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One of the most widely used techniques for measuring the orbital angular momentum (OAM) components of a
light beam is to flatten the spiral phase front of a mode, in order to couple it to a single-mode optical fiber (SMOF).
This method, however, suffers from an efficiency that depends on the OAMof the initial mode and on the presence
of higher-order radial modes. The reason is that once the phase has been flattened, the field retains its ringed
intensity pattern and is therefore a nontrivial superposition of purely radial modes, of which only the fundamental
one couples to a SMOF. In this paper, we study the efficiency of this technique both theoretically and experimen-
tally.We find that even for low values of the OAM, a large amount of light can fall outside the fundamental mode of
the fiber, and we quantify the losses as functions of the waist of the coupling beam of the OAM and radial indices.
Our results can be used as a tool to remove the efficiency bias where fair-sampling loopholes are not a concern.
However, we hope that our study will encourage the development of better detection methods of the OAM content
of a beam of light. © 2014 Optical Society of America

OCIS codes: (070.2580) Paraxial wave optics; (260.6042) Singular optics; (070.6120) Spatial light
modulators.
http://dx.doi.org/10.1364/JOSAB.31.000A20

1. INTRODUCTION
Structured light beams have wide applications in technolo-
gies, such as lithography, nanoscopy, spectroscopy, optical
tweezers, and quantum cryptography [1–5]. Among these,
beams with helical phase fronts exp�ilϕ�, where l is an inte-
ger number and ϕ is the azimuthal angle in polar coordinates,
are of particular interest since they can be used for classical
[6–8] and quantum communications [5]. These beams carry a
well-defined value of optical orbital angular momentum
(OAM) lℏ per photon along the propagation direction. Due
to these proposed applications, there are fervent attempts
to design innovative devices to generate such beams. Until
now, possible solutions include spiral phase plates [9], com-
puter-generated holograms imprinted onto spatial light mod-
ulators (SLMs) (holographic approach) [10,11], mode
converters (cylindrical lenses) [12], q plates (nonuniform
liquid crystal plates) [13,14], and some types of OAM sorters
[15,16]. These solutions are practical and widely used in vari-
ous experimental realizations, and are implemented in both
classical and quantum regimes. However, with the exception
of a mode converter and a hologram with an intensity mask
[17,18], the above methods do not generate a pure Laguerre–
Gauss (LG) mode [19,20]. In some cases, the reverse process
can be used to detect the spectrum of OAM of an unknown
beam, where each mode is coupled to a single-mode optical
fiber (SMOF) after its azimuthal phase dependence has been

flattened. Such a method was first introduced by Mair et al.
[21] in the quantum domain and then used commonly in
the classical regime. This technique might sound accurate,
but as we will show, its shortcoming is that the OAM band-
width that can be measured has a bias that depends on the
characteristics of the beam. As a consequence, the bias for
an unknown beam cannot be removed. Moreover, the detec-
tion efficiency for high OAM modes can be extremely low,
making it seem like those components are very weak. This
issue is particularly important for those experiments that rely
on a high detection efficiency, for example, experiments that
aim at maximizing the heralding efficiency, or at closing a de-
tection loophole [22,23], or at characterizing a state by meas-
uring each of its OAM components separately [24,25]. In this
paper, we study projective measurements based on phase flat-
tening followed by coupling into a SMOF. We examine our
theoretical model experimentally for various mode projec-
tions, and we verify the trends in coupling efficiencies.

2. THEORETICAL ANALYSIS
In our analysis we use LG modes, which are characterized by
two indices: the radial index p (nonnegative integer) and the
azimuthal number l (integer), which are associated to the
number of radial nodes and to the OAM value, respectively.
The LG modes are a complete and orthonormal family of sol-
utions of the paraxial wave equation; i.e., in Dirac notation,
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hp0;l0jp;li � δp0 ;pδl0 ;l, and in the position representation at
the pupil they are given by
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where r, ϕ are the transverse cylindrical coordinates,w0 is the
beam waist radius at the pupil, and Ll

p�:� is the generalized
Laguerre polynomial. The devices listed above can generate
LG modes with limited fidelity. The most convenient and
commonly used method is the holographic approach, with
an embedded intensity masking. However, a mode-cleaning
filter cavity can be used to increase the fidelity of the gener-
ated mode [26,27].

A. Projecting on LG modes
To perform a projective measurement, the mode LGp;l (in our
case generated by an SLM) is imaged onto a different
conjugate mode, LG�

p0 ;l0 , and the resulting field is propagated
and coupled into a SMOF in the far field, which selects
only the near Gaussian component. Imaging onto an SLM is
described by taking the product of the two modes, i.e.,
LGp;l�r⊥�LG�

p0 ;l0 �r⊥�, where r⊥ stands for the transverse coor-
dinates. The far-field distribution becomes a polynomial-
Gaussian function given by a 2D-Fourier transform:

F p;l�ρ;φ� � FT �LGp;l�r⊥�LG�
p0 ;l0 �r⊥��; (2)

where FT stands for the 2D-Fourier transform, and ρ and φ
are the cylindrical coordinates in the far field. The fact that a
SMOF only supports the TEM00 mode limits this technique to
the case in which l0 � l. Moreover, as oscillating radial
phases would alter the coupling to the SMOF, we also choose
p0 � p. Due to the absence of any angular dependence after
the phase-flattening stage, the 2D-Fourier transform FT
can be simplified into the Hankel transform of order zero, i.e.,
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In Fig. 1 we show some examples of transverse intensity at the
fiber for several values of p and l. Notice that the beams have
a Gaussian-like shape with local maxima at the periphery,
which give rise to a ringed pattern in the transverse plane.
As jlj and p become larger, the beam intensity distribution
moves to the outer rings. This is related to the effect that a
larger phase-flattened doughnut beam is turned into a smaller

and weaker central spot at the far field, which has been stud-
ied and discussed for special cases in [28,29].

The coupling efficiency to a SMOF, then, is given by the
overlap of the Gaussian mode supported by the fiber and
the far-field distribution calculated in Eq. (2):
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where σ is the beam waist radius of the SMOF Gaussian mode.
It is worth mentioning that the mode of a SMOF can be
approximated with a Gaussian beam. Here we give the results
for p � 0 and p � 1:

ηl0 � jlj!2
�2jlj�!A

2jlj�1B; (5)
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where A � 2∕�1� �σ2∕a20�� and B � 2∕�1� �a20∕σ2��, and
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2

p
λf �∕�πw0� is the natural scaling factor at the fiber.

Notice that it is only the ratio σ∕a0 that matters, as it should
be. These results are shown in Fig. 2, where it is possible to
see that the highest coupling efficiency for different modes is
achieved for different values of the waist at the fiber, which
can be tuned by adjusting the focal length of the Fourier lens.

B. Projecting on Spiral Modes
An alternate and less desirable solution that we explore only
theoretically is to project onto a purely spiral field eilφ (which
can be implemented with a pitchfork hologram on an SLM),
whereby the effect is to simply cancel out the spiral phase
from an initial LG mode, in which case the field at the fiber
is given by F p;l�ρ;φ� � FT �LGp;l�r⊥�eilϕ�. This equation
can be solved analytically; recall that Eq. (2) has an analytical
solution only once a value of p is specified. However, for this
specific case the coupling efficiency is given by
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Fig. 1. Intensity of the p � 0 (left) and p � 1 (right) modes at the
input to the fiber. As an effect of diffraction, local maxima at the
periphery gain intensity as p and jlj increase. Here ρ is in units of
a0 � �

���
2

p
λf �∕�πw0�, which is the natural scaling factor in the far field

of the lens.

Fig. 2. Coupling efficiency for projective measurements for the
modes in Fig. 1. For a given choice of optics, the coupling efficiency
shows a bias dependent on the order of the transverse modes. The
horizontal axis is scanned by changing w0, as a0 is inversely propor-
tional to w0. The shaded box indicates the region limited by the active
area of the SLMs (see experimental section).
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malization function. H�j − k� in f p;lj is the unit step function,
its value is 0 for j < k and 1 for j ≥ k, and Γ is the gamma func-
tion, respectively. As was expected, the coupling efficiency ηlp
depends on the ratio between the beam waist radius of the
SMOF σ and the size of the field at the fiber position a0.

3. EXPERIMENTAL RESULTS
In order to verify the above theory, we prepared an experi-
mental setup (Fig. 3) in which we examined the projective
measurement method for different sets of transverse modes
with varying beam sizes. A linearly polarized light beam of
a He–Ne laser is spatially cleaned, and illuminates the first
of two Pluto HOLOEYE SLMs (SLMA), to generate the initial
LGp;l�r⊥� mode. This is then imaged on a second SLM (SLMB)
via a 4f system with unit magnification, where the mode is
projected onto LGp;l�r⊥��. We used intensity masking to en-
code transverse modes with high fidelity [18,30]. The product
field is finally coupled to a SMOF with mode diameter of
≃4.8 μm and a numerical aperture NA � 0.12 at the far field
of a 20× microscope objective (f � 9 mm and NA � 0.40). In
order to normalize the coupling efficiency for different modes,
we used a Newport power meter with two read out heads to
record both the coupling efficiency and the power of the field
just before the fiber simultaneously. Recall that due to the in-
tensity masking different modes have different generation and
detection efficiencies; for more details see Refs. [18,31]. An
automatic program optimized the center of the holograms
on both SLMs and the coupling efficiency with the SMOF.
The pixel size and active area of the SLMs were 8 μm and
15.36 mm × 8.64 mm. These characteristics set the limits of

the range of beam waists and mode numbers that could be
investigated.

Figure 4 shows the experimental results, to be compared
with the coupling efficiency shown in Fig. 2. Aside from an
overall multiplicative efficiency of about 50% (which com-
prises reflection and scattering by the microscope objective
and fiber), the observed data (Fig. 4) and the theoretical
model (Fig. 2) agree, especially in those regions where the
SLMs’ resolution and active area do not affect the quality
of the generated and projected beams. The region below
0.2σ∕a0 is limited by resolution, as too few pixels are used.
On the opposite end of the horizontal axis the beams eventu-
ally fall out of the active area. These regions are indicated by a
shaded area in the figures. Due to truncation mainly induced
by the microscope objective, there a small deviation for the
case of p � 1 at large beamwaist size with respect to the theo-
retical calculation. However, the spread of these curves is an
indication that the coupling efficiency differs for different ini-
tial modes and that therefore the spectrum that is ultimately
measured is likely not representative of the true OAM distri-
bution of the beam. We can deduce that projective measure-
ment methods should be used with care. A possible solution
could be to calibrate the coupling efficiency for different
transverse modes and then postprocess the measurement
data, but even in this case, if the radial distribution of the ini-
tial field is unknown, the bias may not be removable, as the
radial decomposition depends on the waist that is chosen for
the modes. Of course it is also true that a linear superposition
of LG beams leads to an inaccurate result, since the projective
measurement gives a bias among projection of different pure
OAM states.

4. CONCLUSIONS
In conclusion, we studied the efficiency of projective meas-
urement as a method to characterize the transverse mode
of a light beam. Our analysis can be summarized in two im-
portant messages. The first is that although the coupling effi-
ciency is modal- and beam waist-dependent, the bias that is
induced might be removed in postprocessing after a careful
calibration. Of course, issues may arise in the context of an
experiment aimed at violating Bell’s inequalities: postpro-
cessed results could be regarded as an artificial manipulation
of the data, and detection-related loopholes might be called
into consideration. The second message builds on the fact that
the radial modal content of the initial beam depends on the
waistw0 that is chosen for the decomposition, and the optimal
choice (i.e., the one that results in the least number of radial
modes) for a general beam could be found only after further
measurements. However, as one then should have to calibrate

Fig. 3. Experimental setup for generating and detecting photon
transverse states. A linearly polarized He–Ne laser beam is spatially
cleaned with two lenses and a pinhole. A half-wave plate (HWP) opti-
mizes the first order of diffraction on SLMA, since SLMs are polariza-
tion dependent. The mode LGp;l�r⊥� produced by SLMA is then
projected on the mode LGp;l�r⊥�� on SLMB. The resulting far field
is coupled into a SMOF. We implement two 4f systems with unit mag-
nification and a microscope objective to image SLMA on SLMB and
SLMB on the microscope objective. Irises are used to select the first
order of diffraction at the far-field plane of SLMs, where higher orders
of diffraction are well separated.

Fig. 4. Experimentally measured overall coupling efficiency for the
modes shown in Fig. 1: (left) l � 0…5 and (right) l � 0…2. The
shaded regions indicate a domain in which the effective beam size
exceeds the active area of the SLM, resulting in unreliable data.
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for this optimal size, this is clearly not an ideal procedure,
especially in the context of quantum optics, where there might
be a scarce number of photons available). It is our hope that
this work will motivate the search for new and better
measurement techniques for OAM and more generally for
the transverse radial modes of a light beam.
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