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Loss of spatial coherence and limiting of focal plane intensity by small-scale
laser-beam filamentation
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We describe a nonlinear optical mechanism that leads to a decrease of the degree of (transverse) spatial
coherence of a laser beam as a function of propagation distance. This prediction is in direct contrast with those
of the van Cittert-Zernike theorem, which applies to propagation through a linear, homogeneous material. The
mechanism by which coherence is lost is the growth of small phase irregularities initially present on the laser wave
front. We develop a detailed theoretical model of this effect and present experimental results that validate this
model. The practical importance of this result is that by being able to controllably decrease the spatial coherence
of a laser beam, one can limit the maximum intensity that is produced in its focal region. By limiting the intensity,
one can prevent laser damage to bulk optical components or to sensitive photodetectors. This mechanism thus
provides an alternative to current approaches of sensor protection based on optical power limiting.
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I. INTRODUCTION

The ability to focus a light beam to a small spot is intimately
related to the spatial-coherence properties of the beam. A fully
coherent beam of wavelength λ = 2πc/ω and diameter D

can be focused by a lens of focal length f to a spot size of
approximately f λ/D, as given by the usual Rayleigh criterion.
A beam with limited spatial coherence cannot be focused so
tightly. To a good approximation, the spot size in this case is
given by the Rayleigh criterion, but with the beam diameter
replaced by the transverse coherence length lcoh of the light
beam. Thus, the ability to control the coherence properties of
a light beam can lead to important implications for the nature
of the intensity distribution within the focal region, including
the maximum intensity that can be produced.

It is well known that thermal radiation is highly incoherent,
but nonetheless light from a distant star possesses a high degree
of spatial coherence when the light arrives at the earth. This
thought is quantified by the van Cittert-Zernike theorem [1],
which states that light fields become spatially more coherent as
they propagate away from their source. Nonetheless, there are
counterexamples for this sort of behavior. One such situation is
in the propagation of light though atmospheric turbulence, in
which case the random refractive index variations induced by
the turbulence leads to a decrease in the coherence of the light
field and the blurring of the resulting image [2]. In the present
paper, we describe another example of such behavior, in which
propagation through a nonlinear optical material leads to a loss
of spatial coherence.

II. THEORY

The mechanism by which an intense light field can lose
coherence as it propagates through a nonlinear optical medium
is intimately related to the mechanism that leads to small-scale
laser-beam filamentation [3], as described by Bespalov and
Talanov [4] and observed by many others [5–10]. According
to this mechanism, small irregularities present initially on
the laser wave front become amplified by four-wave mixing

processes as the beam passes through a material characterized
by an intensity-dependent refractive index of the form n =
n0 + n2I . It has been shown that, in fact, even the relatively
weak quantum fluctuations present in any light field can serve
as the irregularities that initiate the filamentation process [11].
It is well established that the exponential amplitude gain
experienced by a weak harmonic perturbation of transverse
wave vector q is given by the gain parameter [12]

g =
√

β(2γ − β), (1)

where γ = n2k0I , k0 = ω/c, ω is the angular frequency of the
light wave, and β = q2/(2n0k0) [13].

We note that the total gain G = gL experienced upon
propagation though a nonlinear medium of length L must
exceed some threshold value G0(q) in order for perturbations
of transverse wave vector q to become appreciable. For
nonlinear optical processes that grow from noise, such as
stimulated Brillouin scattering, this threshold value is often in
the range of 25–30 [14,15]. However, a value of 5 is more likely
relevant in the present context in which the process is initiated
by technical noise on the laser wave front. We thus conclude
that the gain given by Eq. (1) must be at least as large as
g0(q) = G0(q)/L in order for perturbations with wave vector q

to become appreciable. We now calculate the maximum value
of q, which we call qmax, for which the gain is this large. (We
determine the maximum value of q because we are interested
in determining the smallest distance over which transverse
coherence is maintained.) We define the corresponding value
of β to be βmax = q2

max/(2n0k0). Equation (1) thus becomes
g0(qmax) = [βmax(2γ − βmax)]1/2. We solve this for βmax to
find that

βmax ≡ q2
max

/
(2n0k0) = γ +

√
γ 2 − g0(qmax)2. (2)

We have taken the positive part of the square root because we
are seeking the maximum value of q. Note that for γ 2 < g2

0,
there is no physically meaningful solution to this equation, that
is, there is no value of β for which the perturbation sees gain.
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We now determine how the transverse coherence length
lcoh = π/qmax is limited by the growth of wave-front perturba-
tions. This quantity is given by

lcoh = π√
2n0k0[γ +

√
γ 2 − g0(qmax)2]1/2

(3)

for γ 2 > g2
0. In the limit of very large laser intensities, this

result simplifies to

lcoh = π

2
√

n0n2k
2
0I

. (4)

In the opposite limit of γ 2 < g2
0, the quantity lcoh becomes

imaginary, implying that there is no decrease of the transverse
coherence distance. In this case, and for that of γ not too
large, the transverse coherence length is identical to that of the
incident laser beam. For a fully coherent beam, the transverse
coherence is limited by the beam diameter 2w0 itself. In
summary, well below the threshold for filamentation, the
coherence length lcoh is given approximately by the diameter
2w0 of the laser beam. Above the threshold for filamentation,
the coherence length is given by Eq. (3), and well above the
threshold for filamentation it is given by Eq. (4). These results
summarize our theoretical model.

III. EXPERIMENTAL INVESTIGATIONS

We have performed a series of experiments to confirm the
predictions of the model just described. These experiments
were performed using the 25-ps duration, 532-nm wavelength
output pulses of a commercial, mode-locked, frequency-
double, Nd:YAG laser system operating at a pulse repetition
rate of 10 Hz. These pulses were focused into a 10-mm-long
optical cell containing carbon disulfide, and the transmitted
beam was examined both at the output of the cell and in the far
field. Representative experimental results are shown in Fig. 1
for several values of the pulse energy ranging from 100 nJ
to 5.0 μJ. For this set of experiments, a lens with 700-mm
focal length was used to focus the 6-mm-diameter laser beam

FIG. 1. (Color online) Demonstration of small-scale filamenta-
tion (beam breakup into multiple filaments) in carbon disulfide. Top
row: Near-field distribution at the output of the interaction region.
Bottom row: Far-field intensity distributions. Pulse energies increase
left to right: 100 nJ, 0.69 μJ, 2.2 μJ, and 5.0 μJ in a 25-ps pulse.
The diameter of the lowest-energy, near-field spot is 80 μm, and the
diameter of its far-field pattern is 0.5 degree. One sees that under these
experimental conditions, the spatial-coherence properties of the laser
light are strongly diminished by the filamentation process.
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FIG. 2. (Color online) Schematic diagram of the optical configu-
ration used to study the transmission of a 532-nm laser pulse through
a 10-mm-long CS2 cell.

into the cell. The beam diameter at the entrance to the cell
was thus of the order of 80 μm, and the Rayleigh range was
of the order of 30 mm. The far-field images were recorded
at a distance of 900 mm from the cell. At the lowest pulse
energy, no discernible nonlinear effects are present. As the
pulse energy is increased, the beam is seen to break up into
multiple filaments at the output of the cell and to increase in
the far-field divergence angle. The increase in the divergence
angle demonstrates a decrease in the spatial coherence of the
beam, as predicted by the theory described above.

We have also performed experiments to study more quan-
titatively the loss of spatial coherence of the transmitted laser
beam. The setup for these measurements is shown in Fig. 2.
A prism mounted on a computer-controlled translation stage
serves as a knife edge, and the energy collected by a lens and
integrating sphere is recorded as a function of the position
of the knife edge for each laser shot. In our experimental
method, we set the gain of the laser amplifier to a fixed value
and allow the fluctuations in the oscillator output to provide
a range of pulse energies. These energies are monitored using
the reference energy meter in Fig. 2. The transmitted energy
versus knife-edge position was sorted based on the input
reference energy, and put into bins of 200 points each, with
a 100-data-point overlap between successive bins. For each
bin, the transmission versus knife-edge position is fitted to
the expected functional form (the error function of variable
width) to determine the beam width for that particular pulse
energy. The results of these measurement are shown in Fig. 3.
Here the measured far-field diffraction angle (the half angle
measured to the 1/e2 intensity point) is plotted as a function
of the pulse energy. The estimated error is approximately the
diameter of the circle. The beam diameter obtained for each
energy interval was used to calculate the far-field diffraction
angle using the following formula:

θ = arctan[2w(z1)/z1], (5)

where z1 = 207 mm is the distance from the focus to the
knife edge, and w(z) is the radius where the beam intensity
is 1/e2 of its axial value at that distance z. Under none of
our conditions did we observe a decrease in the total energy
of the pulse leaving the cell; only transverse reshaping was
observed.

The red curve in Fig. 3 is a fit of the data to the prediction
θ = 2λ/(πlcoh), where lcoh is given by Eq. (3), with g0 and
the coefficient relating γ to the pulse energy taken as fit
parameters. The beam-waist parameter w0 was measured to
be equal to 50 μm from a similar experiment performed with
no cell present. The fit shown in the figure was obtained for the

053837-2



LOSS OF SPATIAL COHERENCE AND LIMITING OF . . . PHYSICAL REVIEW A 84, 053837 (2011)

Incident pulse energy (μJ)
5 10 15 20 25 300

0

0.4

0.8

1.2

1.6

Fa
r-f

ie
ld

 d
iff

ra
ct

io
n 

an
gl

e 
(d

eg
)

FIG. 3. (Color online) Measured far-field diffraction angle (cir-
cles) and the predictions of our theoretical model (solid line) as
functions of the incident pulse energy. The square-root dependence
on pulse energy predicted by Eq. (4) is evident.

values g0 = 1.8 cm−1, and with γ given by n2k0I , with n2 =
3.2 × 10−18 m2/W, k0 = 2π/λ, and I = 0.144Q/(τπw2

0),
where Q is the (measured) pulse energy and τ = 25 ps.

IV. DISCUSSION AND IMPLICATIONS

We note from Fig. 3 that for large pulse energies, the
far-field diffraction angle increases as the square root of the
pulse energy, in agreement with the predictions of Eq. (4).
Consequently, the power per unit area in any transverse plane
located in the far field remains constant as the input pulse
energy increases. If this far-field intensity distribution is itself
imaged to a small spot size, the intensity in this region will also
remain constant with increasing input energy. This nonlinear
process therefore acts as an intensity limiter.

There has been considerable work performed over approx-
imately the past 20 years in developing optical power limiters,
that is, nonlinear interactions that limit the total power of
a transmitted laser beam. Power limiters of this sort hold
promise in protecting sensitive optical components, such as
optical sensors, from laser damage at high exposure levels.
Power limiters have been constructed that operate by means

of nonlinear focusing [7,16], reverse saturable absorption
[17,18], and other types of nonlinear interactions [19]. The
process described in the present work constitutes an alternative
to this approach by not attempting to limit the total power,
but rather by attempting to limit the more relevant quantity,
which is the power per unit area in a focal region. Also, as our
process does not deposit energy within the interaction region,
it should prevent optical damage to the limiter and should
allow for a more rapid recovery after exposure to an intense
pulse. Moreover, as this process is nonresonant, it should lead
to no intensity loss or visual distortion when low-power pulses
are transmitted through the system. We also wish to point
out that the study of the interplay between nonlinear optical
interactions and the coherence properties of light fields have
been studied by others in various contexts [20,21].

Under our experimental conditions, limiting behavior oc-
curs at energies greater than approximately 3 μJ, which
for our 25-ps pulses corresponds to a peak power of the
order of 100 kW. To good approximation, the filamentation
process depends on the intensity (power per unit area) of the
incident laser beam. Thus, for longer laser pulses, limiting
behavior is still expected to occur at power levels of the
order of 100 kW. Through the use of materials with a larger
nonlinear coefficient, limiting behavior could be achieved
at lower energy and power levels. As an example, we note
that the material poly(p-phenylenvinylene) (PPV) possesses
a nonlinear coefficient that is 300 times larger than that of
carbon disulfide [22]. This material is currently available only
in extremely thin films, and would not be suitable for use as an
intensity limiter. Nonetheless, the existence of materials such
as PPV illustrates that very large values of n2 are currently
available. The use of such a material with an n2 value this
large would lead to limiting behavior for 25-ps pulses as weak
as 10 nJ of energy or 300 W of peak power.

In summary, we have shown that the process of laser-beam
filamentation can lead to a decrease in the spatial-coherence
properties of a laser beam, and that this process leads to a
limit of the maximum intensity that can be achieved in the
focus of the laser beam. This process may lead to an attractive
alternative to current methods for optical power limiting.
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