repeat the experi-
ment. The wave function is then retrieved via postprocess-
ing on a computer. We use the algorithm known as the total
variation minimization by augmented Lagrangian and
alternating direction algorithm [36] to solve Eq. (10). In
our experiment, we have used values of μ ranged from 24 to
213 (a larger value of μ results in a closer agreement
between the reconstructed state and the experimental data).
Our target wave function is a collimated Gaussian beam
from a single-mode fiber. The lens after the fiber is slightly
displaced to create an aberrated wave front. This creates a
complex wave function made from both real and imaginary
parts. We reconstruct the wave function from the conven-
tional direct measurement method using Eq. (1). The real
and imaginary parts from a pixel-by-pixel raster scan are
shown on the left column of Fig. 2 for a N ¼ 12 × 16 ¼
192 dimensional Hilbert space. The real and imaginary
parts of the wave function reconstructed from the CDM
method using N ¼ 192 andM=N ¼ 20% are shown on the
middle column. It can be seen that the main features of the

state are retrieved with as few as 20% of the total number of
measurements used in the left column. It should be
emphasized that the minimum number of required mea-
surements for an accurate reconstruction is proportional to
the sparsity of the signal. Our algorithm uses sparsity with
respect to the gradient transformation, according to
Eq. (10). In order to achieve a more sparse signal, we
have performed a fine grain measurement of the same state
at the resolution of N ¼ 120 × 160 ¼ 19 200. The wave
function reconstructed from the CDM method using
M=N ¼ 20% is shown on the right column of Fig. 2.
Due to increased sparsity of the state in the larger Hilbert
space, a very detailed reconstruction can be achieved with
20% of the total number of measurements.
To provide a quantitative comparison of the two methods

we calculate the fidelity between the retrieved state jψ 0i and
the target state jψi from a full pixel-by-pixel scan as

Fðjψ 0i; jψiÞ ¼ jhψ 0jψij: ð11Þ
The results are shown in Fig. 3. The horizontal axis
corresponds to the percentage of the measurements
(100 × ðM=NÞ). The blue curve shows the fidelity of the
state reconstructed with the CDM method. The red curve
represents the average fidelity of the state reconstructed
with Eq. (8) using the data from a partial pixel-by-pixel
measurement ofM randomly chosen points. It is seen from
the figure that the compressive method results in a drastic
increase of fidelity for the first few measurements and
gradually settles to a value close to 1. As an example of the
usefulness of the compressive method, a fidelity as high as
90% is achieved by performing only 25% of the measure-
ments, while the conventional direct measurement needs

FIG. 1 (color online). A schematic illustration of the exper-
imental setup. The collimated Gaussian beam from a single mode
fiber is passed through a polarizer to prepare a vertical polari-
zation. The SLM is used along with two quarter wave plates
(WP1 and WP2) to rotate the polarization at each pixel. An
f ¼ 50 cm lens focuses the beam onto a pinhole with a diameter
of 10 μm. The polarization measurement is performed on the light
collected from the pinhole using a QWP/HWP (WP3) and a
polarizing beam splitter.
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FIG. 2 (color online). The amplitude, imaginary, and real parts
of an aberrated Gaussian state from experimental data. The left
column presents data from a pixel-by-pixel scan of the state for
N ¼ 192. The middle column shows the reconstructed wave front
for N ¼ 192, and M=N ¼ 20% of the total measurements from
the CDM method. The right column demonstrates reconstruction
forN ¼ 19 200, andM=N ¼ 20% of the total measurements. The
transverse dimensions of the state are shown in millimeters.
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approximately 80% of all the measurements to achieve the
same fidelity.
To further demonstrate the accuracy of our method we

have used it to measure a custom state prepared using a
phase mask depicting the lettersU and Rwith a phase jump
of π=2. The phase mask is prepared via an additional spatial
light modulator illuminated with the Gaussian beam from
the laser and the state is imaged onto the second SLM,
which is used for polarization rotation. Figure 4 shows the
amplitude and the phase of the reconstructed state with
M=N ¼ 20% of the total measurements. Notice that while
the amplitude is relatively uniform, the phase shows the
letters U and R with a remarkable accuracy. It should be
emphasized that the measurement of a state of such high
dimensions is extremely time consuming via a pixel-by-
pixel scanning. In our approach, we perform a weak
measurement on approximately half of all the pixels at
each time. Due to this, the change in the state of the pointer
(i.e., the polarization of the beam after the pinhole) is much
more pronounced as compared to the conventional DM
method where only one pixel would be weakly measured.
The speed-up factor can be estimated considering that the
strength of the signal measured in the laboratory is propor-
tional to the value of the second term in Eq. (4). It is easy to
check that the magnitude of this term is on average

ffiffiffiffi
N

p
=2

times larger in the case when half of theQm;j are set to one.
For the case of our experiment with N ¼ 19 200, and
M=N ¼ 20%, our approach provides a ∼350-fold speed-up
in the measurement procedure.
It should be emphasized that our specific experimental

realization of the CDM method can be described using
classical physics. The measured wave function in this case

is the spatial mode of photons, which is equivalent to the
electric field of paraxial light beams in the classical limit
[37]. Since the experiment is designed to measure the
spatial mode, it is insensitive to the number of excitations of
the field (i.e., the number of photons). Subsequently, the
results of the experiment would be identical for a source of
single photons, heralded single photons, or a strong laser
beam provided that they are prepared in the same spatial
and polarization modes. However, the language of quantum
mechanics provides a simpler description, with a broader
range of applicability that includes fundamentally quantum
mechanical states such as electron beams.
Recently, compressive sensing has been used to simul-

taneously measure the position and momentum distribu-
tions of photons with the aid of partially projective
measurements [38]. This method requires parallel simulta-
neous measurements performed by a camera for character-
izing probability distributions of conjugate variables. In
contrast, the exclusive use of single-pixel detectors in our
technique provides an alternative to inefficient and costly
arrayed detectors for quantum optics [39] and terahertz
applications [40]. Additionally, the use of a single-pixel
detector is advantageous to parallel multipixel measure-
ments in terms of the signal-to-noise ratio. Last but not
least, we emphasize that the measurement of position and
momentum probability distributions is not identical to the
full measurement of the wave function. The measurement
results from the method in Ref. [38] need to be processed
using recursive numerical algorithms to retrieve the phase
information, which is crucial for determination of the wave
function. Such algorithms are proved to provide a unique
solution only for specific sets of conditions [41].
Determining an unknown wave function is of funda-

mental importance in quantum mechanics. Despite many
seminal contributions, in practice this task remains chal-
lenging, especially for high-dimensional states. The direct
measurement approach, introduced by Lundeen et al., has
provided a ground for meeting the high-dimensionality
challenge [14]. Here, we combine the efficiency of com-
pressive sensing with the simplicity of the direct measure-
ment in determining the wave function of an a priori
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FIG. 3 (color online). The fidelity of the reconstructed state
with the target wave function as a function of the percentage of
the total measurements. The fidelity of the state reconstructed
with CDM is shown in blue. The fidelity of the state reconstructed
from a partial pixel-by-pixel scan with the same number of
measurements is shown in red for comparison. The error bars
represent standard deviation calculated from 100 repetitions of
the experiment (error bars are shown at every second data point
for visual clarity).
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FIG. 4 (color online). The amplitude and phase of a Gaussian
mode illuminating a custom phase mask (the initials of the
University of Rochester). The data are reconstructed by the
CDM method with N ¼ 19 200, and M=N ¼ 20% of the total
measurements.
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unknown state. Our experimental results demonstrate that a
compressive variation of the direct measurement allows an
accurate determination of a 192-dimensional state with a
fidelity of 90% using only 25 percent of the measurements
that are needed for a simple direct measurement approach.
This method provides an easy means of characterizing
high-dimensional systems in the labs. In addition, this
technique can be used for classical applications such as
wave front sensing.
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