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We describe an experimental technique for generating a quasi-monochromatic field with any arbitrary spatial
coherence properties that can be described by the cross-spectral density function, W�r1; r2�. This is done by using
a dynamic binary amplitude grating generated by a digital micromirror device to rapidly alternate between a set of
coherent fields, creating an incoherent mix of modes that represent the coherent mode decomposition of the
desired W�r1; r2�. This method was then demonstrated experimentally by interfering two plane waves and then
spatially varying the coherence between them. It is then shown that this creates an interference pattern between
the two beams whose fringe visibility varies spatially in an arbitrary and prescribed way. © 2014 Optical Society
of America

OCIS codes: (030.0030) Coherence and statistical optics; (030.1640) Coherence; (030.4070) Modes;
(090.1760) Computer holography; (050.1970) Diffractive optics; (070.6120) Spatial light modulators.
http://dx.doi.org/10.1364/JOSAB.31.000A51

1. INTRODUCTION
The transverse degree of freedom of an optical field is the
fundamental aspect of light that contains spatial information.
Utilization of this information is the basic resource in tradi-
tional imaging systems and in applications, such as micros-
copy, lithography, holography, or metrology. In addition,
use of the transverse modes of light has recently been dem-
onstrated to be an important resource in optical communica-
tion [1–4], high-dimensional entanglement studies [5,6], and
quantum key distribution [7,8].

Having control of the spatial coherence properties of a light
beam provides an additional degree of control compared to
using fully coherent light only and has been shown to be
advantageous for a number of applications. Beams of de-
creased coherence allow access to spatial frequencies that
are twice those available in a purely coherent system [9].
Greater spatial frequencies can enable improvements in imag-
ing-based systems and has been shown to be particularly use-
ful in lithography [10]. Partial coherence also allows for the
suppression of unwanted coherent effects by decreasing
the coherence, such as suppression of speckle [11], which
enables lower noise and opens the door to novel imaging
modalities [12]. It has also been suggested that partial coher-
ence can improve the deleterious effects of optical propaga-
tion through random or turbulent media [13]. In addition, the
coherent property of optical beams can be used for novel
beam shaping [14] as well as be a method for control over
soliton formation due to modulation instabilities in the study
of nonlinear beam dynamics [15]. The ability to generate
arbitrary optical beams could also be used as a tool in basic
research, such as in optical propagation [16] or testing of
novel methods in quantum state tomography dealing with
the transverse wave function of light, which has seen a great

deal of interest recently [17,18]. Traditional methods used
to generate partially coherent beams of light often rely on
imprinting a changing pattern of random phase or speckle
onto a coherent beam, such as with a spatial light modulator
(SLM) [19] or rotating diffuser [20]. It has even been demon-
strated that SLMs allow the statistics of the speckle patterns to
be varied across the beam to give spatially varying coherence
properties [16]. However, none of these methods have been
shown to allow for complete arbitrary control over the spatial
coherence of an optical beam.

In this paper we demonstrate how to generate any arbitrary
quasi-monochromatic partially coherent field that can be
specified by a cross-spectral density function W�r1; r2�, i.e.,
for fields fully specified by their two-point spatial correlations.
This is done by first computing the coherent mode decompo-
sition of W�r1; r2�, which is an incoherent mixture of orthogo-
nal coherent modes. For each of these coherent modes, a
computer-generated hologram (CGH) is computed for a digi-
tal micromirror device (DMD) that acts as a binary amplitude
SLM with rapid modulation speeds. The DMD then switches
between each coherent mode on time scales that are slower
than the coherence time of the source laser but long relative to
the detection time of the CCD. This creates an incoherent
averaging that physically reproduces the coherent mode de-
composition. Section 2 details computation of the coherent
mode decomposition, Section 3 describes the algorithm for
computing binary amplitude CGHs for the generation of
coherent modes, and Section 4 details the experimental dem-
onstration of this technique.

2. COHERENT MODE DECOMPOSITION
The transverse wavefront of a deterministic and coherent sca-
lar beam is described by a complex fieldU�r�. For a stochastic
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beam, U�r� is a random variable, and it becomes necessary to
represent the field in a more sophisticated way. The standard
way of doing this is with the cross-spectral density function.
At a single frequency the cross-spectral density function is
defined as

W�r1; r2� � hU��r1�U�r2�i; (1)

and represents the average intensity (hI�r�i≡W�r; r�), as well
as the correlations (up to the second order) of such a partially
coherent field [21].

W�r1; r2� can be decomposed into an incoherent sum of
orthogonal spatial modes ψn�r�, written as

W�r1; r2� �
X
n

λnψ
�
n�r1�ψn�r2�; (2)

where λn is real and nonnegative and pn � λn∕
P

λn is the rel-
ative weight of the field in mode ψn�r� [22]. The modes ψn�r�
can be computed as eigenfunctions with corresponding eigen-
values λn from the Fredholm integral equation

Z
W�r1; r2�ψn�r1�d2r1 � λnψn�r2�: (3)

This representation is often referred to as a coherent mode
decomposition of W�r1; r2�. Mathematically, Eq. (2) is a sum
over an infinite number of modes, but in practice n is bounded
by the maximum spatial frequency content of W�r1; r2�, i.e.,
there is some maximum nmax � N such that for n > N , pn will
be negligibly small. For example, Gaussian Schell-model
beams are a common example of a partially coherent beam.
Such a beam is defined by having a Gaussian intensity
I�r� � exp�−r2∕2σ2I �, as well as a Gaussian degree of coher-
ence μ�r1; r2� � exp�−jr1 − r2j2∕2σ2μ�, which gives a cross-
spectral density function

W�r1; r2� �
���������������������
I�r1�I�r2�

p
μ�r1; r2�: (4)

A coherent mode decomposition of such a Gaussian Schell-
model beam shows that the number of coherent modes
necessary to describe Eq. (4) is given by the number of inde-
pendent coherent regions within the beam, which is quantified
by N ≈ �σμ∕σI�2 [23].

Physically, Eq. (2) can be realized if one can create a beam
that alternates between the coherent modes ψn�r� in time with
relative frequency weighted by pn. For measurement to yield
the intended field, the switching time τs must be much faster
than any detector integration time τdet in order to create the
intended averaging over the inputs. In addition, for the mix-
ture to be an incoherent mixture, the various modes must
not have any correlations in time. Thus the switching time
must be slower than the coherence time τcoh of the source.
Together these form the condition

τdet > τs > τcoh: (5)

If Eq. (5) is met, then one has a physically realized implemen-
tation of W�r1; r2�.

3. GENERATING ARBITRARY COHERENT
FIELDS WITH BINARY GRATINGS
In order to generate an arbitrary partially coherent field
W�r1; r2�, one only needs to find a way to create the coherent
fields ψn�r� in rapid succession. Such rapid mode generation
was recently demonstrated by using DMDs to create quickly
addressable binary-amplitude-modulated CGHs [24], though
this comes at the cost of having a maximum efficiency around
10%. DMDs are devices that provide both the speed and res-
olution desired for rapid generation and switching of coherent
fields [25]. A DMD consists of a two-dimensional array of mir-
rors that can be in one of two positions, which can be used to
act as an on or off state at each pixel. Each pixel can be indi-
vidually addressed and changed very rapidly, at frame rates
exceeding 10 kHz.

The fact that DMDs have two settings allows us to make a
binary grating. Any periodic structure acts as a diffraction gra-
ting. A transverse shift in this diffraction grating will induce a
phase shift or detour phase in the diffracted orders, even if the
grating is an amplitude-only structure. In addition, the form of
each period will determine the scattering efficiency into the
diffracted order. Taken together, modulating the grating posi-
tion and each periodic form locally within the hologram
allows one to control both the amplitude and phase, and thus
create any fieldU�r� � A�r� exp�iϕ�r�� in the diffracted order.

A well known method of encoding binary holograms is to
create a periodic array of binary fringes or rectangular
“pulses.” A one-dimensional representation of this is shown
in Fig. 1. A shift in the location of these pulses will change
the overall phases into the diffracted orders, while changing
the widths or duty cycles of the pulses will change the dif-
fracted efficiency. These two methods are known as pulse po-
sition and pulse width modulation, respectively [24,26,27], and
such a modulation represents a generalization of the Moiré
technique [28]. Mathematically, a periodic binary grating
can be written as a Fourier series,

f �r� �
X
m

sin�πmq�
πm

eim�G·r�2πδ�; (6)

whereG � �2π∕T��cos�θ�x̂� sin�θ�ŷ� is the grating wave vec-
tor. The grating consists of rectangular pulses of width qT
spaced at a period of T , and δ ∈ �−1∕2; 1∕2� is the relative
location of the array within each period. Looking only at
the first diffraction order m � 1, the field is given by

Fig. 1. Left: a binary amplitude grating composed of a series of
rectangular pulses diffracting light into multiple orders. Middle: pulse
position modulation where a phase change is induced in the diffracted
order as a result of a shift in the pulses. Right: change in the amplitude
of the diffracted order by pulse width modulation in which the diffrac-
tion efficiency is varied by changing the duty cycle of the binary
pulses.
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U1 � U in �
sin�πq�

π
ei2πδ; (7)

where U in is the input field, which we’ll assume to be a con-
stant plane wave. In addition, all optics after the DMD are
aligned along the axis of the first diffraction order, allowing
us to ignore any phase tilt from U in as well as the eiG·r tilt from
the grating in our description of U1.

We can allow q and δ to become functions of position, and
the previous results still hold so long as q�r� and δ�r� vary
much slower than the grating period T . Then any complex
field A�r�eiϕ�r� can be generated by allowing

q�r� � 1
π

arcsin�A�r��; δ�r� � ϕ�r�
2π

; (8)

where the phase is ϕ ∈ �−π; π�, which is defined symmetrically
around 0 to avoid encoding errors in the presence of a varying
amplitude [29].

This full procedure can be represented in the following
fashion. First one chooses the field U � A�r�eiϕ�r� that one
wishes to create. Then q�r� and δ�r� are computed from
Eq. (8), and a periodic sinusoidal function is computed to give

cos�G · r� 2πδ�r��: (9)

To convert this into a binary hologram, this function is thresh-
olded by cos�πq�r�� to create a binary pulse train with local
pulse width q�r�. This can be written in the compact form

f �r� � H �cos�G · r� 2πδ�r�� − cos�πq�r���; (10)

where H�z� is the Heaviside step function, defined as

H�z�≡
�
0 if z < 0
1 if z ≥ 0

: (11)

4. EXPERIMENT
A schematic of the experimental setup is shown in Fig. 2.
A He–Ne laser is spatially filtered using a 4f system to provide
an initial coherent plane wave incident on the DMD. The vari-
ous coherent modes, ψn, are created in rapid succession with
a spatially modulated binary diffraction grating on the DMD

that gives the desired field in the first diffraction order. A
second 4f system and pinhole are used to filter out all other
diffraction orders, and the resultant beam is imaged onto a
CCD camera.

The DMD is a type of micro-electronic mechanical system,
commonly known as a MEMS, that can function as an ampli-
tude-only SLM [25]. The device consists of a two-dimensional
pixelated array of micromirrors, each mounted on an individu-
ally addressed MEMS that can be in one of two positions. In
order to use the device as a SLM, the device is aligned such
that the light is reflected and collected by the optics after the
DMD if the micromirrors are in the on position, but scattered
out of the system if the mirrors are in the off position. The
device used in the experiment was a Texas Instrument
DLP3000. This device has a display resolution of 608 × 684
pixels and a micromirror size of 7.5 μm, and the pixels can
be switched at rates up to 4 KHz, which is much faster than
a typical phase-based SLM [24].

The CCD operates at 60 Hz, and thus the detector integra-
tion time is τdet � 1∕60 Hz ≈ 17 ms. The DLP3000 DMD used
in this experiment has a switching rate of 4 kHz; thus
τs � 1∕4 kHz � 250 μs < τdet, which fulfills the first inequality
in Eq. (5). The bandwidth of the He–Ne is 1.5 GHz, giving
τcoh � 1∕1.5 GHz ≈ 0.7 ns, which meets the second part of
the inequality in Eq. (5).

As a demonstration of the ability to generate a single coher-
ent state, the field

U�r� ∝ eikx � e−ikx (12)

was generated. This represents a coherent superposition of
two plane wave states that form a sinusoidal interference pat-
tern, as shown in Fig. 3.

For this experiment the mode was generated using a grating
with wave vector

G � 2π
25 px

�x̂� ŷ�; (13)

which represents a period of T � 25
���
2

p
pixels ≈ 275 μm ori-

ented at θ � 45°. This value of G was chosen to be large
enough to produce enough separation in the Fourier plane
to allow for filtering of the first diffracted order with an iris.
In addition, a nonzero value was chosen for both the x and y
components of G in order to minimize the noise by ensuring
that the diffracted order did not overlap with any specular re-
flection due to the DMD’s imperfect pixel fill fraction. The
underlying grating can be seen in the left image in Fig. 3,

Fig. 2. Experimental setup used to generate any field, W�r1r2�. A
fully spatially coherent plane wave is prepared by spatial filtering
of a He–Ne laser. This collimated beam is reflected off a CGH gener-
ated by the DMD, and the desired diffracted order is filtered by a 4f
system and imaged onto a CCD.

Fig. 3. Interference fringes formed from the coherent superposition
of two plane waves. The left image shows the CGH used to generate
the desired mode. The middle image represents the target image,
while the right image is an experimental image of the generated mode.
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which has the appearance of small diagonally oriented slivers.
The plane wave transverse wavenumber was chosen to be

k � 2π
100 px

≈
2π

780 μm
: (14)

k ≪ jGj and thus is slowly varying enough to allow us
to use the procedure in Section 3 to construct the CGH to cre-
ate this state. Since we are perfectly interfering two plane
waves, the intensity varies as I ∝ cos2�kx�. Therefore,
q�r� � arcsin�cos�kx��∕π, while δ�r� � 0.

Next we created a superposition of the plane waves
UA � eikx and UB � e−ikx as before, but this time the degree
of coherence between the two beams was spatially varied,
creating a partially coherent mix of modes. The coherent
modes used to represent this are given by

ψ1�r� ∝ �UA � f �r�UB�;
ψ2�r� ∝ �f �r�UA � UB�; (15)

where the relative probability weightings are given as
p1 � p2 � 1∕2, and where f �r� is related to the fringe visibility
V�r� by

f �r� � V�r�∕
�
1�

��������������������
1 − V�r�2

q �
: (16)

The intensity for this beam is

I�r� ∝ �1 − f �2 � 4f cos2�kx�; (17)

which is the sum of an incoherent and a coherent term, which
can be continuously tuned from fully coherent (f � 1) to
incoherent (f � 0).

The visibility function chosen for the experiment is given by

V�r� � j sin�κr�j; (18)

where

2πκ � 4k
3

� 2π
75 px

≈
2π

580 μm
: (19)

Since f �r� was chosen to be real, Eq. (18) also represents our
spectral degree of coherence at r. The CGHs necessary to cre-
ate the modes ψ1 and ψ2 [Eq. (15)] for this spatially varying
fringe visibility are shown in the top row of Fig. 4. The CGH
parameters are

q�r� � 1
π

arcsin
� �����������������������������������������������

4f cos2�kx� � �1 − f �2
p

Imax

�
; (20)

where Imax is the maximum value of I�r� and

δ1;2�r� � arg�R�ψ1;2� � iI�ψ1;2��
� arg��2 cos�kx� − �1 − f � cos�kx��∓i��f − 1� sin�kx���:

(21)

In order to compare the intended visibility given by Eq. (18)
with the image shown in Fig. 4, a one-dimensional slice of the
intensity is plotted in Fig. 5. This slice is a radial slice r along
the x axis (i.e., at an orientation of θ � 0) and is plotted over
an entire period of sin�κr� of the visibility. In addition, the
theoretical envelope of the visibility equal to �1� V�r��∕2 �
�1� j sin�κr�j�∕2 is plotted for comparison. As can be seen in
both the original coherent and partially coherent cases, the
intended and measured patterns are in excellent agreement
with one another.

5. CONCLUSIONS
In this paper we have demonstrated a novel method of gen-
erating arbitrary fields of light. Any partially coherent field

Fig. 4. Interference fringes formed from superposition of two plane
waves that are partially coherent with respect to each other. The top
figures show the CGHs used to generate the desired modes given by
Eq. (16). The bottom left figure represents the target intensity pattern,
while the bottom right figure is an experimental image of the gener-
ated field.

Fig. 5. Plot of the intensity of the image in Fig. 4 along the 1D slice of
r for θ � 0, i.e., along the x axis (solid blue line). Also shown as the
black-dotted line is the theoretical envelope of the maximum and
minimum intensities based on the intended visibility function V�r�.

A54 J. Opt. Soc. Am. B / Vol. 31, No. 6 / June 2014 Rodenburg et al.



that is described by the cross-spectral density function
W�r1; r2� can be generated by computing the coherent mode
decomposition into an incoherent sum of coherent modes.
This incoherent mix of modes was physically realized by rapid
generation of spatial holograms on a DMD and was temporally
averaged in detection.
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