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Retrieving the vast amount of information carried by a photon is an enduring challenge in quantum metrology science
and quantum photonics research. The transverse spatial state of a photon is a convenient high-dimensional quantum
system for study, as it has a well-understood classical analog as the transverse complex field profile of an optical beam.
One severe drawback of all currently available quantum metrology techniques is the need for a time-consuming char-
acterization process, which scales very unfavorably with the dimensionality of the quantum system. Here we dem-
onstrate a technique that directly measures a million-dimensional photonic spatial state with a single setting of the
measurement apparatus. Through the arrangement of a weak measurement of momentum and parallel strong mea-
surements of position, the complex values of the entire photon state vector become measurable directly. The dimen-
sion of our measured state is approximately four orders of magnitude larger than previously measured. Our work
opens up a practical route for characterizing high-dimensional quantum systems in real time. Furthermore, our dem-
onstration also serves as a high-speed, extremely high-resolution unambiguous complex field measurement technique
for diverse classical applications. © 2015 Optical Society of America
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1. INTRODUCTION

Photons play an important role in modern physics as they possess
both a well-understood classical wave picture and a particle quanta
picture. As a result, photons have been used as a unique quantum
platform for studies of quantum science and technology [1–3].
The transverse wavefunction of a photon [4–6] is a typical example
of a high-dimensional quantum system, which has recently at-
tracted a great amount of research interest for applications in quan-
tum information science including precision measurement [7],
high-dimensional entanglement [8–10], parallel information
processing [11], and secure communication [12]. For photons
in a coherent (pure) state, the transverse wavefunction can be char-
acterized by its state vector, which is a set of complex probability
amplitudes expanded over the orthonormal states of a given
Hilbert space. The ability to characterize such a high-dimensional
quantum state is crucial for fundamental studies of quantum me-
chanics as well as for manipulating and utilizing single photons for
practical applications such as secure communication.

Quantum tomography is an established method used for
reconstructing a quantum state through post-processing of the

information obtained from a series of strong measurements per-
formed on identically prepared systems [4,13–20]. Recently, direct
measurement [5] has attracted a tremendous amount of research
interest as it offers an alternative metrology technique that can
greatly reduce the experimental complexity involved in character-
izing a quantum system. The technique of direct measurement
has been extended for characterizing various types of quantum sys-
tems such as mixed states and high-dimensional states [6,21–24].

To date, all implementations of direct measurement have
measured the complex probability amplitudes of a quantum sys-
tem one at a time. To map out the complete state vector, one
would need to perform a sequence of projective measurements
at different times, scanning through the bases of the Hilbert space
of interest. Hence, the time required to characterize a quantum
system scales with the system dimension, which makes it difficult
to characterize systems of large dimensions. Another drawback of
these approaches is the low detection efficiency, because most of
the incoming particles are discarded through post-selection dur-
ing the second step of strong measurement. As a result, the maxi-
mum dimension of a quantum state that has been measured using
direct measurement is of the order of 100 [5].
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2. THEORY

Here we describe a scan-free direct measurement approach that is
capable of simultaneously measuring the entire state vector of a
pure quantum system, consequently eliminating the need for
scanning through each basis state. Specifically, if we wish to mea-
sure the state vector in Hilbert space A, we first apply a weak
measurement [25–34] to the quantum system in one fixed state
jb0i of its complementary basis B, and then perform the strong
measurement directly in A. Here, a weak measurement refers to
the process of applying a weak operator π̂a on the system with
minimal perturbation such that the original quantum state jψi
does not collapse fully until a second, conventional (also known
as “strong”) measurement is performed. As an example, when we
wish to measure the complex probability amplitude of a photon at
a certain position x, we first perform a weak projection measure-
ment of one particular momentum state (π̂p0 ≡ jp0ihp0j) in jψi,
followed by a strong measurement of the position state jxi.
Through such a procedure, the measured weak value hπpiwx is
given by (see Supplement 1 for more details)

hπpiwx � hxjp0ihp0jψi
hxjψi � e−ip0x∕ℏψ̃�p0�

ψ�x� ; (1)

where ψ̃�p� and ψ�x� denote the state vector of the photon ex-
pressed in the momentum and position bases, respectively. When
we apply the weak measurement in the zero-momentum state,
p0 � 0, the expression of the weak value simplifies to

hπp0iwx � ν

ψ�x� ; (2)

where ν ∝ ψ̃�0� is a constant that can be determined through
normalizing the state vector.

One sees that the average result of such a measurement directly
leads to the complex probability amplitude of the photon at
position x. The main advantage of our approach is that the weak
value hπpiwx at all positions can be measured simultaneously. This
is because the strong measurement in x can be performed on all
position states at the same time through the use of an appropriate
detector array [18–20]. Thus, the need for a time-consuming
scanning procedure is eliminated, and the entire state vector
can be obtained with a single setting of the measurement
apparatus.

3. EXPERIMENT

To demonstrate our scan-free approach, we apply our method to
measure the continuous-variable, transverse spatial state of pho-
tons. Our experimental procedure is as follows. An ensemble of
photons from a collimated laser beam with a fixed polarization
state is first prepared using a phase-only spatial light modulator
(SLM), which allows a high degree of control of the transverse
spatial state ψ�x� of the diffracted photons [35,36]. The identi-
cally prepared photons pass through a 4f imaging system (see
Fig. 1), during which the photons’ transverse spatial state ex-
pressed in both the momentum and position bases becomes acces-
sible at different locations. First, the weak measurement is
performed in the momentum space, i.e., the mutual focal plane
of the two lenses, where a second phase-only SLM, in combina-
tion with two waveplates, is used to rotate the linear polarization
of the photons in the zero-momentum state jpi � 0 through a
small angle α. Parallel strong measurements for all the position
states are then simultaneously performed at the image plane of

the 4f system with a CCD camera, during which the change
in the polarization of the photons at each position state is mea-
sured. Formally, if we use a two-dimensional vector, �0 1�T, to
denote the initial polarization state of the photons in the
horizontal–vertical linear polarization basis, the complex proba-
bility amplitude of the photons in each position state jxi is given
by (see Supplement 1 for detailed derivation)

ψ�x� � hxjψi � ν

hπpiwx
� ν 0

�hsf �x�jσ̂1jsf �x�i − ihsf �x�jσ̂2jsf �x�i�
;

(3)

where σ̂1 and σ̂2 are the first and second Pauli operators, respec-
tively, jsf �x�i is the final polarization state at each position x at the
image plane, and ν and ν 0 are constants determined through nor-
malization. Note that our specific example of measuring the trans-
verse spatial state of photons can also be fully described using
classical language (see Supplement 1), as the transverse spatial
state of a photon in a pure state is equivalent to the transverse
complex field profile of a coherent optical beam in the classical
regime. As such, our 4f imaging portion of the experimental
implementation shares certain similarity with classical point-
diffraction interferometry [37]. However, the quantum mechani-
cal interpretation constitutes the description for a broader range of
experiments, and thus can become essential for other quantum
systems for which a classical description does not exist.

In our experimental demonstration, we first characterize pho-
tons carrying orbital angular momentum (OAM) [38], which has
recently been the subject of many fundamental studies in quan-
tum mechanics [8,12,39–41]. We generate photons carrying

SLM prepared
 photons

laser

BS

PBS

PBS

mirror

HWP
QWP

HWP

A
D L R

detector
array

photons in 
original pol. state

photons at p=0
are weakly 

rotated in pol. state

telescope

lens

lens

focal 
plane

Fig. 1. Experimental implementation of a scan-free direct measure-
ment on the transverse spatial state of photons. The photons prepared
using a phase-only spatial light modulator (SLM) pass through a 4f im-
aging system. The weak measurement is performed in the momentum
space, i.e., the common focal plane of the 4f system, where the linear
polarization state of the photons in the zero-momentum state is rotated
by a small angle α. The strong measurement is performed in the position
basis, i.e., the image plane, using a detector array in combination with
some polarization optics, where the change in polarization for all position
states is measured simultaneously. Specifically, the real and imaginary
parts of the weak values are measured in terms of the rotation of the
photons’ polarization in the diagonal (D)–anti-diagonal (A) linear and
left (L)–right (R) handed circular bases, respectively, as labeled in the
detector array plane. BS, beam splitter; PBS, polarizing beam splitter;
HWP, half-wave plate; QWP, quarter-wave plate.
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different values of OAM quantum number l using the SLM tech-
nique described above. The real and imaginary parts of the mea-
sured weak value hπpiwx for photons with l � 3 are plotted in
Figs. 2(a) and 2(b), respectively. One sees that the magnitude
of jhπpiwx j becomes very large toward the center of the OAM
beam, which is exactly expected due to the inverse relation be-
tween hπpiwx and the complex probability amplitude ϕ�x� [cf.
Eq. (3)] of an OAM beam, which approaches zero toward the
phase singularity at the center. The corresponding phase and am-
plitude of jψ�x�j are shown in Figs. 2(c) and 2(d), which accu-
rately reveal the azimuthal phase structure and the central-null
feature of the amplitude. We further quantify the fidelity of
our measurement result using the standard definition [42]
F ≡ jhψ expjψ ideij, where jψ expi and jψ idei denote the experimen-
tally measured and the ideal photon states, respectively. The fidel-
ity of the shown l � 3 OAM mode in the spatial Hilbert space is
calculated to be approximately 0.93. Note that the less-than-unity
fidelity is also partially attributed to the nonideal state preparation
in our experiment. Nonetheless, the high fidelity of our result
demonstrates that our direct measurement technique is indeed
capable of measuring the complex-valued quantum state vector
with very high accuracy. Similar high-fidelity results are obtained
for photons carrying other quantum numbers of OAM, and the
measured phase profiles of the OAM modes with l ranging from
−2 to 2 are shown in Figs. 2(e)–2(h). Note that the OAM modes
do not constitute the Hilbert space of study here, but are used

rather as examples of arbitrary transverse spatial states the photons
can be in. Since one can have independent control of the complex
probability amplitude of the photons at each pixel of the trans-
verse space, the dimensionality of our measured state is approx-
imately 1.2 million, which is determined by the spatial extent of
the photons (approximately 7 mm in diameter) and the discrete
nature of our detector array (with pixel size of 5.4 μm2). The ef-
fective dimensionality of the measured continuous-basis position
space is reduced to a fraction of a million due to the space–
bandwidth product of our imaging system. Yet, the effective
dimensionality of the measured Hilbert space can be arbitrarily
enlarged by optimizing the measurement apparatus, such as using
larger optical components and a larger-area detector array.

We then test our method on photons with more arbitrary
transverse state profiles. First, we impose a bull-shaped letter
“U” pattern on the amplitude profile of the photons and with
various Zernike phase profiles. The obtained magnitude of the
probability amplitude jψ�x�j is shown in Fig. 3(a), which is in
good agreement with the result obtained using conventional in-
tensity (strong) measurements [see Fig. 3(b)], i.e., the square root
of a direct image captured by the camera. We also measure pho-
tons with a gradually varying amplitude profile carrying various
Zernike polynomial phase structures. One measured jψ�x�j using
our direct approach is shown in Fig. 3(c), and a cross section of
jψ�x�j (the thick red line) is plotted in Fig. 3(d) in comparison
with the conventional strong measurement result (the thin blue
line). Note that the theory of our approach assumes that the per-
turbation due to the weak measurement in the momentum space
is sufficiently weak that the rotation of the polarization state of
photons in each position state is small. This imposes a practical
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Fig. 3. Upper row: measured magnitude of the probability amplitude
jψ�x�j of photons with an amplitude profile incorporating a University of
South Florida “Bull” logo using (a) our direct measurement approach and
(b) conventional strong measurement. Lower row: (c) measured magni-
tude of the probability amplitude jψ�x�j of photons with a truncated
Gaussian amplitude profile using our scan-free direct measurement ap-
proach and (d) one cross section of the directly measured result (thick red
line) in comparison with result of the conventional strong (intensity)
measurement (thin blue line). The actual jψ�x�j profile is the result
of diffraction and propagation of the photons through our nonideal
imaging system. (See also Media 1.)
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limit on the minimum probability (jψ�x�j2) that can be accurately
measured, which is experimentally determined by the accuracy of
the polarization measurement in our case.

Since the expectation values of hsf �x�jσ̂1jsf �x�i and
hsf �x�jσ̂2jsf �x�i at all position states are measured in parallel,
our approach is capable of monitoring the dynamic variation
of the complex amplitude profile of an ensemble of photons,
either in coherent states or in single-photon states [43], in real
time. To illustrate such capability, we impose a dynamically
changing phase profile on the photons with a constant amplitude
within a circular aperture. The encoded phase structure switches
among various rotating Zernike polynomial functions, and the
dynamic evolution of the complex probability of the photons
is recorded continuously using the camera in movie-shooting
mode at 14 frames per second. The measured dynamical variation
of the phase profile of the photons is shown in Media 1, which
accurately reveals the designed variation pattern.

4. SUMMARY AND DISCUSSION

One should note that even though we measure a large ensemble of
identically prepared photons in our experiment, our procedure
determines the complex transverse spatial state of each photon,
as has been demonstrated in previous direct measurement studies
[5,23]. Meanwhile, both the approach outlined here and the ex-
perimental apparatus are directly applicable for measuring iden-
tically prepared single photons, provided that we use detector
arrays that are capable of detecting single photons with high quan-
tum efficiency, such as SPAD arrays, commercial cooled CCD
cameras [20,33], electron-multiplying CCD cameras [44], or in-
tensified CCD cameras [43]. Note that lower quantum efficiency
of single-photon detectors would require summing over a larger
number of measurements on identically prepared single photons
to average out the read-out noise, but the complex-valued state
vector of single photons can still be measured directly with a single
setting through the same procedure.

The number of incoming photons needed to map out an entire
state vector of dimension N using our scan-free approach is com-
parable to the number of photons needed to measure the complex
probability amplitude at a single position using the previous direct
measurement approach [5]. This can also be understood by the
fact that most of the incoming photons are discarded through
post-selection in previous direct measurement approaches,
whereas our scan-free approach does not involve any post-
selection. Thus, for a quantum system with a dimensionality
of N , our approach is approximately N times more efficient
as compared to a state-by-state scanning approach (see
Supplement 1 for details).

Our scan-free direct measurement approach can be extended
to measure the state of other quantum systems in a straightfor-
ward fashion, and it opens up the possibility of characterizing
a high-dimensional quantum system in real time for which a
state-by-state scanning process would become impractically
time-consuming or even infeasible. Moreover, our specific dem-
onstration of measuring photons’ transverse spatial state can be
readily used to measure the phase profile of an optical beam
directly, and therefore is also a promising new technology for
classical wavefront sensing applications in fields as diverse as
observational astronomy, free-space optical communication,
and biomedical imaging.
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