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Time reversal of Berry's phase by optical phase conjugation
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We examine experimentally the time-reversal properties of Berry's geometrical phase in one of its optical manifesta-
tions, Pancharatnam's phase, through the use of optical phase conjugation. The time-reversal symmetry of the
total optical system is broken by a nonreciprocal element, a Faraday rotator. Nevertheless, we find that the
geometrical part of the phase acquired by an optical wave in passing through the system still respects time-reversal
invariance.

The state of a quantum system can depend nontrivially on
its past history.' The total phase acquired in a cycle of
changes in any state is the sum of a dynamical component
and a geometrical component. The dynamical phase de-
scribes the energy-dependent change of the phase of the
wave function, whereas the geometrical phase is indepen-
dent of the dynamics and depends only on the path taken in
the space of all possible states of the system (state space).
The geometrical phase expresses the system's geometrical
memory of its past. Both of these phases are physically
observable in interference experiments.2 There has been
much recent activity, both theoretical2 and experimental,3
concerning Berry's phase.

In optics, the geometrical phase has recently appeared in
three different manifestations. In the first of these, this
phase results from a cycle of changes in the direction of the
spin of the photon.4 The state space in this case is the
sphere of all possible directions of the photon spin. In the
second case this phase results from a cycle of changes in the
polarization state of the light beam while the propagation
direction is kept fixed; in this case the phase is known as
Pancharatnam's phase.5-9 The state space in this case is the
Poincar6 sphere. Pancharatnam's phase is equal to minus
one half the directed solid angle subtended at the center of
the sphere by the closed curve traced out by the polarization
state as it undergoes a complete cycle. In the third case, this
phase results from a cycle of squeezed states of light.10 The
state space in this case is a unit hyperboloid representing all
possible squeezed states. The first and second manifesta-
tions differ from each other by a factor of 1/2 in their depen-
dence on the solid angle subtended in their respective state
spaces. The second and third manifestations differ from
each other by a sign. The first and second have already been
seen in interference experiments,- 8 but the third has not yet
been observed.

In this paper, we examine the behavior of Berry's phase (in
the form of Pancharatnam's phase) under time reversal for
the case of an optical system that does not possess time-
reversal invariance. We perform the time-reversal opera-
tion through the use of optical phase conjugation. A phase-

conjugate mirror produces a field whose amplitude is every-
where proportional to the complex conjugate of that of the
incident field. This property implies that a phase-conju-
gate mirror generates a wave whose phase is the negative of
that of the incident wave; this property leads to the well-
known ability of phase conjugation to correct wave-front
distortions in a double pass through an aberrating medi-
um.1' Optical phase conjugation can also be described in a
formal sense as the generation of a time-reversed wave front.

We first consider the symmetry properties of Berry's
phase under time reversal for a system whose Hamiltonian H
is invariant under time reversal. The time evolution of the
system is governed by the Schrodinger equation, iha~/O =
HVI. Maxwell's equations can also be rewritten in the form
of a Schr6dinger equation, with ip being a six-component
spinor,8 so that the following standard analysis of Berry's
phase can be applied to them.'2 The system is assumed to
evolve in such a manner that at time T the system has
returned to its initial state with an acquired phase and
hence can be expressed as

,(T) = e4'(O). (1)

In order to decompose the phase into the sum of a geomet-
rical and a dynamical part, we define a new state vector (t)
by

(t) = e(t)P( (2)

with f(t) chosen so that (T) = ^'(O) and hence that f(O) -
f(T) = 0.12 The geometrical phase -y is then given by

-Y = ii~ ~ d~), (3)

where d ,6 is an infinitesimal change in A, and c is the closed
path traced out in state space. The dynamical phase is
given by

6 = - (I, HQ)dt, (4)

where H is the Hamiltonian of the system. We assume that
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the time-reversal operation is applied to the system at time
T. The time-reversed state '(7) is hence given by

4= np(T = eio-(O), (5)

where is the time-reversal operator and where we have
used Eq. (1) and the fact that r is antiunitary in obtaining
the last form. The time-reversed state ,6'(t) is allowed to
evolve in the time for t > T under the action of the time-
reversed Hamiltonian H'. Since we have assumed that H is
time-reversally invariant (i.e., H' = H) we deduce that

+'(t) = Tr(2T - t) (6)

and in particular that

4 (27) = TIP(O). (7)

The evolution from time T to 2T is hence just the time-
reversed version of the evolution from time 0 to T. In
particular, the system evolves in such a way that at time 2T
its state is the same as that at time T with an acquired phase
O', that is,

i^t"(2T) = ei¢'^6'i(T/Q (8)

We can represent O' as the sum of the associated dynamical
phase 6' and geometrical phase -y', given by

y = i e'(A', d%'),

2 Tal = -T(A`, H~' ,')dt,

where by analogy with Eq. (2) '(t) = exp[if (t)]i'(t) with 0'
= f'(0) - f'(T). By introducing expression (5) for i'(T) into
Eq. (8), we find that

VY(2T) = e"'-0),0(O). (10)

By comparing this equation with Eq. (7), we see that O' = 0
(mod 2w). Since we have assumed that the Hamiltonian is
time-reversally invariant, inspection of Eqs. (4) and (9)
shows that 6' = 6, implying that -y' is identically equal to y.
Hence we have shown that Berry's phase is even under the
time-reversal operation for a time-reversally invariant Ham-
iltonian.

For the case of a system whose Hamiltonian does not obey
time-reversal invariance, there is no guarantee that the state
of the time-reversed system will retrace the path through
state space followed initially in the time interval 0 to T.
However, if the system does retrace its path in state space
(due to a judicious choice of experimental conditions such as
those used in the experiment described in this paper), then
the geometrical phase 'y acquired by the time-reversed sys-
tem will still be equal to that given by Eq. (3) for the initial
system. It is evident from Eq. (3) that the geometrical
phase is independent of the properties of the system's Ham-
iltonian, including all its symmetries. Hence Berry's phase
is even under time reversal whether or not the Hamiltonian
of the system obeys time-reversal invariance. This result is
nontrivial, since not all forces in nature obey time-reversal
invariance.

We have studied the time-reversal properties of Panchar-
atnam's phase by using the experimental arrangement
shown in Fig. 1. A single-mode argon-ion laser beam with a
power of 300 mW and a wavelength of 476.5 nm illuminates a
Michelson interferometer. The reference arm of the inter-
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Fig. 1. Experimental setup used to study the time-reversal proper-
ties of a geometrical phase. The test arm of the Michelson interfer-
ometer contains four quarter-wave plates Q1-Q4 and a Faraday
rotator (FR) of rotation angle fA. The mirror that terminated the
test arm can be either an ordinary mirror or a phase-conjugate
mirror. A photomultiplier tube monitors the intensity at a fixed
point in the interference pattern as the angle 0 is changed.

ferometer consists of an ordinary mirror, and the test arm
consists of a phase-conjugate mirror (which can be replaced
by an ordinary mirror) and contains four quarter-wave
plates and a Faraday rotator. The quarter-wave plates Q1
and Q4 are oriented with their fast axes at an angle of 450
with respect to the linear polarization direction of the inci-
dent light. Wave plates Q2 and Q3 are fixed together with
their fast axes parallel so as to form a half-wave plate and
can be rotated together so that their fast axes are oriented at
an angle 0 with respect to the fast axis of Q1. The Faraday
rotator is inserted between wave plates Q3 and Q4 to break
the time-reversal symmetry of the optical system. The
phase-conjugate mirror is based upon degenerate four-wave
mixing in fluorescein-doped boric acid glass. The four-wave
mixing medium is '150 ,um thick, contains -1017 molecules/
cm3, and has an x(3) nonlinear susceptibility of 0.05 esu at
476.5 nm.' 3

In the experiment of Bhandari and Samuel,7 which used a
Mach-Zehnder interferometer, the state space of interest
was the surface of the Poincar6 sphere. However, our ex-
periment uses a Michelson interferometer, and hence the
light propagates along the system axis, first in the positive
and then in the negative direction. In this case it is natural
to introduce as the state space a generalized Poincare sphere
in which the polarization state is referred to a space-fixed
axis and not to the propagation direction of the light. The
generalized Poincar6 sphere hence refers to the angular mo-
mentum of the light, whereas the usual Poincar6 sphere
refers to the helicity of the light. As in the experiment of
Chiao et al.,6 in the present case it is the angular momentum
and not the helicity that is playing the central role, because
it is angular momentum that is exchanged with the optical
components of the system.

The closed path followed by the state of polarization in
state space under our experimental conditions is shown in
Fig. 1. As the beam of light propagates through the optical
system, its polarization state is changed from linear (point A
in Fig. 2), to right-hand circular (B), to linear at angle 0 (C),
to left-hand circular (D), and then returns to the incident
polarization (A). After reflection off either the phase-con-
jugate or ordinary mirror, the polarization traces the same
closed loop on the generalized Poincar6 sphere, ABCDA, as
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Fig. 2. Path traced by the state of polarization (ABCDABCD,
the generalized Poincar6 sphere as the beam propagates thoug]
test arm of the interferometer. The coordinate axes S, S2, ar
refer to the Stokes parameters for the beam propagating aloni
positive system axis.
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Fig. 3. Measured displacement of the interference pattern plc
as a function of the rotation angle 0 of the quarter-wave plates,,
the Faraday rotation angle fl held fixed at 45°.

the light propagates back through the test arm of the in
ferometer.

The fringe pattern produced by the interferometer is
aged onto a pinhole, and the transmitted light is detectec
a photomultiplier tube. The displacement of the fri
pattern is measured as the rotation angle 0 of the wave pl
is varied from 0 to 1800. In Fig. 3 we plot the displace
of the interference pattern as a function of the rotation ax
0 for the cases of an ordinary mirror and a phase-conjuf
mirror. In both cases, the Faraday rotation angle was
equal to 450, although the results do not depend on
actual value of fi. For the case of the ordinary mirror,
directed solid angle subtended on the generalized Poinc
sphere is readily shown to be equal to eight times the r
tion angle 0. We see in Fig. 3 that the displacement of
fringe pattern is equal to minus one half the directed si
angle. This result confirms that the measured phase shii
equal to the geometrical phase acquired by the photons
cyclic changes of their polarization state. These results
also in agreement with the predictions of Jones calct
using a purely classical viewpoint. 14

For the case in which the test arm is terminated by a
phase-conjugate mirror, the closed path followed by the po-
larization state on the generalized Poincar6 sphere is identi-
cal to the closed path followed for the case of the ordinary
mirror (ABCDABCDA). However, as is shown in Fig. 3, in
this case the measured phase shift, and hence the geometri-
cal phase, is equal to zero for all values of the rotation angle
0. The closed path encountered after reflection from the
phase-conjugate mirror is effectively traversed in a time-
reversed sense, and the directed solid angle enclosed by this
loop is equal in area to that of the loop traversed before the
phase-conjugate mirror. The geometrical phase vanishes
because the total phase is the difference of these two areas.
This result confirms that the geometrical phase is even un-

) n der time reversal.
h the Using a Michelson interferometer, Boyd et al.15 showed
id S 3 that a uniform, time-reversible, dynamical phase shift can
; the be negated by a phase-conjugate mirror. However, dynami-

cal phase shifts imparted by the Faraday effect, which does
not obey time-reversal invariance, cannot in general be ne-
gated by optical phase conjugation. We have verified this
fact by measuring the phase shift due to the Faraday effect

U with the interferometer shown in Fig. 1. We see in Fig. 4
that as the magnetic field is varied to produce a rotation
angle of A3, the phase shift acquired to passage through the
test arm of the phase-conjugate interferometer is equal to
2fl. This result shows that phase conjugation is unable, in
general, to negate the phase shift resulting from the Faraday
effect, which breaks the time-reversal symmetry of the opti-
cal system. Since in the experiment whose results are shown
in Fig. 3 the time-reversal symmetry of the system was bro-
ken by the Faraday effect, we see that the geometrical phase
is canceled by phase conjugation even for a non-time-rever-
sal-invariant system.

In conclusion, we have performed experimental studies of
a geometrical phase for optical systems containing a phase-
conjugate mirror. The total phase acquired in passingitted through this optical system was measured with a Michelson

with interferometer. We find that time reversal through phase
conjugation corrects for the geometrical phase of the system,
even when the entire optical system does not possess time-
reversal invariance. We have thereby established one of the

ter- fundamental symmetry properties of Berry's phase.
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Fig. 4. The measured displacement of the interference pattern
plotted as a function of the Faraday rotation angle :l for 0 held fixed
at 45°.
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