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We have observed multiple-order diffraction from photorefractive gratings formed by
two input beams of comparable intensity that interfere in a single crystal of SBN:Ce.
High-order diffraction occurs both in the direction of two-beam coupling gain and in
the opposite direction. These results are in good agreement with the predictions of a
theoretical model that interprets high-order diffraction as a form of Raman-Nath scat-
tering from a highly anharmonic diffraction grating that is formed by a light intensity
distribution having a large depth of modulation.

1. Introduction

The appearance of spatial subharmonics and high-order spatial harmonics in
photorefractive scattering excited by two incident beams has recently received
considerable attention.!® In particular, several groups have studied the conse-
quences of the use of light with an intensity having a large depth of modula-
tion to form the photorefractive grating, and they conclude that scattering should
occur in a number of integer orders, both towards and away from the direction of
photorefractive gain.®™® These predictions are in contrast to that of Ref. 4, which
describes a mechanism by which high-order scattering should occur only in direc-
tions in which the scattered light experiences gain by means of photorefractive
two-beam coupling. Here we report our observation of high-order scattering, in
both the gain and non-gain directions, due to non-sinusoidal photorefractive
gratings created by a sinusoidal intensity pattern with a large depth of modula-
tion. Our results are in good agreement with the predictions of a theoretical model
we describe below.
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2. Experiment

The experimental apparatus used in our investigation is shown in Fig. 1. A beam of
light at a wavelength of 514 mm from an argon ion laser was split into two parallel
beams of nearly equal intensity (1:1.06) by a plane-parallel plate. The beams were
then passed through a single focusing lens of long focal length causing them to
cross within the photorefractive crystal. The two beams were linearly polarized in
the plane of incidence, which also contained the c-axis of the crystal. The confocal
parameter of each beam was significantly greater than the thickness of the crystal
and the total incident intensity at the crystal was ~ 200 mW/cm?. The crystal was
a 1.85 mm thick piece of SBN, doped with 0.1% Ce. The maximum value of the
refractive index variation resulting from the photorefractive effect was measured by
two-wave mixing experiments and found to be An = 2.3 x 10=%. The total transfer
of energy between the beams due to two-beam coupling was less than 10%. The
beams transmitted through the crystal exhibited the effects of high-order diffraction.
Integer orders were clearly visible but we saw no evidence of subharmonics. The
power in each diffracted order was measured in the far field by a power meter and
a lock-in amplifier. The results of such a measurement are shown in Fig. 2 for the
case in which the grating period had a value of 200 um. In plotting this graph,
we have normalized all reflectivities to the value obtained for the first diffracted
order in the gain direction of the two-beam coupling process; we arbitrarily call
this order the positive first order of diffraction. During our investigation we saw
no nonlinear dependence of the intensities of the diffracted orders on the incident
intensity; however, we intentionally maintained a very low laser power in order to
minimize thermal effects.
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Fig. 1. Experimental arrangement.
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Fig. 2. Relative intensities of the diffracted orders normalized to that of the first positive order.
The crosses represent experimental results for a grating period of ~ 200 pm, circles represent the
theory presented in the text for the case Ep/E4 = 0.25, and diamonds represent the predictions
of theory for a purely sinusoidal index grating (i.e. Raman-Nath scattering).

3. Theory

We begin by assuming that two coherent beams of intensities I and I_ intersect at
some small angle § within a thin photorefractive crystal. The total light intensity
within the crystal can then be represented as

Iz)= Iy + 1 +2/I;1_cos(kyz), (1)

where ky = 2nksin(6/2) is known as the grating wave number and kg is the vacuum
wave number of the incident light. Equation (1) may also be written as

I(z) = Io[1 + mcos(kyz)], (2)

where Iy = I + I_ denotes the sum of the intensities of the incident waves and
where m = 2(I;. I_)/2/I, denotes the modulation index.

We next consider the form of the photorefractive response for the intensity
distribution given by Eq. (2). We use the band transport model of Kukhtarev
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et al1° This model describes the interaction of light with the crystal in terms of the
continuity equation, the carrier rate equation, the current equation, and Poisson’s
equation, which are given respectively by

on _ONF 195

%= & tebs (32)
+
205 = s1(e)(Np ~ NB) - vonNg, (3b)
, on
j=eunkE — kBT“B_:c , (3¢c)
O0E _ —4me +
8_a:_ p (n+NA—ND). (3d)

Here we have assumed that electrons are the dominant charge carrier, that n is the
number density of charge carriers, Np is the total number density of donor sites,
N g is the number density of the ionized donors, j is the current density, s is the
photoionization cross section, v, is the recombination rate, —e is the charge of an
electron, p is the electron mobility, E is the local electric field within the crystal,
kg is Boltzmann’s constant, T is the temperature, € is the dielectric constant of
the crystal, and N4 is the number density of charges that compensate N; when
the crystal is in the dark. In writing the rate equation we have assumed that
N4 <€ Np and that the rate of spontaneous excitation is small compared to that
of photo-excitation.

Under steady state conditions with no externally applied electric field and as-
suming that n <« N;, these equations reduce to the set

_ Nt z Nt
El(z) [————-——(NDNEND)] + %’-% [——-———-I( )(N;$ ND)] =0 (4a)

and dE 4
T = ke NE—Na), (4v)

where we have introduced the diffusion field Ep = kgTky/e. There are no known
closed-form solutions to Egs. (4), and approximate solutions are typically found by
assuming that the modulation index m is much smaller than unity. Under these
conditions, the induced electric field E(z) consists of only one harmonic component.
Recently, however, these equations have been numerically integrated for certain
specific cases, and predictions have been made concerning the form of the induced
electric field under conditions of high modulation depth.®%!! In particular, Vachss
and Hesselink,® expanding on the work of Moharam et al.,% have numerically shown
that for the case in which the diffusion field is much weaker than the maximum
space-charge field the electric field can be approximated by the expression

E(z) = Ep (%) (5a)
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Fig. 3. Spatial variation of the static electric field as predicted by Egs. (5) for m = 1 and
Ep/E; = 0.25. The dashed line is a plot of sin(kgz) and is intended as an aid in noting the
harmonic distortion present in the actual photorefractive grating.

where B
a=m-=-202m-1), (5b)
E,
and where E; is the maximum space-charge field given by

47e NA(ND——NA)
= — . 5
Eq k_qE [ ND ] ( C)

Figure 3 shows the spatial variation of the electric field predicted by Egs. (5) for the
case (which closely approximates that of our experiment) in which Ep/E, = 0.25
and in which m = 1. For purposes of comparison, a purely sinusoidal electric field
pattern is also shown in Fig. 3. Clearly evident is a significant increase in the higher
Fourier components compared to the purely sinusoidal modulation that occurs in
the limit of small modulation.

We next consider the nature of the modification of the incident light waves in
propagating through a photorefractive crystal in which the induced space charge
field is of the form given by Eqs. (5). Under our experimental conditions, the
grating formed in the photorefractive crystal is a thin grating in the sense that it
satisfies the inequality L tan ® > A, where L is the crystal thickness, ® is the angle
of incidence relative to the lines of constant refractive index, and A is the grating
period. For this reason, the scattering process occurs under the same conditions
as Raman-Nath scattering, although our situation differs from that considered by
Raman and Nath in that in our case the disturbance in refractive index is not purely
harmonic. In particular, the local variation in refractive index is proportional to
E(z) and is given explicitly as

An(z) = —(1/2)n3ran(:c), (6)
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where n is the index of refraction of the crystal and r.s; is the effective electro-
optic coefficient. Consequently, in propagating through the crystal each of the
incident beams of light, of amplitude A4 (z) = A% exp[i(k -r —wt)], will acquire the
additional phase ¢(z) = An(z)wL/c, and consequently each transmitted beam will
be described by

A4(z) = A% explik - — wt + §(2))]. ()
The angular distribution of the scattered light in the far field can be determined
by calculating the Fourier transform of the near-field distribution A(z) = A4+(z) +
A_(z). The predictions of such a procedure, with the maximum value of An taken
as our measured value of 2.3 x 10~3, are also presented in Fig. 2 and are seen to be in
excellent agreement with the experimental results. In performing this comparison,
we have taken the ratio Ep/E; to be a free parameter and have found that the best
agreement is obtained using a value 0.25.

If we had assumed that the photorefractive grating contained only a single har-
monic component, as is assumed by many elementary theories of photorefractive
response, the theoretical predictions would reduce to those of the normal Raman-
Nath treatment of scattering from a thin grating. In such a case, since ¢(z) contains
a single harmonic component, Exp. (7) for A4(z) can be expanded explicitly in a
Fourier series, where the square of each Fourier coefficient gives the relative power
of each scattered component of each incident wave. Since the far-field intensity
pattern has contributions from each incident wave, the total far field pattern is
proportional to

Iin = I:to(O)JZ(F) + I:}:O(O)Jz—q-l(F)- (8)
where F = 2nrAnL/A, ) being the wavelength of the incident beams.

It is possible to include the effects of truncating the photorefractive grating at
the beam edges by numerically calculating the Fourier coefficients. However, using
our experimental parameters, the inclusion of the truncation of the grating resulted
in no significant change in the predicted intensities of the first five diffracted beams
from those predicted by Eq. (8). The predictions of Eq. (8) are also shown in Fig. 2,
and clearly are not in agreement with the experimental results.

4. Conclusions

We have observed high integer-order diffraction from thin, photorefractive gratings
induced by the anharmonic electric field distribution produced by a sinusoidal in-
tensity pattern with a high depth of modulation. Our experimental results agree
well with theoretical predictions.
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