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Observation of instabilities of laser beams
counterpropagating through a Brillouin medium
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We show experimentally that counterpropagating laser beams in a Brillouin-active medium are unstable to the
growth of intensity fluctuations. The intensities of the transmitted beams are found to oscillate at the Brillouin
frequency of the medium, which is equal to 7.7 GHz for our experimental conditions of excitation of carbon disulfide
at a wavelength of 532 nm. The depth of modulation is found to be as large as 25%. The threshold for this
instability depends on the ratio of the intensities of the counterpropagating beams. The threshold is lowest for the
case of equal input intensities and is found to be as much as 33% lower than the threshold for single-beam stimulated
Brillouin scattering.

It is known that extremely simple nonlinear-optical interac-
tions can give rise to complicated dynamical behavior.' In
particular, there has been considerable interest in the dy-
namical behavior of counterpropagating laser beams inter-
acting in a nonlinear medium. It has been shown theoreti-
cally2-5 that for a variety of nonlinear interactions the inten-
sities of the waves can become unstable to the growth of
temporal fluctuations and that under certain circumstances
these instabilities can be chaotic in nature. Such instabil-
ities were recently observed for the case of interaction by
means of the nonlinear response of an atomic-sodium va-
por.67 In this paper we present experimental results re-
garding instabilities resulting from coupling that is due to
the Brillouin interaction.

Several authors4 5 8 have presented theoretical analyses
that predict that instabilities can develop in the intensities
of equal-frequency counterpropagating waves in a Brillouin-
active medium. In addition, experimental and theoretical
studies have been reported for the case of counterpropagat-
ing waves of different frequencies.9 Instabilities of counter-
propagating waves have been shown10 to be related to the
large reflectivities that are achievable with Brillouin-en-
hanced four-wave mixing." Here we present experimental
confirmation of many of these predictions. In our previous
work5 we showed that the complex amplitudes Ef and Eb of
forward- and backward-going waves are coupled by means of
their interaction with an acoustic wave of amplitude p ac-
cording to the set of equations

aEf 1 aE

z (c/n) at = tKp b'

-Eb aEb- -+ --=iKp*Ef,
and

82P+ r + U2p = q8y EfEb *
tt at 8ir b

(ic)

where the complex amplitudes are related to the physical
fields through

ETOT(Z, t) = 1/2 Ef (z, t)exp[i(kz - wt)]

+ 1/2 Eb(z, t)exp[i(- kz - wt)1 + c.c. (2a)

and

PTOT(Z, t) = 
1/2p(z, t)eiqz + C.C. (2b)

Here c/n denotes the velocity of light in the medium, K = ywl
4ponc is a coupling coefficient, co is the angular frequency of
the light waves, -y is the electrostrictive constant, po is the
mean density of the medium, q = 2wn/c is the wave vector of
the Brillouin-resonant acoustic wave, Q = qv is the angular
frequency of the acoustic disturbance, v is the velocity of
sound, and F is the Brillouin linewidth. The set of Eqs. (1)
yields the simple steady-state solution

pA(Z) = Ef(z)Eb0*(Z)

Efo(z) = Ef?(O)exp(igrIbz),

(3a)

(3b)

and

Eb°(z) = Ebo(L)exp[igIf(L -z) (3c)

(la)
where g = y2co2/rnVc3po is the line-center Brillouin-ampli-
tude gain coefficient and If = (nc/87r)EfO(0)2 and Ib = (nc/

(lb) 8Jr)IEbA(L)2 are the input intensities of each wave. [The
threshold for the usual single-beam stimulated Brillouin
scattering (SBS) process is usually taken as the condition
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Fig. 1. Phase-space trajectories of the complex field amplitude of
the transmitted forward-traveling wave for four different values of
the input intensities for the case of r/Q = 0.03, AkL = 72, and If = Ib.
For an input intensity such that gIfL = 5 the output field amplitude
settles to a steady-state value. For higher input intensities (gIfL =
10, 15, 20) the output field amplitude oscillates periodically in a
circular orbit corresponding to an output wave containing the laser
frequency and a Stokes sideband.
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Fig. 2. Phase-space trajectories of the complex field amplitude of
the transmitted forward-traveling wave for four different values of
the input intensities for the case of F/Q = 0.3, AkL = 2, and If = Ib.
For an input intensity corresponding to gIfL = 2 the output field
amplitude settles to a steady-state value. For an input intensity
such that gIfL = 3 the output field amplitude oscillates periodically,
as illustrated by the simple closed loop. For an input intensity
corresponding to gIfL = 5.5 the output field amplitude still evolves
periodically but on an attractor whose period is twice that of the case
gIfL = 3. For the case gIL = 15 the output field amplitude evolves
chaotically on a strange attractor whose fractal dimension is 2.2.

that gIL be equal to 15.] We showed in Ref. 5 that the
solution of Eqs. (2) is temporally unstable to the growth of
amplitude and phase fluctuations, and by means of a linear
stability analysis determined the threshold values of the
input intensities where this instability occurs. We also
showed that for sufficiently large input intensities compli-
cated dynamical behavior including chaotic temporal evolu-
tion can occur.

Examples of the dynamical behavior that can occur are
illustrated by means of phase-space trajectories in Figs. 1
and 2. To generate these plots, we have solved the set of
Eqs. (1) numerically for the case of equal input intensities
and have plotted the real part versus the imaginary part of
the complex field amplitude of the forward-going wave at its
output from the interaction region. Figure 1 shows the case
of a narrow Brillouin resonance with r/o = 0.03 and an
interaction path length L such that AkL - 29L/c = 72.
These parameters correspond to those of our experimental
investigation. The threshold for instability in this case, as
determined by the procedure outlined in Ref. 5, occurs for
gIfL = 6.3. For the case of an input intensity corresponding
to gIfL = 5 (i.e., below the instability threshold), the trajec-
tory reduces to a single point. For intensities above the
instability threshold, the trajectory takes the form of a near-
ly circular orbit corresponding to an output wave consisting
of a component at the laser frequency and of a Stokes side-
band. Note that the amplitude of the Stokes sideband in-
creases with increasing laser intensity.

Figure 2 shows trajectories for a case in which much more
complicated dynamical behavior can occur. Here the Bril-
louin linewidth is much broader (F/Q = 0.3), and the interac-
tion length is such that AkL = 2. For the case of low input
intensities (gIfL = 2), the system is seen to be stable, and the
trajectory again reduces to a single point. Slightly above the
threshold for instability (gIfL = 3), the output fields oscillate
sinusoidally about their steady-state values, and the phase-
space trajectory takes the form of a closed loop. For still
higher input intensities (gIfL = 5.5), the trajectory is still
periodic but with a period equal to twice the fundamental
Brillouin period (i.e., the evolution is period 2), and the
phase-space trajectory takes on a complicated form. Final-
ly, for the case gIfL = 15 the system evolves chaotically.
Analysis using the method of Grassberger and Procaccia 2

shows that this trajectory is chaotic with a fractal dimension
of 2.2.

In our previous paper5 we adopted the criterion that the
threshold for instability occurred when the temporal growth
rate of a small perturbation (more precisely when the real
part of one of the eigenvalues of the growth rate) becomes
positive. For comparison with experimental results, a
stricter criterion must be adopted, namely, that the growth
rate be sufficiently large that the instability will grow to an
appreciable amplitude in a time interval comparable with
the laser-pulse duration. We quantify this notion by requir-
ing that the product of the amplitude growth rate Re(X) and
the laser-pulse duration Tp must acquire some nonzero, posi-
tive value, which typically would be of the order of 15. Fig-
ure 3 shows how the threshold for instability depends on the
criterion for the instability threshold used, i.e., the value of
Re(X),r. We note that this experimental threshold is nearly
twice as large as the absolute threshold corresponding to a
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Fig. 3. Theoretically predicted intensity for the threshold of insta-
bility plotted as a function of the ratio of intensities of the backward
and forward waves, for several different choices of the threshold
criterion, quantified by the product of the temporal growth rate
Re(X) and the laser-pulse duration rp. The results are normalized
to the threshold for single-beam SBS, which we take as Bhs = 15/gL.

vanishingly small growth rate [i.e., Re(X)rp = 0]. The sharp
decrease in the instability threshold for nearly equal pump
intensities can be attributed to distributed feedback, which
couples the forward and backward Stokes waves. This dis-
tributed feedback arises from scattering off the nonlinear-
index grating created by the interference of the two strong
waves. 5

Our experimental investigation of the stability of counter-
propagating laser beams was conducted using a frequency-
doubled Nd:YAG laser that was operated in a single trans-
verse and a single longitudinal mode. The laser produced a
smooth output pulse of 22-nsec duration [full width at half-
maximum (FWHM) intensity] containing as much as 30 mJ
of energy. The output beam was collimated with a diameter
of 1 mm (FWHM intensity) and was split into two beams
that were directed counterpropagating into a 15-cm-long cell
containing carbon disulfide. The intensities of the two
beams could be adjusted independently by using polarizing
optics, as shown in Fig. 4.

We determine the threshold for instability relative to that
for normal, single-beam SBS by means of the following pro-
cedure. We block one of the beams and slowly increase the
intensity of the other beam (which we will call the forward-
going beam) until the threshold for SBS is reached. The
occurrence of SBS is signaled by the generation of backscat-
tered Stokes radiation. The measured threshold intensity
for single-beam SBS was found to be B4s = 42 MW/cm. 2

The other (backward) beam is then unblocked, and the in-
tensities of the two beams are gradually decreased (at fixed
intensity ratio) until the Stokes component no longer ap-
pears in the output. The intensity of the forward-going
beam at which this occurs gives the instability threshold
relative to that of SBS. The results of these measurements
are shown in Fig. 5. These results show that for the case of
equal input intensities the threshold for instability is ap-
proximately 67% of that for single-beam SBS. These results
also show that the presence of a counterpropagating beam
whose intensity is even 10% of that of the pump wave is
sufficient to lead to a measurable reduction of the threshold
for instability. The solid curve is obtained by numerically

integrating the set of Eqs. (1) for our experimental condi-
tions. The laser-pulse shape is modeled as a Gaussian with
a FWHM intensity of 22 nsec. We take the threshold for
instability to be the point at which the energy of the back-
ward Stokes pulse is 1% of that of the forward pump energy.
This method simulates the conditions under which our ex-
perimental data were taken. Our measured value of the
threshold intensity for single-beam SBS (42 MW/cm 2) is
consistent with the usual threshold condition gIL = 15 if the
value of g is 0.022 cm/MW. This value is smaller by a factor
of 0.37 than the value quoted in the literature. 3 It is known,
however, that the presence of impurities in carbon disulfide
can lead to an increased phonon-damping rate r and hence
to a decreased value of the Brillouin gain coefficient.' 4 We
believe that such impurities were present under our experi-
mental conditions. We therefore assume that the ratio (r/
Q) is larger by a factor of (1/0.37) than the literature value of
0.012 (which is obtained by scaling the values measured at
0.6943 Atm) and hence has the value r/u = 0.032 under our
experimental conditions. This value is very close to the
value 0.03, which gives the best fit shown in Fig. 5 to our
experimental data.

The temporal evolution of the intensity of the light leaving

X/2 J2
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Fig. 4. Experimental arrangement used to study counterpropagat-
ing light waves in a cell containing carbon disulfide: wl, w2, half-
wave plates; pol, polarizer; pbs, polarizing beam splitter.
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Fig. 5. Experimental measurement of the threshold for instability
relative to the threshold for single-beam SBS plotted as a function
of the ratio of intensities of the backward and forward waves. The
solid curve gives the result of a numerical simulation.
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the interaction region was measured with a streak camera
having a resolution of 2 psec. Experimental results for the
case of equal intensities of the two input beams are shown in
Fig. 6. In Fig. 6(a) the input intensity of each beam is equal
to 0.66 Bs, which is just below the threshold for instability.
Figures 6(b) and (c) show the time evolution for input inten-
sities equal to 0.8 Bhs and 0.87 ISBs respectively. These
input intensities are above the threshold for instability but
well below the threshold for single-beam SBS. Hence the
oscillations seen in the experimental data provide evidence
for the occurrence of the instability predicted in Ref. 5. In
Fig. 6(d) the input intensity is equal to 1.04 Bs. The
frequency of the observed oscillations is in all cases equal
within our measurement accuracy to the value'5 7.7 GHz,
which is the Brillouin frequency of carbon disulfide at 0.53

(a) If lb= 0.66 Isbs

sbs

.'

1lOOpsec

'C: (b)
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sbs

c)(d)

time
Fig. 6. Experimental data showing temporal evolution of the
transmitted intensity of the forward-traveling wave for the case of
equal input intensities. Just below the threshold for instability (a),
the output intensity is stable. For the remaining three cases (b)-(d)
the output oscillates at the Brillouin frequency (7.7 GHz). Note
that in (b) and (c) the input intensities are below the threshold for
single-beam SBS.

Fig. 7. Hexagonal far-field emission pattern of the Stokes emis-
sion. The central portion of the transmitted beam has been
blocked.

Am. Using a Fabry-Perot interferometer, we also examined
the spectral content of the radiation leaving the interaction
region. For all cases in which we observed the instability,
radiation was observed only at the laser and the first Stokes
frequencies. These results (that the Stokes intensity great-
ly exceeds the anti-Stokes intensity) agree with the predic-
tions of the theory mentioned above.

We also examined the far-field emission pattern of the
radiation leaving the interaction region. We find that under
conditions of dynamical instability part of the Stokes radia-
tion is emitted in the form of a hexagon surrounding the
transmitted laser beam as shown in Fig. 7. The angle be-
tween the pump wave and this part of the Stokes radiation is
3 X 10-3 rad. We find that hexagonal emission occurs for If
- Ib and for If/Itss in the range 0.8 to 1.05. We believe that
the origin of this effect is a phase-matched contribution to
the nonlinear coupling, as discussed in connection with de-
generate four-wave mixing in sodium vapor by Tan-no et
al.'6 and by Grynberg.'7 The theoretical model of Grynberg
assumes the case of degenerate four-wave mixing. However,
it is possible that enough Stokes radiation is created along
the axis of our system to produce pump waves at the Stokes
frequency, which could lead to hexagonal emission according
to his model.

In conclusion, we have presented experimental evidence
that instabilities occur in counterpropagating laser beams in
a Brillouin-active medium. Our experimental results are in
good agreement with the theoretical predictions. Our the-
ory also predicts that under certain conditions and for dif-
ferent material parameters chaotic evolution should be pos-
sible.
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