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Abstract
We generalize the standard quantum model (Caves 1982 Phys. Rev. D 26 1817) of the noise
properties of ideal linear amplifiers to include the possibility of non-ideal behavior. We find that
under many conditions the non-ideal behavior can be described simply by assuming that the
internal noise source that describes the quantum noise of the amplifier is not in its ground state.
We validate this model by showing that it reproduces the known predictions of two models of
non-ideal amplifiers: a laser amplifier with incomplete inversion and a cascade of alternating
ideal amplifiers and ideal attenuators. We also describe implications of this model for practical
devices.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Optical amplification is required for the operation of many
optical systems, including those used in telecommunica-
tions, optical information processing, and quantum optics.
Examples of optical amplifiers include erbium doped fiber
amplifiers [1, 2], semiconductor optical amplifiers [3], and
surface plasmon amplifiers [4]. Optical systems also often
contain loss elements, which are present either by design
or because of the inability to fabricate perfectly transmitting
optical components. It is well known that both gain and loss
introduce noise into an optical system, and this noise can be
highly undesirable under many circumstances.

In many cases of interest, the noise generated by an
amplifier or attenuator can be ascribed to a purely quantum-
mechanical origin. Indeed, the quantum-mechanical properties
of the electromagnetic field pose a fundamental limit to the
noise level of an optical beam. An ideal phase-insensitive
optical amplifier can be treated by a quantum model that
assumes the presence of two input ports, one for the signal
field and another that represents the internal noise source of
the amplification process [5–7]. In these models, the amplifier

noise can be attributed mainly to the beating between the
amplified signal field and the amplified vacuum fluctuations.

A non-ideal amplifier or attenuator is a device that
introduces more noise than that required by the laws of
quantum mechanics. Non-ideal amplifiers or attenuators have
been treated theoretically by considering them to be comprised
of alternating pairs of ideal amplifiers and attenuators [8], by
means of a three-dimensional quantum beam splitter model [9],
or by explicit consideration of the propagation of light through
a not-totally-inverted laser gain medium [10].

In this paper, we present a generalization of Caves’s [5]
treatment of the noise properties of linear amplifiers by
allowing for non-ideal behavior. We find that a broad class
of amplifiers and attenuators can be treated by making just
one additional assumption, namely that the internal quantum
noise source of the device is not in its ground state. We
begin with a brief summary of the usual treatments for ideal
amplifiers or attenuators in section 2. Our new model is
introduced in section 3 and applied specifically to several types
of practical amplifiers. The paper concludes with a discussion
and summary in section 4.
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Figure 1. Quantum model of an ideal linear amplifier (a) and an
attenuator (b). Here and in figure 2, we use the symbol v̂ to designate
an internal noise source ĉ that is in the vacuum state.

2. Quantum model of an ideal linear amplifier or
attenuator

Let us first summarize the quantum description of the noise
properties of an ideal amplifier for the case of a single-mode
input field propagating through an ideal linear amplifier with
intensity gain G. We adopt the standard model shown in
figure 1(a) which was introduced by earlier workers [5, 11–13].
This model ascribes the noise properties of the amplifier to an
internal quantum noise source that represents the fluctuations
that must (by means of the fluctuation-dissipation theorem)
accompany any gain or loss mechanism.

The strength of this noise source is adjusted to ensure that
the field operator of the output mode possesses standard boson
commutation relations. Specifically, the photon annihilation
operators for the input and output fields are denoted by â
and b̂, respectively, and are assumed to satisfy the standard
commutation relations

[â, â†] = [b̂, b̂†] = 1. (1)

The annihilation operator for the output field is expressed in
terms of that of the input field and of a Langevin noise source
as follows [5]:

b̂ = G1/2â + (G − 1)1/2ĉ†. (2)

Here ĉ is a boson operator, denoting the internal noise field,
which also must satisfy the relation [ĉ, ĉ†] = 1. The internal
noise field is assumed to be uncorrelated from the input field,
that is,

[â, ĉ†] = [â, ĉ] = 0. (3)

It is straightforward to verify that under these circumstances
the commutation relation [b̂, b̂†] = 1 is satisfied. For the case
of an ideal amplifier, one assumes that the internal noise field
is in the vacuum state, that is,

〈n̂c〉 = 〈ĉ†ĉ〉 = 0. (4)

Consequently, the expectation value of the photon number of
the output field is given by

〈n̂b〉 = 〈b̂†b̂〉 = G〈n̂a〉 + (G − 1), (5)

where 〈n̂a〉 = 〈â†â〉 is the average photon number of the
input field. One sees that, in addition to the input field being
amplified by a factor of G, (G − 1) noise photons are added to
the output field. The variance of the output photon number is
similarly given by

〈�n̂2
b〉 ≡ 〈n̂2

b〉 − 〈n̂b〉2

= G2〈�n̂2
a〉 + G(G − 1)(〈n̂a〉 + 1). (6)

Here, the first term represents the amplification of the
fluctuations present in the input field, and the second term
represents the added noise.

The noise properties of an amplifier are often character-
ized by a noise figure [14], defined as

F ≡ (SNR)in

(SNR)out
, (7)

where (SNR)in and (SNR)out are the signal-to-noise ratios
(SNRs) of the input and output fields, respectively, which are
defined as follows:

(SNR)in ≡ 〈n̂a〉2

〈�n̂2
a〉

, (8)

(SNR)out ≡ G2〈n̂a〉2

〈�n̂2
b〉

. (9)

Note that in (SNR)out we use G〈n̂a〉 for the amplified
signal field, not the total output field that includes the noise
contributions.

The noise figure of an ideal optical amplifier is then found
from the expressions given above to be

F = 1 +
(

1 − 1

G

) 〈n̂a〉 + 1

〈�n̂2
a〉

. (10)

When the fluctuations of the input field follow Poisson
statistics, so that 〈�n̂2

a〉 = 〈n̂a〉, one sees that the value of the
noise figure F of an ideal quantum amplifier approaches the
value 2 (or 3 dB) when both G and 〈n̂a〉 are much greater than
unity [15].

This same model can be used to describe an ideal
attenuator of intensity transmission T . We again model this
device in terms of an input signal field â, an output field b̂, and
an internal noise field ĉ, as shown in figure 1(b). In order to
preserve the commutation relations for the output field b̂, we
express it as

b̂ = T 1/2â + (1 − T )1/2ĉ. (11)

Here, the Langevin operator is again assumed to be
uncorrelated from the input operator:

[â, ĉ†] = [â, ĉ] = 0. (12)

For an ideal attenuator, we again assume that ĉ denotes a
vacuum state input, i.e.,

〈n̂c〉 = 〈ĉ†ĉ〉 = 0. (13)

The expected photon number for the output field and its
variance are then given by

〈n̂b〉 = 〈b̂†b̂〉 = T 〈n̂a〉 (14)

and

〈�n̂2
b〉 ≡ 〈n̂2

b〉 − 〈n̂b〉2

= T 2〈�n̂2
a〉 + T (1 − T )〈n̂a〉, (15)

respectively, for such an ideal attenuator. Here, the first term
represents the attenuation of the fluctuations present in the
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input beam, and the second term represents the noise added
due to the random loss of photons from the signal field. The
noise figure of the ideal attenuator is then found to be

F = 1 +
(

1

T
− 1

) 〈n̂a〉
〈�n̂2

a〉
. (16)

Note that this noise figure can become arbitrarily large as the
transmission of the attenuator approaches zero, which can be
attributed to the random loss of photons from the signal field.

3. Generalized model for a non-ideal linear amplifier
or attenuator

We next present a generalization of the model of 2 that
is capable of treating non-ideal amplifiers and attenuators.
One example of a non-ideal amplifier is a laser amplifier
with incomplete population inversion. Another example
is a cascaded assembly of alternating ideal amplifiers and
attenuators. Either of these examples can be described
completely by standard methods, as we demonstrate below.
Our motivation in developing this new model is to be able to
treat a general class of non-ideal amplifiers without the need
to specify the precise nature of the amplification or attenuation
process.

3.1. The new model

To treat a non-ideal amplifier, we use the same model as in
section 2, except that now we do not require the internal noise
source to be in its ground state. Specifically, we assume that
the noise field ĉ is not a vacuum field but is a completely
incoherent noise field with average photon number 〈n̂c〉 �= 0.
The output field operator b̂ is once again related to the input
field operators by

b̂ = G1/2â + (G − 1)1/2ĉ†. (17)

In this more general case, the average photon number of the
output field and its variance are given by

〈n̂b〉 = G〈n̂a〉 + (G − 1)(〈n̂c〉 + 1) (18)

and

〈�n̂2
b〉 = G2〈�n̂2

a〉 + (G − 1)2〈�n̂2
c〉 + G(G − 1)

× [〈n̂a〉〈n̂c〉 + (〈n̂a〉 + 1)(〈n̂c〉 + 1)]
= G2〈�n̂2

a〉 + G(G − 1)〈n̂a〉(2〈n̂c〉 + 1)

+ (G − 1)(〈n̂c〉 + 1) + (G − 1)2(〈n̂c〉 + 1)2, (19)

respectively. Here we use our assumption of incoherent noise
to obtain the expression in the second line of equation (19),
that is, we assume that the variance of the noise field obeys
Bose–Einstein statistics in that 〈�n̂2

c〉 = 〈n̂c〉 + 〈n̂c〉2 [3].
We describe a non-ideal attenuator in an analogous

manner. In this case, the annihilation operator for the output
field is given by

b̂ = T 1/2â + (1 − T )1/2ĉ, (20)

Figure 2. One can describe a non-ideal amplifier using (a) a series of
alternating ideal amplifiers and attenuators, or (b) a generalized
quantum beam splitter model. Part (c) illustrates the beam splitter
model for an attenuator.

where T is the intensity transmission of the attenuator. The
expectation value of the photon number and its variance for the
output field are then given by

〈n̂b〉 = T 〈n̂a〉 + (1 − T )〈n̂c〉 (21)

and

〈�n̂2
b〉 = T 2〈�n̂2

a〉 + (1 − T )2〈�n̂2
c〉 + T (1 − T )

× (〈n̂a〉 + 1)〈n̂c〉 + T (1 − T )(〈n̂c〉 + 1)〈n̂a〉
= T 2〈�n̂2

a〉 + T (1 − T )〈n̂a〉(2〈n̂c〉 + 1)

+ (1 − T )〈n̂c〉 + (1 − T )2〈n̂c〉2. (22)

We show in the following subsection that, by means of an
appropriate choice for 〈n̂c〉, this model can describe various
types of realistic amplifiers and attenuators.

3.2. Media with both gain and loss mechanisms

Many practical amplifiers have both amplification and
attenuation mechanisms distributed throughout the device. We
denote the exponential gain and attenuation coefficients of the
gain and loss mechanisms by g0 and α0, respectively. The net
exponential gain coefficient of the non-ideal amplifier is thus
g = g0 − α0, and the net signal power gain after propagating
through the amplifier is G = exp(gL), where L is the length
of the amplifier.

One way to model such a non-ideal amplifier quantum
mechanically is to use a series of alternating ideal sub-
amplifiers and sub-attenuators (see figure 2(a)), with the
gain/loss of each ideal sub-amplifier/attenuator given by

Gsub ≈ 1 + g0L

M
, (23)

Tsub ≈ 1 − α0 L

M
, (24)

where M is the number of sub-amplifier–attenuator pairs. Note
that a large number of ideal sub-amplifier–attenuator pairs is
needed to model a non-ideal amplifier with a weak input field,
a large net gain G, or when g0 and α0 are comparable. Note
also that, in most cases, the number of alternating gain and
loss elements in the conventional treatment can be taken to be
infinitesimal, and the problem can be solved analytically using,
e.g., techniques described in [8].
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Alternatively, one can much more simply use our
generalized quantum amplifier model to treat this sort of
situation. In fact, as we show in the appendix (see especially
equations (A.6) and (A.7)), our model gives the same result as
that of calculating explicitly the response of alternating gain
and loss segments if one chooses

G = exp(gL) (25)

and
〈n̂c〉 = α0

g0 − α0
(26)

in our generalized non-ideal quantum amplifier model.
Another example of an amplifier which is non-ideal

because it displays both gain and loss mechanisms is that of
a not-entirely-inverted laser gain medium. Here, the excited
state population density N2 provides gain, while the ground
state population density N1 provides loss. The net exponential
gain coefficient per unit length g is therefore proportional to
N2 − N1. For such a case, we find that our new model
reproduces standard results (as summarized in figure 3) if we
take the average number of photons in the noise field to be
given (see especially equation (A.7)) by

〈n̂c〉 = α0

(g0 − α0)
= N1

N2 − N1
= nsp − 1, (27)

where the quantity nsp = N2/(N2 − N1) is often known as the
spontaneous emission factor [16] or the inversion factor [17].
Consequently, equations (18) and (19) become

〈n̂b〉 = G〈n̂a〉 + (G − 1)nsp (28)

and

〈�n̂2
b〉 = G2〈�n̂2

a〉 + G(G − 1)〈n̂a〉(2nsp − 1)

+ (G − 1)nsp + (G − 1)2n2
sp. (29)

In the limiting case in which nsp = 1, corresponding to
complete population inversion, the noise input field 〈n̂c〉 = 0
is the vacuum field, and equations (28) and (29) reduce to the
results of an ideal amplifier, equations (5) and (6).

The choice 〈n̂c〉 = nsp − 1 for a not-entirely-inverted laser
medium is also consistent with a semiclassical model [10] in
which the noise arises from spontaneous emission of photons
into the propagating field mode. The photon number q in this
mode varies spatially according to the equation

dq

dz
= gq + Rspon N2, (30)

where Rspon is the spontaneous emission rate into the single
mode of frequency ν, and I is the intensity. For the
present model in which the gain and population densities are
uniform within the volume V , the gain is given by g =
(V/c)Rspon(N2 − N1), and it follows that the photon number q
at z = L becomes

q(L) = Gq(0) + (G − 1)nsp, (31)

exactly as in equation (28).

Figure 3. The average photon number (top) and its variance (bottom)
for the output field of a not-entirely-inverted amplifier using various
models. M is the number of sub-amplifier–attenuator pairs into
which the medium has been divided. The average photon number of
the input field is 〈n̂a〉 = 1, the total gain of the amplifier is G = 10,
and the spontaneous emission factor is nsp = 2. The dotted line is the
result given by the semiclassical treatment of [10].

As a numerical example, we next calculate the average
photon number and its variance at the output of a not-
entirely-inverted laser amplifier modeled by the approaches
just described. These results are presented in figure 3. In
this example the average photon number of the input field is
〈n̂a〉 = 1, the total gain of the amplifier is G = 10, and
the spontaneous emission factor is nsp = 2. The blue circles
represent the results obtained by using M pairs of ideal sub-
amplifiers and attenuators. One sees that the calculated results
obtained using cascaded ideal sub-amplifier/attenuator pairs
converge to the correct values [9, 10] (that is, the values given
by a semiclassical treatment) when the number of pairs M
is greater than 100. On the other hand, our new approach
gives the same correct answer using just a single step. For
comparison purposes, we have also calculated the output of
M cascaded generalized quantum sub-amplifiers, each with
the same value of nsp and gain Gsub = G1/M . In fact, the
output of two cascaded generalized quantum amplifiers with
the same value of nsp but with different gains G1 and G2 is
identical to that of a single generalized quantum amplifier with
nsp and intensity gain G = G1G2. A detailed proof of this
result is given in appendix B. This result can also be seen from
figure 3 in that the results obtained using our new treatment,
indicated by the red crosses, do not change as M increases.
Our model, in contrast to the model based on alternating sub-
amplifier/attenuator pairs, requires only a single calculation
step, and thus is computationally efficient.

In the opposite situation, in which the loss mechanism
prevails over the gain mechanism, i.e., α0 > g0, the medium
becomes an attenuator. In this case, one can use our modified
quantum attenuator model, i.e., equations (21) and (22), with
T = exp(−αL) and 〈n̂c〉 = g0/(α0 − g0). We again use a
not-entirely-inverted laser medium as an example, in which
the ground state population is larger than the excited state
population. In such a case, 〈n̂c〉 = N2/(N1 − N2) = −nsp,

4



J. Opt. 13 (2011) 125201 Z Shi et al

Figure 4. The noise figure of a laser medium as a function of
intensity gain G and spontaneous emission factor nsp when it
operates as (a) an amplifier and (b) an attenuator. Here, the average
photon number of the input field is 1000.

and the average value and variance of the output field are

〈n̂b〉 = T 〈n̂a〉 + nsp(T − 1) (32)

and

〈�n̂2
b〉 = T 2〈�n̂2

a〉 + T (T − 1)〈n̂a〉(2nsp − 1)

+ (T − 1)nsp + (1 − T )2n2
sp. (33)

Note that all four terms in equation (33) are positive, as nsp

is a negative number for T < 1. Again, in the limiting
case for which nsp = 0, indicating that all the population
is in the ground state, the noise field 〈n̂c〉 = 0 becomes
the vacuum field, and the results of equations (32) and (33)
reduce to those for an ideal attenuator, given by equations (14)
and (15).

Note also that the results given by equations (32) and (33)
are actually of the same form as those of equations (28)
and (29). This indicates that, although we start from
two different mathematical descriptions for amplifiers and
attenuators, we have obtained a consistent description for a
non-ideal laser medium which can act as either an amplifier
or an attenuator.

The noise figure of such a lossy laser medium is therefore

F = 1 + G − 1

G

〈n̂a〉
〈�n̂2

a〉
(2nsp − 1)

+ G − 1

G2

nsp

〈�n̂2
a〉

+ (G − 1)2

G2

n2
sp

〈�n̂2
a〉

. (34)

G can of course have any positive value, while nsp is greater
than one for G > 1 and is negative for G < 1.

The noise figure F of a laser medium as a function of
intensity gain G and spontaneous emission factor nsp when

it operates as either an amplifier or an attenuator is shown
in figure 4. The average photon number of the input field
used in the calculation is 〈n̂a〉 = 1000, and we assume that
its fluctuations obey Poisson statistics. For a given value
of nsp, the noise figure of a laser amplifier increases as the
gain becomes larger, but it also saturates to 2nsp when the
input signal is strong compared to nsp. On the other hand,
the noise figure for an attenuator increases without bound as
the transmission decreases. Furthermore, besides the linear
term (2nsp − 1)/T , there is a second-order term proportional
to n2

sp/T 2. Thus, the noise figure can exceed 80 dB for an
attenuator with T = 10−3 and nsp = 103.

4. Discussion and summary

In summary, we have presented a general quantum beam
splitter model for a realistic amplifier or attenuator. The model
has two inputs, the signal field and a noise field. By choosing
appropriately the input noise field, our model can describe
various types of realistic amplifiers and attenuators. For laser
amplifiers, the smallest noise figure is obtained at largest gain.
Our proposed model can be experimentally tested for, e.g.,
erbium doped fiber amplifiers, using configurations described
in, e.g., [18].

In a recent publication [7], two of the current authors
showed that the theory of the ideal quantum amplifier can
be used to establish the limiting noise figure of an optical
delay (or advancement) line that operates by means of slow-
light (or fast-light) effects [19–23]. The treatment of non-
ideal amplifiers given in the present paper can serve as a
starting point for generalizing the treatment given in this
earlier paper [7]. While the maximum achievable fractional
delay or advancement has been the primary figure of merit
used to evaluate the performance of a slow- or fast-light
device, the noise properties of the device are also important
for many practical applications such as the use of slow-light
methods in telecommunications and in spectroscopy [24, 25].
For example, the SNR of the output field from a slow-light
tunable time-delay element is not only determined by the signal
distortion it introduces, but by the noise property of the slow-
light medium as well. Thus, it is important to take the noise
properties into account in the design of an optimized gain
medium for telecommunications, especially from a system
performance point of view [26]. Thus, investigation of the
relation between the noise properties of slow- and fast-light
devices and of the quantum theory of non-ideal amplifiers is a
worthwhile topic for future study.
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Appendix A. Equivalence between a
sub-amplifier–attenuator pair and a non-ideal
amplifier/attenuator

In these appendices, we show mathematically that the noise
properties of propagation through a cascade of alternating
sub-amplifiers and sub-attenuators are given equivalently by
the generalized quantum amplifier model presented in this
paper. In this appendix, we establish this result for propagation
through a single sub-amplifier followed by a single sub-
attenuator. In appendix B we show that this result also holds
for an arbitrarily large cascaded sequence of sub-amplifiers
and sub-attenuators. In this manner, we establish the result in
general.

Suppose the intensity transmissions through the sub-
amplifier and sub-attenuator, each with length δl, are given by

G0 = exp(g0δl) ≈ 1 + g0δl, (A.1)

T0 = exp(−α0δl) ≈ 1 − α0δl, (A.2)

where g0 and α0 are the gain and attenuation coefficients,
respectively. We assume that δl is small enough that g0δl and
|α0δl| are both much smaller that unity. The expected output
photon number and its variance after the first sub-amplifier are
given according to equations (5) and (6) by

〈n̂b,G 〉 = G0〈n̂a〉 + (G0 − 1) (A.3)

and

〈�n̂2
b,G〉 = G2

0〈�n̂2
a〉 + G0(G0 − 1)(〈n̂a〉 + 1). (A.4)

The expected output photon number after the beam has passed
through the sub-amplifier/sub-attenuator pair is given by

〈n̂b〉 = T0〈n̂b,G〉
= T0G0〈n̂a〉 + T0(G0 − 1)

= G〈n̂a〉 + (1 − α0δl)g0δl

≈ G〈n̂a〉 + g0δl

= G〈n̂a〉 + g0

g0 − α0
(g0δl − α0δl)

≈ G〈n̂a〉 + (〈n̂c〉 + 1)(G − 1), (A.5)

where we have introduced the quantities

G = T0G0 (A.6)

and
〈n̂c〉 = α0/(g0 − α0). (A.7)

Here we assume that the terms higher than the first power in δl
are negligible.

The variance of the output photon number is likewise
given by

〈�n̂2
b〉 = T 2

0 〈�n̂2
b,G〉 + T0(1 − T0)〈n̂b,G〉 = T 2

0 [G2
0〈�n̂2

a〉
+ G0(G0 − 1)(〈n̂a〉 + 1)] + T0(1 − T0)(G0〈n̂a〉
+ (G0 − 1)) = G2〈�n̂2

a〉 + G(G − 1)

(
1 + 2

1 − T0

G − 1

)

× 〈n̂a〉 + G0(G0 − 1) + T0(1 − T0)(G0 − 1)

≈ G2〈�n̂2
a〉 + G(G − 1)

(
1 + 2〈n̂c〉

) 〈n̂a〉
+ (G − 1)(〈n̂c〉 + 1). (A.8)

Again, we assume here that terms higher than the first power
in δl are negligible. These results are consistent with those
(equations (18) and (19)) of a single non-ideal amplifier with
intensity gain G and with a completely incoherent noise input
field with average photon number 〈n̂c〉.

In the case in which the net transmission through the
sub-amplifier–attenuator pair is less then unity, the expected
output photon number through the sub-attenuator can now be
expressed as

〈n̂b〉 = T0〈n̂b,G〉
= T 〈n̂a〉 + (1 − α0δl)g0δl

≈ T 〈n̂a〉 + g0δl

= T 〈n̂a〉 + g0

α0 − g0
(α0δl − g0δl)

≈ T 〈n̂a〉 + 〈n̂c〉(1 − T ), (A.9)

where T = T0G0, and 〈n̂c〉 = g0/(α0 − g0). Similarly, its
variance can be expressed in a different way as follows:

〈�n̂2
b〉 = T 2

0 [G2
0〈�n̂2

a〉 + G0(G0 − 1)(〈n̂a〉 + 1)]
+ T0(1 − T0)(G0〈n̂a〉 + (G0 − 1)) = T 2〈�n̂2

a〉
+ T (1 − T )

(
1 + 2

1 − T0

1 − T

)
〈n̂a〉 + G0(G0 − 1)

+ T0(1 − T0)(G0 − 1) ≈ T 2〈�n̂2
a〉 + T (1 − T )

× (1 + 2〈n̂c〉)〈n̂a〉 + (1 − T )〈n̂c〉. (A.10)

The above results are consistent with those (equations (21)
and (22)) of a single non-ideal amplifier with intensity
transmission T and a completely incoherent noise input field
with average photon number 〈n̂c〉.

Appendix B. Proof of cascadability of non-ideal
quantum amplifiers

To model a non-ideal amplifier with both amplification and
attenuation mechanisms, one typically needs a large number
of sub-amplifier–attenuator pairs. In appendix A, we have
shown that a pair consisting of an ideal sub-amplifier and
sub-attenuator is equivalent to a single non-ideal amplifier or
attenuator with an appropriate choice of the internal noise field.
Here, we show mathematically that the transmission through
two cascaded non-ideal amplifiers with different intensity
gains G1 and G2 but with the same noise input field 〈n̂c〉 is
equivalent to propagation through a single non-ideal amplifier
with intensity gain G = G1G2 and the same noise input
field 〈n̂c〉. Thus, we can use a single step model to describe
a non-ideal amplifier with both amplification and attenuation
mechanisms.

The average photon number of the output field and its
variance after passing the first amplifier are given by

〈n̂b,1〉 = G1〈n̂a〉 + (G1 − 1)(〈n̂c〉 + 1) (B.1)
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and

〈�n̂2
b,1〉 = G2

1〈�n̂2
a〉 + G1(G1 − 1)〈n̂a〉(2〈n̂c〉 + 1)

+ (G1 − 1)(〈n̂c〉 + 1) + (G1 − 1)2(〈n̂c〉 + 1)2. (B.2)

The average photon number of the output field after passing the
second amplifier is given by

〈n̂b〉 = G2〈n̂b,1〉 + (G2 − 1)(〈n̂c〉 + 1) = G2[G1〈n̂a〉
+ (G1 − 1)(〈n̂c〉 + 1)] + (G2 − 1)(〈n̂c〉 + 1)

= G1G2〈n̂a〉 + (G1G2 − G2 + G2 − 1)(〈n̂c〉 + 1)

= G〈n̂a〉 + (G − 1)(〈n̂c〉 + 1), (B.3)

where G = G1G2 is the overall gain through both amplifiers.
The variance of the average photon number of the output field
after passing through both amplifiers is given by

〈�n̂2
b〉 = G2

2〈�n̂2
b,1〉 + G2(G2 − 1)〈n̂b,1〉(2〈n̂c〉 + 1)

+ (G2 − 1)(〈n̂c〉 + 1) + (G2 − 1)2(〈n̂c〉 + 1)2

= G2
2[G2

1〈�n̂2
a〉 + G1(G1 − 1)〈n̂a〉(2〈n̂c〉 + 1)

+ (G1 − 1)(〈n̂c〉 + 1) + (G1 − 1)2(〈n̂c〉 + 1)2]
+ G2(G2 − 1)[G1〈n̂a〉 + (G1 − 1)(〈n̂c〉 + 1)](2〈n̂c〉+1)

+ (G2 − 1)(〈n̂c〉 + 1) + (G2 − 1)2(〈n̂c〉 + 1)2

= (G1G2)
2〈�n̂2

a〉 + G1G2(G1G2 − 1)

× 〈n̂a〉(2〈n̂c〉 + 1) + (G1G2 − 1)(〈n̂c〉 + 1)

+ [G2
2G2

1 − 2G2G1 + 1](〈n̂c〉 + 1)2

= G2〈�n̂2
a〉 + G(G − 1)〈n̂a〉(2〈n̂c〉 + 1)

+ (G − 1)(〈n̂c〉 + 1) + (G − 1)2(〈n̂c〉 + 1)2. (B.4)

Thus, one sees that the property of the output field after
propagating through two cascaded non-ideal amplifiers with
different gain but the same noise characteristics is equivalent
to that obtained in propagating through a single non-ideal
amplifier with the same noise property and total gain.

The situation for cascaded attenuators is very similar.
Suppose we have two cascaded attenuators with transmissions
of T1 and T2, respectively, and they both have the noise input
field 〈n̂c〉. The average photon number of the output field and
its variance after passing the first attenuator are given by

〈n̂b,1〉 = T1〈n̂a〉 + (1 − T1)〈n̂c〉 (B.5)

and

〈�n̂2
b,1〉 = T 2

1 〈�n̂2
a〉 + T1(1 − T1)〈n̂a〉(2〈n̂c〉 + 1)

+ (1 − T1)〈n̂c〉 + (1 − T1)
2〈n̂c〉2. (B.6)

After passing through the second attenuator, the average
photon number of the output field becomes

〈n̂b〉 = T2〈n̂b,1〉 + (1 − T2)〈n̂c〉 = T2[T1〈n̂a〉 + (1 − T1)〈n̂c〉]
+ (1 − T2)〈n̂c〉 = T1T2〈n̂a〉 + (T2 − T1T2 + 1 − T2)〈n̂c〉
× T 〈n̂a〉 + (1 − T )〈n̂c〉, (B.7)

where T = T1T2 is the overall transmission through both
attenuators. The variance of the final output photon number
is given by

〈�n̂2
b〉 = T 2

2 〈�n̂2
b,1〉 + T2(1 − T2)〈n̂b,1〉(2〈n̂c〉 + 1)

+ (1 − T2)〈n̂c〉 + (1 − T2)
2〈n̂c〉2 = T 2

2 [T 2
1 〈�n̂2

a〉
+ T1(1 − T1)〈n̂a〉(2〈n̂c〉 + 1) + (1 − T1)〈n̂c〉
+ (1 − T1)

2〈n̂c〉2] + T2(1 − T2)[T1〈n̂a〉 + (1 − T1)〈n̂c〉]
× (2〈n̂c〉 + 1) + (1 − T2)〈n̂c〉 + (1 − T2)

2〈n̂c〉2

= (T1T2)
2〈�n̂2

a〉 + [T 2
2 T1(1 − T1) + T2T1(1 − T2)]

× 〈n̂a〉(2〈n̂c〉 + 1) + [T 2
2 (1 − T1) + T2(1 − T2)(1 − T1)

+ 1 − T2]〈n̂c〉 + [T 2
2 (1 − T1)

2 + 2T2(1 − T2)(1 − T1)

+ (1 − T2)
2]〈n̂c〉2 = T 2〈�n̂2

a + T (1 − T )〈n̂a〉
× (2〈n̂c〉 + 1) + (1 − T )〈n̂c〉 + (1 − T )2〈n̂c〉2. (B.8)

Thus, we have proven mathematically that one can use
a single generalized quantum amplifier/attenuator model to
describe an amplifier or attenuator with both distributed gain
and attenuation mechanisms.
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