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Abstract. Self-pumped slow light, typically observed within laser gain media,
is created by an intense pump field. By observing the rotation of a structured
laser beam upon transmission through a spinning ruby window, we show that the
slowing effect applies equally to both the dark and bright regions of the incident
beam. This result is incompatible with slow-light models based on simple pulse-
reshaping arising from optical bleaching. Instead, the slow-light effect arises
from the long upper-state lifetime of the ruby and a saturation of the absorption,
from which the Kramers–Kronig relation gives a highly dispersive phase index
and a correspondingly high group index.
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Slow light is a general term applied to systems that exhibit a greatly reduced group velocity
for the propagation of optical signals [1, 2]. Underlying mechanisms range from traditional
optical delay lines to structural or material optical resonances [3–6]. Common to most of these
mechanisms are narrow-frequency optical features, giving rise to extremely high dispersion and
hence a large group index of the material [7]. One experimentally realizable class of systems is
that in which intense laser light induces a coherent oscillation of the ground state population of
a dopant in a solid-state medium of the type often encountered in laser amplifiers [8–11]. As the
intensity increases, the absorption of the medium saturates, forming a narrow spectral feature
that, via the Kramers–Kronig relation, gives a modification of the group index [1]. In materials
with long upper-state lifetimes, such as ruby or alexandrite, the velocity of a transmitted laser
pulse can be reduce by a factor of 1 million, to only hundreds of meters per second [12, 13]. In
contrast to other slow-light mechanisms that require both pump and probe beams, we call this
simple approach self-pumped slow light.

Broadly speaking, within a saturable absorber, one may identify two distinct mechanisms
of pulse delay. The first possible mechanism arises from pulse reshaping through optical
bleaching. In the case of optical bleaching, the bright incoming pulse becomes a weaker
outgoing pulse, with the peak position being dependent on the differing absorption experienced
by the leading and trailing edges of the pulse. Aleksandrov and Zapasskii [14] correctly
identified that the resulting distortion of the pulse leads to a time delay of the peak as well
as a change in the amplitude of the pulse. Such a time delay may be interpreted as evidence of
slow light. The second possible mechanism of the pulse delay arises from the rapid change of
the phase index nφ near the vicinity of a narrow absorption feature through the Kramers–Kronig
relation. Since the width of the coherent population oscillation is of the order of kHz in ruby
[15], the induced high dispersion can give rise to extremely large group indices of the order
of 106. In both possible causes, the extent of the saturation, and hence of the slow-light effect,
depends strongly upon the incident intensity [9, 13]. When the input is a single pulse and with
a small delay, as expected for most experimental conditions, the two effects are practically
indistinguishable from each other, as shown schematically in figures 1(a) and (c). If, however,
the input beam includes an intensity zero imprinted in the centre of the pulse, the two cases
can be distinguished. If the slow-light effect arises purely from broadband optical bleaching,
the region of zero intensity may become brighter from fluorescence but will not be shifted. In
contrast, if the slow-light effect stems from a narrow absorption and the resulting dispersion,
the light will be delayed such that the beam retains its structure, shifting both the high intensity
and dark regions. The difference between the two cases can be seen by comparing figures 1(b)
and (d).

Recognizing the nonlinear nature of our experiment, it is nonetheless useful to consider
the effects of the Kramers–Kronig relation. The Kramers–Kronig relation describes the link
between the intensity absorption coefficient, α, and the phase index:

nφ(ω) = 1 +
c

π
P

∫ +∞

0

α(�)

�2 − ω2
d�, (1)

where P is the Cauchy principal value, ω is the frequency of the light and c is the speed of light
in a vacuum. The phase index is calculated over all frequencies, � [15]. In the case of slow light,
the narrow absorption band gives rise to a large dispersion in nφ . We can use nφ to calculate the
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Figure 1. Distortion of an incident pulse passing through a slow-light medium.
Part (a) shows a single pulse passing through the slow-light medium. Optical
bleaching (a) and large group index (c) effects are indistinguishable for small
delay of a single pulse, typical of most experimental conditions. To distinguish
the two cases, one can pass a pulse with an imprinted zero through the slow-light
medium. Optical bleaching and pulse reshaping would never cause the position
of the dark region to shift, although it may become brighter due to fluorescence
from the saturable absorber (b), an effect that is in agreement with [14]. However,
large group index would cause the position of the dark region to be maintained
but shifted (d). By imprinting an intensity zero in the pulse, we can determine
which mechanism is causing the apparent slowing of the light through the ruby,
even with a small delay.

group index, ng, by

ng = nφ + ω
dnφ

dω
(2)

leading to a large ng. In turn, for large ng, the simple definition of vg = c/ng gives a small group
velocity, vg, which is the basis of material slow light.

As one example of slow light, we recently showed that slow-light effects could be observed
in the spatial domain [17]. The transverse movement of an optical medium is known to laterally
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Figure 2. Experimental procedure. A beam of 3 W, 532 nm light is bisected
by a coverslip. The entire beam then passes through a quarter waveplate, two
cylindrical telescoping lenses and is focused on a ruby window. The ruby is spun
to ≈ ±20 rotations per second (rps), and the light leaving the ruby is imaged
onto a camera.

displace a transmitted light beam [18]. Although predicted many years ago, such photon drag
effects are usually very small and difficult to observe. In addition to lateral displacement, a
spinning medium was also shown to cause a rotation of the polarization state [19], termed the
mechanical Faraday effect [20]. Through the equivalence of spin and orbital angular momentum,
the rotation of the medium affects both the polarization and the transmitted image [21, 22]. This
image rotation, 1θimage, is given by

1θimage =

(
ng −

1

nφ

)
�L

c
. (3)

Here � is the angular velocity of the medium and L is its length. Since ng is of order unity
for ordinary materials, an image rotation caused by a spinning medium is on the order of a
few microradians. We have shown that the increase in propagation time of light in a slow-light
medium leads to a large increase in the rotation [17]. Specifically, we observed that transmission
through a spinning ruby window would rotate an elliptical beam profile by many degrees,
a demonstration of slow-light-enhanced rotary photon drag. However, in that experiment, the
simple rotation of a bright line could not distinguish between optical bleaching and an increase
in the group index arising from the dispersion. It is interesting to note the differences between
lateral and rotational photon drag, namely that rotational photon drag could be complicated by
the Coriolis effect [23], although our results remain consistent with equation (3).

To determine whether the rotation of the elliptical beam profile [17] arises from optical
bleaching or an increase in ng that arises from the dispersion, we study an intensity null in the
centre of a high-intensity pulse. Our present experiment is motivated by the realization that,
whereas it is difficult to create an intensity null in the temporal domain, it is easy to do so
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Figure 3. Images of the beam profile when a microscope coverslip is inserted
halfway into the beam. The coverslip can be tilted so (a, b) there is no phase
shift or (c, d) there is a π -radian phase shift between the two halves of the
beam. Figures (a) and (c) are taken before the ruby and use a shear plate to
show the interference pattern for the coverslip set to two different thicknesses.
These images show that tilting the coverslip does create a π -radian phase shift
between the two halves. Figures (b) and (d) show the corresponding intensity
profiles after the ruby. Note the creation of an intensity null in (d).

in the spatial domain. To create this null, we introduce a π -radian phase step into our beam
cross section, which creates a black line across the beam that is stable upon propagation. Given
that the slow-light effect, and thus rotary photon drag, is dependent on self-pumping at high
intensity, the question then posed is whether a spinning medium can rotate the orientation of a
structured beam containing both bright and dark regions.

As shown in figure 2, we use a 3 W beam from a laser quantum opus solid state, diode-
pumped laser. The linearly polarized 532 nm light is passed through a quarter waveplate to create
circularly polarized light. Using circularly polarized light ensures rotational symmetry, which
is important as ruby is birefringent. This circularly polarized light is then expanded through 40
and 60 mm focal-length cylindrical lenses, resulting in a collimated, elliptical beam. The beam
enters the ruby as an elongated spot, as seen in figure 3. A spherical lens with a focal length
of 60 mm focuses the beam onto the front face of a 6 mm-thick standard laser ruby crystal
window, along the window’s rotational axis. When pumped with 532 nm light, the ruby acts as
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Figure 4. Images of the beam (a) without the phase discontinuity and (b) with
the phase discontinuity when the ruby is spinning from −19 to +19 rps.

a slow-light medium, and thus as the light passes through the ruby window, its group velocity is
effectively slowed to tens of meters per second.

A Parker Hannifin, SY-series stepper motor with a built-in ViX250IM controller has
encoders that allow us to accurately control the rotation rate of the ruby. A toothed drive belt and
pulley couple the motor to the ruby mount in a 1:1 gear arrangement. The motor has encoders
that spin the ruby window about its axis up to ≈ ±20 rps. Software control of both rotation
rate and direction is easily achieved using a standard desktop PC computer interface and a
National Instruments LabVIEW Virtual Instrument. The magnitude of the image rotation is
dependent upon the angular frequency at which the ruby spins [16]. Below ±10 rps, there is a
near-linear dependence on angular frequency, as described in equation (3). Above ±10 rps, the
dependence levels out with little noticeable increase in effect as the angular speed is increased,
as a consequence of the 20 ms upper-state lifetime of the ruby and the corresponding relaxation
time of 3 ms, which limit its response. The beam is imaged from the back face of the ruby
onto a Dalsa Genie CCD array and recorded for subsequent analysis using another National
Instruments LabVIEW Virtual Instrument.

In order to introduce the black line into the elliptical beam, we mount a glass coverslip
onto a tilt stage and insert it halfway into the output beam of the laser, as shown in figure 2.
The tilt stage allows us to adjust the orientation and therefore the thickness of the glass through
which the light is travelling. At the correct tilt angle, the difference in path lengths causes a
π -radian phase discontinuity between the two halves of the beam, as shown in figure 3. This
phase discontinuity creates a line of darkness, with a contrast limited only by scattering and
crosstalk between pixels, in an otherwise high-intensity beam. We estimate that the intensity of
the incident beam exceeds the saturation intensity by a factor of 4 or 5. By contrast, as measured
from the camera image, the dark line (which is ideally of zero intensity but may be subject to
experimental imperfection) is at least an order of magnitude darker than this.
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Figure 5. Graph of results. A strip of the beam profile at the radius with the
greatest photon drag is unwrapped in (a) when the ruby is spinning anticlockwise
(blue), clockwise (pink) and removed from the setup (beige). The intensity
of each of those strips is plotted in (b). The blue and pink curves show the
position of the region of darkness while spinning anticlockwise and clockwise,
respectively, to be outside the position of the dark region when the ruby is
removed. One observation in this figure is the movement of the dark line causing
there to be light in the clockwise and anticlockwise cases where there had been
darkness in the stopped case, which could be explained by fluorescence from
the saturable absorber. However, the region of darkness is preserved through the
rotation to a position that had previously been bright.
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Images of the light beam transmitted by the ruby are recorded, and representative images
from our results are shown in figure 4. As the direction of the rotation of the ruby window is
changed, we see that the elliptical beam becomes rotated about 5.0 ± 2◦, preserving the structure
such that the dark region is also rotated through a similar angle. From equation (3), a rotation
of 5.0 ± 2◦ implies an effective ng of 3.6 × 107

± 0.9, which corresponds to a group velocity of
vg = 8.3 ± 0.3 m s−1. We find a radial dependence in the rotation angle, which we ascribe to the
intensity dependence of the group index, resulting in an S-shape of both the transmitted beam
and the phase discontinuity. The introduction of light where there had previously been a black
region and, more importantly, the creation of a black region where there had previously been
light (see figure 5) imply that the slow-light phenomenon is complex and cannot be described
by a simple model of optical bleaching and pulse reshaping.

In summary, we have found that passing an image through a spinning, self-pumped, slow-
light medium rotates the bright and dark regions by the same amount and that light in the
output cross section is azimuthally displaced to positions where the input beam was dark. Such
displacements cannot be explained solely by optical bleaching, since such effects cannot lead
to a shift in a region of darkness. As such, rather than optical bleaching, it appears that narrow
band absorption, and the associated change in group refractive index, are responsible for our
observed slowing. These results further the understanding of the mechanisms that cause slow
light and pave the way for applications dependent on the preservation of complex patterns in
slow-light media. The rotation of the structured beam implies the preservation of the coherence
between the modes in the basis set from which pattern is formed. Hence this modal coherence
has important implications for optical storage and optical memory.
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