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Abstract

We describe our recent contributions to the field of optical coherence. We discuss a

series of experiments that exploit a variety of novel mechanisms of optical interference

to unveil new behaviors of light. More specifically, we discuss how we explored the

conditions under which light is forced to exhibit new properties. These e�ects are not

only fundamentally important but they open the door for a wide variety of applications.

In Chapter 1 we review the fundamental concepts that are utilized along the thesis.

In Chapter 2 we discuss how extreme conditions in a quantum measurement process

allowed us to exploit a form of spin-orbit interaction in an optical beam that produces

weak values (WVs) in the azimuthal variables. These interferometric WVs lead to a

shift in the angular position and orbital angular momentum (OAM) of an optical beam.

The OAM spectrum is shifted as a consequence of the breakup in the polarization

symmetry, realized by a di�erential geometric phase. We show how these e�ects can be

used to amplify angular rotations. In the same chapter, we discuss another technique

that uses interferometric WVs for direct measurement of the quantum wavefunction.

We improve the state-of-the-art of this technique by incorporating compressive sensing
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(CS) through the implementation of random projection operators. Our technique

allowed us to demonstrate the measurement of a 19 200 dimensional state.

In Chapter 3, we introduce the Wigner distribution in the azimuthal space. The

Wigner distribution in the angular domain provides valuable insight into understanding

the wave behavior of the light field in the conjugate bases of OAM and azimuthal angle.

In addition, we discuss how our technique allows one to determine the azimuthal

first-order degree of coherence of a partially coherent beam.

In Chapter 4 we describe how the random fluctuations of light give rise to the

formation of correlations in the OAM components and angular positions of pseudother-

mal light. The presence of these correlations is manifested through a new family of

exotic interference structures in the OAM distribution of random light. We describe

these e�ects in the context of the azimuthal Hanbury Brown and Twiss e�ect.

In Chapter 5, we exploit quantum correlations to perform quantum imaging. We

present a CS protocol that tracks a moving object by removing static components

from a scene. The implementation is carried out on a quantum imaging scheme to

minimize both the number of photons and the number of measurements required to

form a quantum image of the tracked object. This procedure tracks an object at

low light level, permitting us to more e�ectively use the information content in each

photon.

Another e�ect that has been recently predicted is the finite probability of a photon

to follow looped paths in a three-slit interferometer. This produces an apparent
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deviation from the most conventional form of the superposition principle. However,

the probability of observing these exotic paths is very small and thus extremely hard

to be measured. In Chapter 6, we discuss how we have increased the probability

of photons to follow such looped trajectories and measured its contributions to the

formation of interference fringes.
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Chapter 1

Key Concepts

1.1 Introduction

The superposition principle underlies the most fundamental and beautiful e�ects

in physics. This interesting property is at the heart of any wave theory, including

quantum mechanics and coherence theory [7]. Despite the fact that these theories are

the result of hundreds of years of intense research performed by the most brilliant

minds in physics, the superposition principle and some of its remarkable manifestations,

such as interference e�ects, have not been completely deciphered and keep amazing

the scientific community [8]. Nowadays, interference is considered as the only mystery

of quantum physics [9].

Undoubtedly, the understanding of the properties of light have permitted scientists

to formulate some of the most exciting postulates in modern physics. For example,

in the early 19th century the first demonstration of interference was performed by
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Thomas Young utilizing sunlight [10]. This experiment played a fundamental role

in the acceptance of the wave theory of light and demonstrated to be of paramount

importance in the formulation of quantum mechanics and the wave-particle duality

of quantum particles [7–10]. In recent years, this experiment has been utilized to

demonstrate the di�erence between classical and quantum interference and to illustrate

the probabilistic nature of the former [11]. The two-slit experiment devised by Young

involves a single field of light (one-photon field), however interference e�ects have

been observed with two-photon fields, three- and four-photon fields and some other

excitation modes [8]. The study of interference and coherence e�ects that involve

multi-photon processes started with the experiments performed by Hanbury-Brown

and Twiss (HBT) in the nineteen fifties [12]. Interestingly, their experiment now

known as the HBT experiment unveiled novel and surprising aspects of light. The

ability to observe interference from chaotic light produced by independent sources

on the disk of a star and detected at di�erent locations on Earth resulted in very

intriguing because at that time it appeared that classical and quantum theories of

light o�ered di�erent predictions. This experiment started the field of quantum optics

and motivated a wide variety of experiments such as the Hong-Ou-Mandel and the

Franson interferometers just to mention a few [13, 14]. Surprisingly, even in these

days, interference e�ects with light o�er the possibility to study fundamental problems

that represent open questions in physics [9].
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In this thesis we describe a series of experiments that we performed to unveil novel

and exceptional behaviors of light [15]. We believe that our findings contribute in

a significant manner to the field of optical coherence. Furthermore, we discuss how

some of these e�ects have serious implications in the development of new generations

of optical technologies. This first chapter is organized as follows. In section 1.2 we

present a conceptual description of first-order interference and coherence. The orbital

angular momentum (OAM) of light is discussed in section 1.3. The basic concepts

of first-order interference in the angular degrees of freedom are provided in section

1.4. In section 1.5, we discuss weak values and how they can be understood as an

interference phenomenon. Finally, a summary of the topics treated in this thesis is

presented in section 1.6.

1.2 Spatial first-order interference of light

The advent of the laser gave an enormous impulse to the development of the theory of

optical coherence. A theory that deals with the study of the correlation properties of

light, more specifically, coherence theory provides a metric for the similarities among

di�erent temporal periods or spatial positions associated to an electromagnetic field

[15]. In this section, we provide a brief review of the concept of spatial coherence, a

property that will be used in several parts of this thesis.
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Young’s experiment has been widely used in di�erent fields of physics. Originally

this setup was utilized to prove the wave nature of light. However, this experiment

can also be utilized to illustrate the concept of the spatial degree of first-order mutual

coherence of two interfering waves [7–10, 15]. For this purpose, we utilized the

setup depicted in Fig. 1.1. We assume that the slits are illuminated with a quasi

monochromatic source of light with a beam waist located at z = 0. We also assume

that the transverse profile of the source is partially coherent.

d1

d2

z

D

x1

x2

z = 0

!"#$%&'

x
r1

r2

Figure 1.1: Schematic representation of a Young’s double-slit interferometer used to
illustrate first-order interference and first-order coherence. The quantities r

1

and r
2

represent the distances from the center of the source beam at plane z = 0 to the upper
and lower slits, respectively. The two slits are separated by �x defined as x

1

≠ x
2

,
where x

1

represents the transverse position of the upper slit and x
2

represents the
position of the lower slit. The distances from the upper and lower slits to the detector
D are represented by d

1

and d
2

respectively.

The definition of first-order coherence can be quantified through the evaluation

of the intensity measured by the detector located in the far-field of the two-slit

arrangement at the transverse position x. The total electric field at the detector Ed(x)

is given by the sum of the field amplitudes E(x
1

, z) and E(x
2

, z) produced by each of
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the slits. This can be expressed as

Ed(x) = a
1

E(x
1

, z)eik0d1 + a
1

E(x
2

, z)eik0d2 . (1.1)

The magnitude of the wave-vector in vacuum is represented by k
0

and the distances from

the upper and lower slits to the detector D are represented by d
1

and d
2

respectively.

The coe�cients a
1

and a
2

represent the amount of light transmitted from the slits, the

values for a
1

and a
2

are defined by the geometry of the slits. The intensity measured

by the detector is given by the ensemble average of the instantaneous intensities

Eú
d(x)Ed(x). This quantity is defined as

Id(x) = ÈEú
d(x)Ed(x)Í = a2

1

I
1

(x
1

, z) + a2

2

I
2

(x
2

, z) + a
1

a
2

�(x
1

, x
2

, z)e≠ik0(d1≠d2) + c.c.,

(1.2)

where I
1

is defined as ÈEú(x
1

, z)E(x
1

, z)Í and I
2

as ÈEú(x
2

, z)E(x
2

, z)Í. These quan-

tities describe mutual field correlations and are examples of first-order coherence

functions. The cross-field correlation at plane z is described by �(x
1

, x
2

, z). The

Gaussian Schell-model beams are a common example of a partially coherent beam

[16]. Such a beam is defined by having a Gaussian intensity I = e≠x2/2‡2
I , as well as

a Gaussian degree of coherence �(x
1

, x
2

) =
Ò

I
1

(x
1

, z)I
2

(x
2

, z)e≠|x1≠x2|2/2‡2
µe≠ik0(r1≠r2),

where r
1

and r
2

are the distances from the center of the beam at the origin to slit 1
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and 2, respectively. Now the intensity measured by the detector can be rewritten as

Id(x) = a2

1

I
1

(x
1

, z)+a2

2

I
2

(x
2

, z)+2a
1

a
2

Ò
I

1

(x
1

, z)I
2

(x
2

, z)e≠|�x|2/2‡2
µ cos(k

0

�s), (1.3)

where �s is equal to r
1

+ d
1

≠ r
2

≠ d
2

. This result demonstrates that the formation

of interference fringes occurs only when the length of the spatial coherence of the

illuminating beam is larger than the separation of the two slits. In Chapter 5, we

discuss a case in which interference fringes are formed even for a situation in which

the length of spatial coherence is smaller than the separation of the two slits, in this

case coherence is induced by the presence of exotic looped trajectories.

1.3 Orbital angular momentum of light

In addition to spin angular momentum (SAM) of light that arises from its polarization

properties, light can also carry OAM [17]. For example, a beam of light with a helical

phase front given by an azimuthal phase dependence of the form ei¸„ carries OAM, in

general these beams have the following form

E(x, y, z, „) = u
0

(x, y, z)e≠ikzei¸„, (1.4)

which describes a beam of light with a slowly varying amplitude distribution u
0

(x, y, z)

propagating along z, k represents the wave number. Interestingly, beams with these
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properties are solutions to the paraxial approximation of the Helmholtz equation,

which is written in a cartesian coordinate system as

A
ˆ2

ˆx2

+ ˆ2

ˆy2

+ 2ik
ˆ2

ˆz2

B

E(x, y, x) = 0. (1.5)

This equation is satisfied by cylindrical Laguerre-Gaussian modes LG¸
p(fl, „, z), which

consist of a family of orthogonal modes that have a well defined value of OAM. The

field amplitude of a normalized Laguerre-Gauss mode is given by

LG¸
p(fl, „, z) =

Û
2p!

fi(|¸ + p|)!
1

w(z)

S

U
Ô

2fl

w(z)

T

V
|¸|

L¸
p

C
2fl2

w2(z)

D

exp
C

≠ fl2

w2(z)

D

exp
C

≠ ik2fl2z

2(z2 + z2

R)

D

exp
S

Ui(2p +|¸| + 1) tan≠1

A
z

zR

BT

V

(1.6)

where p is the radial mode index, w(z) is the beam waist given by
Ò

2(z2 + z2

R)/kzR
, zR

is the Rayleigh range defined as kw2(0)/2, L|¸|
p is the associated Laguerre polynomial

and r, „ denote the transverse coordinates. Each photon in a Laguerre-Gaussian mode

carries an orbital angular momentum of ¸~ [17].

The simplest examples of the modes that carry OAM are shown in Fig. 1.2. These

modes have a top-hat intensity structure and their azimuthal phase dependence is

shown from Fig. 1.2 a) to c). These phase distributions correspond to the values of

OAM given by ¸ = 1, ¸ = 2 and ¸ = 3 respectively. The twisted wavefront of the beam

shown in Fig. 1.2 d) is a consequence of the OAM of light induced by the azimuthal

phase dependence of the form ei¸„.
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Figure 1.2: The azimuthal phase dependence for beams of light carrying di�erent
values of OAM is shown from a) to c). The value for ¸ = 1 is shown in a), ¸ = 2 in b)
and ¸ = 3 in c). The wavefront of a beam of light carrying OAM is shown in d).

There are di�erent ways in which beams carrying OAM can be generated and

detected [18]. In the work presented in this thesis, we utilized computer generated

holograms and spatial light modulators (SLMs). The encoded holograms contain the

phase information that endows light with OAM and a di�raction grating that allows

one to increase the quality of the generated modes [18]. As shown in Fig. 1.3 a), a

SLM and a lens allows one to select a di�racted beam that carries specific values of

OAM. Interestingly, the exact same technique can be used in reverse to characterize

the OAM spectrum of light, see Fig. 1.3 b). The fact that the singularity of a beam

carrying OAM can be removed by projecting it onto the conjugate azimuthal phase

allows one to determine the OAM spectrum of light. In Fig. 1.3 b) a beam of light
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carrying a specific value of OAM ¸ is projected onto ≠¸, this produces a Gaussian

mode, which is the only mode that couples e�ciently onto a single mode fiber. If the

beam is projected onto a di�erent mode only a small amount of light is coupled to the

fiber. In general this procedure allows for the determination of the OAM spectrum of

light.

!"## $"##

Figure 1.3: Generation and detection of beams of light carrying OAM. a) shows a
spatial light modulator (SLM) displaying a computer-generated hologram that allows
one to generate beams of light carrying specific values of OAM. The engineered mode
is selected from the first di�raction order in the Fourier plane of the SLM. As shown
in b) a similar forked di�raction grating displayed onto the SLM can also be utilized
to measure the OAM spectrum of light.

1.4 Azimuthal first-order interference of light

Several experiments presented in this thesis exploit the azimuthal properties of light.

Consequently, it is convenient to devote a section of this chapter to discuss the Fourier

relationship existing between the angular position and OAM variables of an optical



CHAPTER 1. KEY CONCEPTS 10

beam [19, 20]. Later, these concepts are utilized to illustrate the simplest form of

azimuthal interference also known as azimuthal first-order interference.

Similarly to linear position and linear momentum, angular position and OAM are

conjugate variables and they form a Fourier pair [19, 20]. The Fourier relations are

expressed as follows

Â̂(¸) = 1Ô
2fi

⁄ fi

≠fi
d„Â(„) exp (≠i¸„); (1.7)

Â(„) = 1Ô
2fi

Œÿ

¸=≠Œ
Â̂(¸) exp (i¸„). (1.8)

Here Â̂(¸) represents the probability amplitude that a photon is carrying the OAM

number ¸, whereas Â(„) is the probability amplitude that the angular position of the

photon is „. From these relations, it is important to note that a rotation �„ will

induce a phase that is ¸-dependent and is given by �„¸.

The Fourier relations described by Eqs. 1.7 and 1.8 can be illustrated with the

cartoon shown in Fig. 1.4. It is shown that a beam with a uniform spatial profile

does not carry OAM and consequently the OAM spectrum is centered at zero. In

contrast, a beam shaped in a form of angular wedge shows a broader OAM spectrum.

The spectrum is broad for angular modes with narrow widths and narrow for broad

angular modes. This behavior is a manifestation of the uncertainty principle for the

azimuthal variables of angular position and OAM.

The existence of a Fourier relationship for the angular variables of angular position

and OAM gives rise to interesting interference e�ects [4, 21]. For example, let



CHAPTER 1. KEY CONCEPTS 11

!"#$%&'()*+,-*"( .'/,0&%(&"#$%&'(1*12"0$1(
!"#$%&'()*+,-*"( .'/,0&%(&"#$%&'(1*12"0$1(

Figure 1.4: Fourier relationship between angular position and OAM. A broad OAM
spectrum is observed for an angular mode with narrow width. This is a manifestation
of the uncertainty principle for the conjugate variables in azimuthal degree of freedom.

us consider the azimuthal version of the famous Young’s double-slit interferometer

depicted in Fig. 1.5 a). In this case we assume that a spatially coherent beam

illuminates a pair of angular slits of width – that are separated by the angle �„. As

one would expect, interference fringes must be formed in the conjugate variable, in

this case in the OAM domain. As explained in the previous section of this chapter,

a direct form of accessing to the OAM of light is by performing a series of OAM

projections by means of a SLM. The light di�racted by the SLM is collected by a

single mode fiber (SMF) and measured by a detector.

The interference fringes in this experimental setup are produced by the following

superposition

Â(¸t) = Â(¸s) + ei¸�„Â(¸s), (1.9)
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in this case the wavefunction Â(¸s) describes the OAM spectrum produced by any of

the two slits, this wavefunction is determined by the Fourier transform of the angular

slit as defined in Eq. 1.7. However for the characteristics of the slit, this can be

simplified to

Â(¸s) = 1Ô
2fi

⁄ –/2

≠–/2

d„e≠i¸„, (1.10)

in this case Â(¸s) is defined as –Ô
2fi

sinc( ¸–
2

). Consequently, the probability amplitude

Â(¸t) at the detector can be rewritten as

Â(¸t) = –Ô
2fi

sinc
A

¸–

2

B

[1 + e≠i¸�„]. (1.11)

This superposition produces an intensity distribution in the OAM spectrum given by

I(¸t) = –2

fi
sinc2

A
¸–

2

B

[1 + cos(¸�„)]. (1.12)

An example of the interference pattern described by Eq. 1.12 for a situation in

which – is fi/6 and �„ is fi/12 is shown in Fig. 1.5 b). The discreteness of the pattern

is caused by the discrete measurements of OAM performed by means of a SLM.

1.5 Weak Values

Bayes’s theorem has played a fundamental role in classical and quantum measurement

theory.
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Figure 1.5: Azimuthal version of the Young’s double-slit interferometer. An schematic
version of the setup used to observe first-order azimuthal interference is depicted in a).
An example of the interference pattern measured by a detector after the single mode
fiber (SMF) is shown in b). In this case – is fi/6 and �„ is fi/12.

As in any branch of science, the measurement process is of fundamental importance

in quantum physics. However due to the nature of the formulation of quantum

mechanics, di�erent forms of measurements, or exotic implementations of Bayesian

statistics, have led to the observation of counter intuitive physical e�ects [22]. Examples

include superluminal pulse propagation, the determination of the trajectory followed

by a single photon in a two-slit interferometer, amplification of observables, etc. [6, 22–

25]. In addition to the fundamental character of these e�ects, recent work suggests

that some of them could have strong implications for technological applications, such

as in quantum communication, quantum information, and metrology [1, 26–36].

In 1988 Aharonov, Albert and Vaidman introduced a generalized form of quantum

measurement known as weak measurement [22]. The original paper with the title

“How the result of a measurement of a component of the spin of a spin-1

2

particle
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can turn out to be 10” created heated debates and motivated a new generation of

experiments that eventually verified the counterintuitive prediction [6, 23–25, 37].

In this section, we discuss some of the e�ects that give rise to the apparent “weird”

features that make weak measurements interesting and controversial.

In this introductory section we use the von Neumann model to explain weak

measurements. In this model, the total system is composed of two subsystems, one is

the system we wish to measure, described by the state |�
s

Í, typically called the probe.

The other is the pointer device |�
d

Í that provides information about the measured

system [26]. The correlation between these subsystems arises when the observable of

the system ‡̂ is coupled or entangled to the pointer, through its linear momentum p̂.

This can be described by the following interaction Hamiltonian

Ĥ
int

= g‡̂p̂, (1.13)

where g is a real quantity that acts as coupling constant. The initial state can be

described as the product of the state of the system or probe and the state of the pointer

device as |�
i

Í = |�
s

Í |�
d

Í. Further, the state |�
s

Í can be expressed as q
n

s
n

|S
n

Í, in

terms of the eigenstates of the operator ‡̂ as a consequence of the spectral theorem.

After the interaction of duration �t, the subsystems are coupled in the following

manner

|�
f

Í = e≠i ˆHint�t |�
i

Í =
ÿ

n

s
n

|S
n

Í |�
d

(x ≠ ‰s
n

)Í , (1.14)
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where ‰ equals g�t. In obtaining this result we have recalled the fact that the

momentum p̂ is the generator of translations in x. The state |�
f

Í demonstrates that

system and pointer have been coupled; this e�ect is sometimes referred as classical

entanglement [38, 39]. In addition, the position of the center of the pointer state has

been shifted. If one were to calculate the expectation value of the position operator

ÈX̂Í in the final state |�
f

Í, under ideal circumstances this will be equal to ‰È‡̂Í. This

result shows that the position of the pointer can be used to estimate the expectation

value of the operator ‡̂, which explains the origin of the name of pointer. It is worth

noticing that the strength of the coupling constant has not been constrained. This

form of measurement is known as strong perturbative measurement [22]. Typically, the

probability distribution of the pointer is assumed to be a Gaussian function; however,

di�erent pointers and their advantages have been studied [40]. The random noise or

error associated with a measurement or read-out process is typically described by a

Gaussian distribution.

An example of strong measurement is depicted in Fig. 1.6 a). Here, the transverse

spatial position of a Gaussian beam acts as the pointer and its polarization as the

probe. The beam of light with diagonal polarization passes through a tilted birefringent

crystal, which provides the interaction Hamiltonian for measuring the operator ‡̂.

At the output of the crystal, the position and polarization of the emerging beams

are well defined due to the strong interaction that occurred in the crystal, caused

by its birefringence. In a typical (strong) measurement, the separation between the
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horizontally and vertically polarized beams is much larger than the sum of the beam

waist sizes, making it easy to resolve the two beams with minimal uncertainty in the

measurement of the polarization state of each photon.

Birefringent crystal 
Ouput  
Beam 

Input  
Beam 

Birefringent crystal 

Polarizer 
Input  
Beam 

Ouput  
Beam 

a) 

b) 

Figure 1.6: Schematic diagram of the experimental setup used to perform strong
and weak measurements. a) a birefringent crystal shifts the horizontal and vertical
polarized components of the input beam, which is diagonally polarized. The induced
shift is larger than the beam waist diameters of the emerging beams; this strong
interaction thus allows the determination of the polarization of the two beams, via
strong or projective measurement. The measurement process permits one to infer
information about the strength of the interaction, in this case the birefringence of the
material. b) a weaker interaction between the input beam and the birefringent crystal
produces a small displacement between the two emerging beams. In this case, the
beam displacement is much smaller than the waist diameter of the beams. Thus it is
di�cult to determine the polarization of each beam. In this case, the post-selection
process forces the two beams to coherently interfere, producing another beam with a
Gaussian profile. When the position of the post-selection polarizer is almost orthogonal
to the input polarization, the center of the post-selected beam is shifted by an amount
proportional to the small separation between the two emerging beams multiplied by
the weak-value amplification factor.

In weak measurements, the initial state of the system remains mostly intact, and

information is obtained by weakly disturbing the system. As a consequence, the
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uncertainty in each single-photon measurement is large. However, the uncertainty is

generally overcome by averaging over a large number of events. The post-selection

process makes weak measurements interesting. For example, the outcome of a weak

measurement, called a weak value (WV), need not be an eigenvalue of the measurement

operator [6, 22, 26]. In addition, WVs can be complex or exceed the eigenvalue range

of a strong or projective measurement. The properties of WVs can be understood

if we use the von Neumann model. In this case, we assume that the perturbation

or coupling ‰ is small. The state after the weak perturbation can be written by

expressing the interaction Hamiltonian as a power series

|�
f

Í = e≠i ˆHint�t |�
i

Í = |�
s

Í |�
d

Í ≠ i‰‡̂ |�
s

Í p̂ |�
d

Í + .... (1.15)

After the weak perturbation, a post-selection is applied to the system. In general, the

post-selection can be performed on any variable, such as polarization, linear momentum,

OAM, etc. In fact, this flexibility has allowed scientists to apply weak measurements

to di�erent scenarios and degrees of freedom [1, 25, 27, 28, 30–34]. Therefore, our

post-selection is performed by applying the projective operator |PsÍ ÈPs| to the state

|�
f

Í, leading to the following state

|�
F

Í = |PsÍ ÈPs| |�
f

Í = [ÈPs|�
s

Í |�
d

Í ≠ i‰ ÈPs| ‡̂ |�
s

Í p̂ |�
d

Í + ...] |PsÍ . (1.16)



CHAPTER 1. KEY CONCEPTS 18

Due to the weakness of the interaction, this expression can be approximated to the

first order and then normalized to give

|�
F

Í ¥
A

|�
d

Í ≠ i‰
ÈPs| ‡̂ |�

s

Í
ÈPs|�

s

Í p̂ |�
d

Í
B

|PsÍ . (1.17)

The post-selection process collapses the state of the probe, in this case |�
s

Í. In

addition, the post-selection reveals the weak value of the operator ‡̂. The weak value

is defined as

‡
w

= ÈPs| ‡̂ |�
s

Í
ÈPs|�

s

Í , (1.18)

and it is important to stress that this is a general definition that can be applied to

any operator defined for any degree of freedom or in any Hilbert space. Besides the

collapse of the state of the system |�
s

Í, the post-selection process also induces a shift

in the state of the pointer device |�
d

Í. Remarkably, this shift is proportional to the

weak value and to the small disturbance ‰ as described by

|�
F

Í = |�
d

(x ≠ ‰‡
w

)Í |PsÍ . (1.19)

The WV ‡
w

can take very large values when the states |PsÍ and |�
s

Í are almost

orthogonal, as can be seen from Eq. 1.18. Furthermore, when one of the coe�cients

of either of the two states is complex, the weak value can be complex. Such unusual
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features have generated a great amount of interest in weak measurements. A detailed

review of this field can be found in [26].

Under many practical circumstances, weak values and weak measurements can be

understood in terms of entirely classical interference arguments. Nonetheless, much

of the recent work on weak measurements employs the simple and mathematically

elegant language of quantum mechanics to describe these e�ects. The reason is that

quantum mechanics provides a simpler description and the results apply to a wider

range of phenomena than for the case of a classical description.

In 1991, Ritchie et al. performed the first realization of a weak value [25]. A

simplified version of their experimental setup is depicted in Fig. 1.6 b). Here, we

assume a weak interaction between the beam and the crystal. This interaction produces

a weak coupling of the spatial profile with the polarization degree of freedom, which

means that the two polarization components of the beam travel along di�erent optical

paths and become transversely separated. In this weak-interaction regime, the two

beams emerging from the quartz plate are spatially separated by an amount that

is much smaller than the beam waist size. For example, if one were to determine

the birefringence of the material by measuring the actual position of the two beams,

this will be an ine�ective technique. The variance of the pointer is large, and thus

the measurement will not be precise. However, the post-selection process makes this

experiment interesting, since it allows discarding results that do not provide useful

information and keeping those that convey relevant and conditioned information. As
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we will discuss, this exotic form of performing statistics can be implemented in di�erent

forms. In Ritchie’s experiment the post-selection is performed with a polarizer. When

the position of the post-selection polarizer is almost orthogonal to the polarization

of the injected beam, the amount of transmitted light is low. Nevertheless, because

of the optical interference between the two emerging beams, the spatial centroid of

the post-selected beam is shifted by an amount proportional to the product of the

small separation between the two beams and the weak value. So, weak values o�er an

alternative form of determining small quantities or weak e�ects.
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Figure 1.7: Numerical simulations that illustrate three regimes of the experimental
setup depicted in Fig. 1.6 b). The transverse profile produced by constructive
interference between two identical Gaussian beams with a beam waist of 55 µm
separated by 2.5 µm is shown in a). One of the beams is horizontally polarized
whereas the other is vertically polarized, the post-selection angle of the polarizer is
45¶. b) the angle of the post-selection polarizer is set to 90¶ + ‘ with respect to the
polarization of the input beam, where ‘ equals 2.8¶, this is the weak measurement
regime. The shift in the pointer is proportional to the product of the weak value and
the small separation between the two interfering beams. c) in this case ‘ is 0¶ and the
weak value is not defined.
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The essence of Ritchie’s experiment is shown in Fig. 1.7. We have simulated

di�erent regimes for the experimental setup depicted in Fig. 1.6 b). We assume a

beam with a Gaussian intensity distribution and a beam waist of 55 µm. The result of

the constructive interference between the two beams separated by 2.5 µm is shown in

Fig. 1.7 a). In Fig. 1.7 b) the angle of the post-selection polarizer is set to 90¶ + ‘ with

respect to the polarization of the input beam, where ‘ equals 2.8¶; this is the weak

measurement regime. The shift in the state of the pointer is eight times larger than

the separation of the beams emerging from the crystal. This value can be increased

by decreasing either ‘ or the separation between the two beams; however, the amount

of light passing through the post-selection polarizer would then decrease. In fact,

this is an important limitation in the protocols for weak value amplification (WVA);

stronger post-selections or larger amplifications imply the loss of more photons through

post selection. Furthermore, the weak value is not defined for very small values of ‘.

Fig. 1.7 c) illustrates a situation where the post-selection angle is orthogonal to the

polarization of the input beam, that is, ‘ = 0¶.

In the work of Ritchie and co-workers, the measured weak value was real and this

was measured by observing the shift in the position of the pointer. Nonetheless, as we

have pointed out earlier, a weak value can be complex, and therefore one should be

able to measure both the real and imaginary part of the weak value. Several authors

have shown that the shift in the position and momentum of the pointer is proportional

to the real and imaginary part of the weak value [41, 42], respectively.
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The expectation values of the position and momentum operator for the post-selected

state |�
F

Í described by Eq.1.19 can be calculated as

ÈX̂Í
F

= ‰Ÿ
A

ÈPs| ‡̂ |�
s

Í
ÈPs|�

s

Í

B

, (1.20)

ÈP̂ Í
F

= 2‰

‡2

⁄
A

ÈPs| ‡̂ |�
s

Í
ÈPs|�

s

Í

B

. (1.21)

These relations have motivated a wide variety of experiments during the last 10 years.

In 2011, Lundeen et al. proposed a technique known as direct measurement

of the quantum wavefunction. This technique utilizes weak values to measure the

wavefunction of a quantum particle in a direct fashion [6]. The simplicity of this

technique and the fact that it does not require a time-consuming post-processing makes

it attractive. The principles of quantum mechanics forbid the exact determination of

the wave function of a particle in a single measurement. However, direct measurement

utilizes many measurements on identically prepared systems to determine the weak

values and subsequently the quantum state.

E�cient characterization of a quantum state is a crucial part of a variety of

experiments in quantum optics. Recently, direct measurement has been utilized to

reconstruct complicated wavefunctions and high-dimensional states defined on di�erent

Hilbert spaces [2, 35, 36].

The main idea behind this technique is to perform a weak measurement of the

position followed by a strong measurement of the momentum of the particle, in this
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case a photon. The weak value then takes the following form:

fi
w

= Èp|xÍÈx|�
s

Í
Èp|�

s

Í = eipx/~�
s

(x)
�(p) . (1.22)

As can be seen, the weak value takes a di�erent form to the one obtained in protocols

for weak value amplification. Furthermore, if the post-selection is carried out at p=0,

the expression above can be simplified to

fi
w

= k�
s

(x), (1.23)

where k is equal to 1/�(0) which can be considered to be a normalization constant.

This remarkable result shows that this recipe produces a weak value that is directly

related to the transverse quantum wavefunction of the measured photons.

The experimental implementation of this method used the relatively simple appara-

tus depicted in Fig. 1.8. The complete technique comprises three stages. The first part

can be understood as a weak measurement in the position variable. This measurement

is performed by using a rectangular sliver of a half-wave plate (HWP), labeled it

as WP1, to weakly rotate the polarization of light at a specific position. A Fourier

transforming lens and a small pinhole allows one to perform the post-selection at

p = 0 in the momentum basis. The last part is the strong measurement process. Here

a HWP or a quarter wave plate (QWP), labeled as WP2, together with a polarizing
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beam splitter (PBS) permits the measurement of the real or imaginary part of the

WV, respectively.

The interaction Hamiltonian that describes the e�ect of the weak disturbance in

the position variable is H
int

= –‡̂
y

fî, where – is a small polarization rotation angle,

‡̂
y

is one of the Pauli matrices defined as ≠i |HÍ ÈV | + i |V Í ÈH| and fî is the position

operator |xÍ Èx|. After the post-selection at p = 0, the final state (which can be

described as in Eq. 1.17) takes the following form

Wavefunction Weak  
measurement of x  

Lens 

Strong  
measurement of p=0  

Polarization 
measurement 

Pinhole 

WP1 

WP2 

PBS 

D1 

D2 

Figure 1.8: Experimental apparatus used by Lundeen and co-workers to measure the
spatial wavefunction of a single photon [6]. A weak rotation of polarization, via HWP
(WP1) is followed by a strong measurement of the momentum. A series of polarization
measurements allow the reconstruction of the spatial quantum wavefunction.

|s
f

Í = |V Í + i–

2 fi
w

‡̂
y

|V Í . (1.24)

It is important to point out that the above state provides information about the

wavefunction only at a specific position x. In order to retrieve the full wavefunction,

one has to repeat this measurement at various positions x. After the operator ‡̂
y

is
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applied to the polarization state, |s
f

Í takes the form

|s
f

Í = |V Í + –

2 fi
w

|HÍ . (1.25)

Since the pointer is the polarization degree of freedom, in order to reconstruct the

quantum wavefunction one has to fully characterize the polarization of the detected

photons. One way of doing this is by measuring the Pauli operators ‡̂
x

and ‡̂
y

in the

final state |s
f

Í. Notably, measurement of Ès
f

| ‡̂
x

|s
f

Í provides information about the

real part of the weak value

Ès
f

| ‡̂
x

|s
f

Í = Ès
f

| (|HÍ ÈV | + |V Í ÈH|) |s
f

Í

= –Ÿ[fi
w

].
(1.26)

The state above can be measured by using a HWP for WP2 and a PBS. In addition,

replacing the HWP with a QWP allows the measurement of the Pauli operator ‡̂
y

,

which is proportional to the imaginary part of the weak value

Ès
f

| ‡̂
y

|s
f

Í = Ès
f

| (≠i |HÍ ÈV | + i |V Í ÈH|) |s
f

Í

= ≠–⁄[fi
w

].
(1.27)
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Therefore the wavefunction can be reconstructed from the measurements of

Ès
f

| ‡̂
x

|s
f

Í and Ès
f

| ‡̂
y

|s
f

Í as follows

�
s

(x) = 1
k–

(Ès
f

| ‡̂
x

|s
f

Í ≠ i Ès
f

| ‡̂
y

|s
f

Í). (1.28)

This protocol for measuring the wavefuntion can be described in terms of self

interference, however, such a description is complicated.

In the following chapter, we describe some experimental interferometric implemen-

tations that utilize weak values. We introduce a novel form of weak value amplification

in the azimuthal variables of angular position and OAM. We also demonstrate a

protocol that utilizes compressive sensing to improve the performance of the direct

measurement technique.

1.6 Summary

In this chapter we discussed fundamental concepts that are used in this thesis. We

started this chapter by briefly discussing first-order interference and coherence. We

then discussed the OAM of light and the standard techniques used for its generation

and detection. Fundamental aspects of azimuthal first-order interference and coherence

were also provided. We concluded the chapter with a discussion on weak values and

how these can be understood as an interference phenomenon. In Chapter 2, we will

introduce two interferometric techniques that exploit the potential of weak values for
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amplification of angular rotations and measurement of the quantum wavefunction.

Chapter 3 is devoted to the study of angular interference in phase space. A novel

family of second-order interference e�ects that correspond to the azimuthal Hanbury

Brown and Twiss e�ect is introduced in Chapter 4. In Chapter 5, we discuss a

protocol that utilizes quantum correlations of entangled photons for object tracking.

We described the first demonstration and measurement of exotic looped trajectories

of light in Chapter 6. The conclusions of this thesis are presented in Chapter 7.
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Chapter 2

Interferometric Weak Values

2.1 Introduction

In this chapter we introduce two schemes that utilize interferometric weak values for

amplification of small quantities and for quantum state tomography, these weak values

are mediated through interference e�ects. In the first half of this chapter we present a

weak measurement protocol that permits a sensitive estimation of angular rotations

based on the concept of weak-value amplification. The shift in the state of a pointer,

in both angular position and the conjugate orbital angular momentum bases, is used

to estimate angular rotations. This is done by an amplification of both the real and

imaginary parts of the weak-value of a polarization operator that has been coupled

to the pointer, which is a spatial mode, via a spin-orbit coupling. Our experiment

demonstrates the first realization of weak-value amplification in the azimuthal degree

of freedom. We have achieved e�ective amplification factors as large as 100, providing
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a sensitivity that is on par with more complicated methods that employ quantum

states of light or extremely large values of orbital angular momentum.

In the second half of this chapter we introduce a method that exploits sparsity

for the compressive measurement of the transverse spatial wave function of photons.

The procedure involves weak measurements of random projection operators in the

spatial domain followed by postselection in the momentum basis. Using this method,

we experimentally measure a 192-dimensional state with a fidelity of 90% using only

25 percent of the total required measurements. Furthermore, we demonstrate the

measurement of a 19 200-dimensional state, a task that would require an unfeasibly

large acquiring time with the standard direct measurement technique.

2.2 Antecedents of Weak Value Amplification and

Measurement of Angular Rotations

As discussed in Chapter 1, in weak measurements, information is gained by weakly

probing the system, while approximately preserving its initial state. The uncertainty

in each measurement is large due to the weak perturbative nature of the information

extraction; however, this is generally overcome by averaging over a large number of

identically prepared states. The process of post-selecting the prepared system makes

weak measurements interesting. Under certain conditions the outcome, which is called

a weak value, is not an eigenvalue of the measurement operator. In fact, WVs can
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even exceed the eigenvalue range of a typical strong or projective measurement and

in general are complex. These features have allowed a wide range of applicability in

classical and quantum contexts. For example, they have resulted in the measurement

via amplification of small transverse [30, 34] and longitudinal [31, 32, 43] shifts, the

direct measurement of the quantum wave function [6, 35, 36], the development of

tomographic techniques [44], the amplification of optical nonlinearities [27], and the

clarification of controversial debates in quantum physics [23, 24].

Recently, there has been a strong impetus to employ weak-value amplification

as an e�ective tool in metrology [29, 31, 33, 43]. A WVA protocol involves the

preparation of an ensemble of particles with two independent degrees of freedom.

These two degrees of freedom are then coupled by means of a weak perturbation

and post-selected to collapse one of the them, typically called the probe. Due to

the coupling existing between the probe and the other degree of freedom, called

the pointer, the post-selection induces a shift in the linear position of the pointer

which is proportional to the weakly induced perturbation and the WV. This has

allowed the use of WVA to estimate small quantities with sensitivities comparable

to quantum-enhanced metrology [29, 31, 33, 43, 45], due to the fact that the use of

quantum protocols does not guarantee sensitivities beyond the standard quantum

limit, which is the limit for classical protocols [46, 47].

Besides the extensive work on the estimation of longitudinal displacements [31–

33, 43, 46–49], high sensitivity measurement of angular displacements has been another
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topic of interest. Historically, inquiries regarding relativistic dynamics stimulated

interest on the azimuthal degree of freedom [50]. A remarkable example is the Sagnac

e�ect. Atomic versions of the Sagnac interferometer have led to sensitive gyroscopes

that permit a precise measurement of rotations [51, 52]. In addition, the use of light

endowed with OAM has motivated interest in new forms of rotations. These beams

have been used for rotational control of microscopic systems [18], and exploration

of e�ects such as the rotational Doppler shift [53] which has been recently used in

techniques for detecting spinning objects [54]. Recent e�orts to increase the sensitivity

in the measurement of angular rotations involve the generation of large values of

OAM [55], quantum entanglement of high OAM values [56], or the use of N00N states

in the OAM bases [57]. These protocols require complicated schemes to generate

and measure photons in such exotic states. However, the concepts behind them

constitute valuable resources not only for optical metrology, remote sensing, biological

imaging or navigation systems [54, 58], but also for the understanding of light-matter

interactions [59–61].

In this section, we describe WVA in the azimuthal degree of freedom and the

processes that give rise to these e�ects. The first observation of these kinds of

WVs suggests interesting physics from the fundamental and applied perspective. For

instance, the spin-orbit coupling in our experiment gives rise to an interesting optical

e�ect in which the perturbation of polarization induces a shift in the angular position

and OAM spectrum of the pointer. We show that the real and the imaginary part
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of the WV for the polarization operator can be accessed by measuring the angular

position and its conjugate variable of OAM, respectively. Using this new form of

WVs based on spin-orbit coupling, we propose a scheme for the measurement of small

rotations. We demonstrate an amplification in the measurement of angular rotations

that is as large as 100. The simplicity of our scheme, namely lack of need for exotic

quantum state of lights or extremely large values of OAM, makes this technique

potentially attractive for applications in optical metrology, remote sensing and optical

manipulation of microscopic systems.

2.3 Amplification of Angular Rotations using Weak

Measurements

Consider the experimental setup depicted in Fig. 2.1. This scheme comprises three

parts: state preparation, a weak perturbation, and post-selection. The state prepa-

ration involves the generation of a light beam with diagonal polarization and a

well-defined spatial profile. We select the initial polarization state using a polarizer

and a HWP; this state will serve as a probe and can be described by the polarization

qubit |�prÍ = 1Ô
2

(|HÍ + |V Í). The preparation of the spatial mode or pointer consists

of the generation of an angular mode (ANG) f(„) Ã exp (≠„2/2÷„
2), which is a

Gaussian-apodized angular slit of width ÷„. This is shaped by impressing amplitude

and phase information onto the beam by means of modulation of the blaze parameters
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on a SLM, used together with a 4f optical system containing a spatial filter in the

Fourier plane [62]. The beam is injected into a Sagnac interferometer, where the

horizontally and vertically polarized components of the beam circulate in opposite

directions. The dove prism (DP) is rotated by a small angle �„/4 with respect to

the plane of the interferometer, which causes the two counter-propagating beams

to be rotated by an amount of ±�„/2 in opposite directions. This setup enables a

coupling between the polarization, marked by the two counter propagating beams,

and the transverse azimuthal degree of freedom. In the next step we use two QWPs

and a HWP to induce a geometric phase between the two circulating beams in the

interferometer, permitting the existence of complex WVs, see Fig. 2.2. Finally, the

post-selection is carried out by setting the angle of a polarizer almost orthogonal with

respect to the angle of the polarizer used in the pre-selection. At this stage, a full

characterization of the complex wavefunction in the transverse angular basis and the

conjugate basis of OAM reveals information about the real and the imaginary part of

the WV, respectively.

The interaction in our experiment can be described by the spin-orbit interaction

Hamiltonian ĤSO = µ‡̂ ˆ̧
z and a Hamiltonian that describes the action of the wave

plates Ĥg = ”‡̂, where ‡̂ is the Pauli operator defined by ‡̂ © |HÍ ÈH| ≠ |V Í ÈV |,

�„
2

= µ�t, ( ◊H

2

≠ fi
2

) = ”�t and ◊H

2

is the induced geometric phase. Our state at the

input of the interferometer has the following form |�iÍ = |�prÍ |f („)Í. The interaction
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Figure 2.1: Experimental setup. A light beam from HeNe laser working at 632.8
nm is coupled into a SMF and the output is then collimated. The beam is sent to
a phase-only SLM and then to a 4f optical system containing a spatial filter in the
Fourier plane. A polarization state is prepared by means of a polarizer and a HWP.
A Dove prism, a HWP and two QWPs are placed inside the Sagnac interferometer
that uses a polarizing beam splitter (PBS). The DP induces a small rotation between
the counterpropagating beams; this is the weak perturbation. The QWPs together
with the HWP induce a geometric phase between the H and V polarized beams. After
postselection, measurements of angular rotations and OAM spectra are performed to
access the real or imaginary part of the weak value.

which occurs in the DP couples the two DoFs as follows:

|�fÍ = e≠i �„
2 ‡̂ˆ¸ze≠i‡̂(

◊H
2 ≠ fi

2 ) |�iÍ

= 1Ô
2

3
e≠i ◊

2 |HÍ
---f

!
„ ≠ �„/2

"f
+ ei ◊

2 |V Í
---f

!
„ + �„/2

"f4
,

(2.1)

where ˆ̧
z acts as the generator of rotations and is proportional to the angular mo-

mentum operator projected along the optical axis L̂z = ~ˆ̧
z, and ◊ equals ◊H ≠ fi. As

demonstrated by Eq. 2.1, the weak coupling creates entanglement between probe and

pointer. It should be noted that since the probe and the pointer are di�erent degrees

of freedom of a single beam rather than separate systems or particles, then this is an

example of classical entanglement and thus can be described classically [38, 39, 63]. Be-
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cause of this, most traditional weak measurement experiments, such as those described

in Refs. [6, 31, 34–36, 40, 43, 44], are classically explainable. This also demonstrates

what is required to perform a non-classical weak measurement experiment. We have

chosen to use the mature language of weak measurement theory, since it provides

a simpler description and the results readily apply to a wider range of phenomena

including non-classical systems.
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Figure 2.2: Geometric phase. The geometric phase is introduced by means of two
QWPs and a HWP, this geometric phase determines the magnitude of imaginary part
of the weak value. The first QWP converts horizontal or vertical polarization into
circular polarization, this is defined by the trajectory (1)-(2). The HWP allows one
to move from the south pole to the north pole in the Poincaré sphere, or vice-versa
((2)-(3)). The last QWP converts circular polarization into linear polarization ((3)-
(1)), the closed circuit ((1)-(2)-(3)-(1)) in the Poincaré sphere defines the value of the
geometric phase, which is defined by the angle of the HWP.

The post-selection is performed by projecting the perturbed state into |�psÍ =

sin
1

“
2

≠ fi
4

2
|HÍ + cos

1
“
2

≠ fi
4

2
|V Í, where “ is controlled by the polarizer. The post-

selection collapses the polarization state of the probe and causes a shift in the angular
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position and the OAM spectrum of the pointer that can be described as

|�pÍ = |�psÍ
e
�ps

--- �f

f
¥ |�psÍ

---f
!
„ ≠ ‡w�„/2

"f
. (2.2)

Here, ‡w is the complex WV given by

‡w ©

e
�ps

--- ‡̂
--- �fpr

f

e
�ps

--- �fpr

f , (2.3)

|�fprÍ is defined as 1Ô
2

1
e≠i ◊

2 |HÍ + ei ◊
2 |V Í

2
. If the induced phase ◊ and polarizer

selection angle “/2 are small, the WV can be approximated as

‡w ¥ ≠ 2“

“2 + ◊2

+ i
2◊

“2 + ◊2

. (2.4)

The post-selected state described in Eq. 2.2 shows a change in angle as „ æ

„ ≠ ‡w�„/2. If ‡w is real, which will be the case for ◊ = 0, then this leads to the

rotation of the pointer by the amount ‡w. However if ‡w is complex then

f(„ ≠ ‡w�„/2) = e

1
≠(„≠‡w�„/2)

2/2÷2
„

2

Ã e

1
≠(„≠Ÿ(‡w)�„/2)

2/2÷2
„

2

e

1
i„⁄(‡w)�„/2÷2

„

2

= e

1
≠(„≠�È„Í)2/2÷2

„

2

e(i„�È¸Í),

(2.5)

where � È„Í = Ÿ(‡w)�„/2 sets the amount of the pointer’s rotation. In addition, the

pointer experiences a shift in its OAM spectrum that equals � È¸Í = ⁄(‡w)�„/2÷2

„.
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We have used the angular representation of the spatial mode of the photons, and

utilized the Fourier relation between the conjugate pairs of azimuthal angle and

angular momentum. Alternatively, the same results can be derived by using the

commutation relation between angular position and OAM operators, which is given by

[„̂, L̂z] = i~(1≠2fiP („)) where P („) represents the angular probability at the boundary

of the angle range [20]. The shift in the OAM spectrum can be understood as a form of

interaction between SAM and OAM. This interesting optical e�ect is a consequence of

the polarization-sensitive nature of the interactions in the interferometer, and should

not be confused with the standard spin-orbit coupling in the vector beams where both

the SAM and OAM are directed along the same axis [64].

Figure 2.3: Amplification of angular displacements using real weak values. a) – e)
show simulations of our scheme for �„ = 1.2¶, di�erent post-selection angles (PA)
and amplification factors (Amp). f) – j) show experimental evidence of our protocol
under the same conditions.

In the experiment we use a 3 mW He-Ne laser (632.8 nm) which is coupled to a

single-mode fiber (SMF) and then expanded to a spot size of 1.8 cm. The central part

of the beam homogeneously illuminates the display of the SLM that has an active area
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of 9.3 ◊ 7mm2. Due to the reflectance of the SLM and the e�ciency of the encoded

di�ractive grating on it, the power drops to 470 nW once an ANG mode of width

÷„ = 13.7¶ is generated. The DP in the Sagnac interferometer is rotated by 0.3¶, this

angle is determined by measuring a relative rotation of 1.2¶ between two identical

ANG modes propagating in the opposite directions. The induced displacement �„, is

chosen to be much smaller than the width of the ANG mode, in order to guarantee

the conditions for the weak perturbation. The post-selection polarizer is set to an

angle “/2, with respect to the polarization state of the pre-selected state. For this

part, we have set ◊ to zero.

Since our interest is in the amplification of the weak-value, the angle “/2 is set to

a small number. The post-selection polarizer forces the two ANG modes to coherently

interfere, producing another ANG mode which is rotated due to the azimuthal Gaussian

intensity distribution impressed in the ANG [25]. Such rotation is proportional to

the angular displacement �„ and the real part of the WV Ÿ(‡w). Since the WV can

take values larger than one, this scheme allows the amplification of small rotations.

However, as Ÿ(‡w) is increased more photons are lost as shown for di�erent post-

selection angles (PA) in Fig. 2.3 (a)–(e). In order to detect this e�ect, a CCD camera

is placed after the polarizer. This is equivalent to measuring the expected value of the

angular position in the state |�pÍ. As shown in Fig. 2.3(f)–(j), the measured power is

in the range of 10–30 nW, however these images were taken using long exposure times.

As can be seen in Fig. 2.3, an aggressive post-selection leads to a larger rotation. The
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amplification factor (Amp) is defined as the ratio between the angular position of the

post-selected mode �È„Í and �„. This is equal to Ÿ(‡w)/2. Both �È„Í and �„ were

determined by using centroid measurements. The amplification limit is given by the

extinction ratio of the polarizer and the magnitude of the weak perturbation or the

angle of post-selection. Larger amplifications can be measured if the width of ANG is

increased and the post-selection angle is decreased.
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Figure 2.4: Measured OAM power spectra of |�pÍ without post-selection (blue) and
with post-selection (green) demonstrating the shift in È¸Í due to ⁄(‡w) for a) ÷„ = 11.40,
“/2 = 60 and b) ÷„ = 13.70 and “/2 = 50. The angle ◊/2 equals 50 for all the cases.
Histograms represent measured data, while lines represent theoretically predicted
shifts. c) OAM centroid shift � È¸Í for various measured OAM power spectra plotted
against the imaginary WV amplification factor, ⁄(‡w)/2÷2

„. Dots represent data, while
the line is the theoretical linear curve predicted by Eq. 2.5.

The imaginary part of the WV can be determined by analyzing the shift of the

OAM spectrum of the ANG. We have chosen the rotation angle of the DP to be

approximately 0.4¶ and we have tried di�erent angular widths for the input state. In

order to allow ⁄(‡w) to be nonzero, the phase ◊ must also be nonzero. This is done by

inducing a geometric phase between the polarization states |HÍ and |V Í. This phase

is created using three rotatable wave plates as shown in Fig. 2.1 and 2.2. The angle
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of the QWPs is set to fi/4 and the HWP is rotated by a small angle, see Appendix

A. We have set the HWP to an angle such that ◊/2 = 5¶ and tried several di�erent

post-selection angles for the polarizer. As discussed in Chapter 1, measurement of

the OAM spectrum associated with a beam can be done using a wide variety of

techniques [65–68]. We measured the OAM using a series of projective measurements

for various values of ¸. Using a similar procedure as was used for generating the angular

slits, a hologram was impressed onto a SLM and then a Fourier transforming lens and

a spatial filtering from a SMF couples photons to an APD which allows measurement

at single photon levels, see Appendix A. We summed the counts during a 0.2 second

window and averaged it for 30 measurements for each projection over di�erent OAM

modes. This procedure was repeated for each mode and the reconstructed spectra

are shown in Fig. 2.4 (a)–(b). The error bars represent the standard deviation over

the ensemble of 30 measurements. The spectrum is broader for angular modes with

narrower widths due to uncertainty relation between angular position and OAM [20].

As predicted by Eq. 2.5, and shown in Fig. 2.4, the larger amplifications are obtained

for angular modes with narrow widths. However, such narrow ANG modes have

physically smaller cross sections and hence carry proportionally less power. Each

OAM power spectra was fitted using a weighted least-squares minimization to a shifted

Gaussian function. The mean values are plotting in Fig. 2.4 (c) along with error bars

representing the 3‡ confidence interval. By exploiting the measurement process we
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have amplified small rotations by a magnitude of 100 without using high OAM nor

entanglement.

We have made the first step towards the study of WVA in the azimuthal degree

of freedom. This has been approached by describing the mechanisms that lead to a

shift in the angular position and OAM of an optical beam. The OAM spectrum is

shifted as a consequence of the breakup in the polarization symmetry, realized by a

di�erential geometric phase. Furthermore, we have implemented the first realization

of WVA in the angular position and OAM bases. The results presented here provide

a proof-of-principle demonstration of the scope of WVA in this degree of freedom. We

believe that our protocol opens the possibility for new schemes in optical metrology.

In addition, our approach shows an alternative fashion to study the exchange between

SAM and OAM in optical systems.

2.4 Compressive direct measurement of the trans-

verse wavefunction

We now describe an experiment related to the direct measurement of the wave

function. We start this section by introducing a technique called compressive direct

measurement (CDM) [2]. This scheme combines the benefits of direct measurement

with a computational technique known as compressive sensing (CS) [69, 70]. CS uses

a nonlinear algorithm to recover a sparse n-dimensional signal from a series of m
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projective measurements. Unlike the case of linear reconstruction, the number of

measurements m in a compressive scheme can be much smaller than the dimension n

of the signal. CS provides an e�cient alternative to raster scanning in the application

where arrayed-detectors are either costly or not available such as quantum optics and

low-light-level measurements. Specific examples include single-photon level imaging,

entanglement characterization, and quantum ghost imaging [5, 71–73].

We use the polarization of the photon as the pointer. The initial system-pointer

state can be written as

|�Í = |ÂÍ |V Í =
Nÿ

i=1

Âi |xiÍ |V Í , (2.6)

where |V Í indicates that the initial polarization is vertical and where |ÂÍ is the initial

spatial wavefunction. We next perform a series of random weak measurements in

order to retrieve the spatial wave function |ÂÍ. Each measurement is described by

the projection operator Q̂
m

, that can be expanded as a weighted sum of position

projection operators fîj at all the points

Q̂
m

=
ÿ

j

Q
m,jfîj

. (2.7)

For the purpose of simplifying the experiment we consider the special case where

Q
m,j a real coe�cient that can be either 1 or 0. The state of the particle after the
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measurement can be approximately described as

ei– |�Í ¥ |�Í + –
Nÿ

i=1

Q
m,jÂi |xiÍ |HÍ . (2.8)

Following the weak measurement, we perform a projection onto the zeroth order

momentum state. This will erase the spatial structure of the photons and we are left

with a beam with the polarization state

|smÍ = |V Í + –

„
0

Ô
N

ÿ

j

Qm,jÂj |HÍ . (2.9)

At this stage the information about the state-vector Âj is encoded in the expected

values of the polarization of the post-selected state

‡̄
x,m = Ès

m

| ‡̂x |s
m

Í = k
ÿ

j

Q
m,jŸ[„

j

],

‡̄
y,m = Ès

m

| ‡̂y |s
m

Í = ≠k
ÿ

j

Q
m.j⁄[„

j

].
(2.10)

where ‡̂x = |HÍ ÈV | + |V Í ÈH|, ‡̂y = ≠i |HÍ ÈV | + i |V Í ÈH| and Ÿ = 2–
„0

Ô
N

. After

repeating the measurement M times, one obtains a linear relation between the

measurement results and the unknown wavefunction

Q
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„
1

„
2

...
„M

R

dddddb
=

Q
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1,2 · · · Q
1,N

Q
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1

Â
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...
ÂN

R
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. (2.11)



CHAPTER 2. INTERFEROMETRIC WEAK VALUES 44

Here, „m = 1

Ÿ [‡̄x,m ≠ i‡̄y,m], and m œ {1 : M} and n œ {1 : N}, where M is the

number of times the measurement is repeated with di�erent random projections. For

the case where M = N , the solutions of the system above can be exactly solved for a

non-singular matrix Q̂. However, for the case when M Æ N there exists multiple (and

typically many, for small Ms) solutions to the system of equation.

Compressive sensing provides a method for finding the solution by using the prior

knowledge of sparsity of the unknown function in a known basis. This is often achieved

by solving an optimization problem that can be formulated in multiple forms. In our

experiment, we assume sparsity in the gradient basis, which leads to the following

optimization problem

minÂÕ
ÿ

j

||ÒÂÕ
j||l1 + µ

2 ||Q̂ÂÕ ≠ „||2l2 . (2.12)

Here, ÒÂÕ is the discrete gradient of ÂÕ at position xj, and µ is a weighting factor

that penalizes deviations from experimental data. Heuristically, the solution of the

optimization problem allows the determination of the smoothest state ÂÕ, that is

approximately in agreement with the experimental data.

Fig. 2.5 shows the schematic of the experiment. A vertically polarized Gaussian

beam illuminates a SLM, which together with two QWPs (WP1 and WP2) performs

the polarization rotation. The amount of rotation can be controlled at each pixel
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by setting the grayscale values on the SLM. After the Fourier transforming lens, the

post-selection in the momentum basis is performed by using a pinhole that projects on

a single spatial mode. As derived in Chapter 1, the real part of the WV is retrieved

by using a HWP (shown as as WP3 on Fig. 2.5) and a PBS. Similarly, the imaginary

part of the WV is measured by using a QWP before the PBS. The flux of photons at

the two output ports of the PBS are detected with APDs.

Figure 2.5: A collimated vertically polarized Gaussian beam illuminates a SLM, which
is used along with two QWPs (WP1and WP2) to rotate the polarization at each pixel.
A lens focuses the beam onto a pinhole with a diameter of 10 µm. The polarization
measurement is performed on the light collected from the pinhole using a QWP/HWP
(WP3) and a PBS.

For each measurement m, a pre-generated random binary matrix Q̂m is displayed

on the SLM. The photon fluxes measured at the APDs are used to find the expectation

values of the Pauli matrices for each measurement and subsequently „m. The wave-

function is then retrieved via post processing on a computer. We use the algorithm



CHAPTER 2. INTERFEROMETRIC WEAK VALUES 46

known as Total Variation Minimization by Augmented Lagrangian and Alternating

Direction [74] (TVAL3) to solve Eq. 2.12.
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Figure 2.6: The amplitude, real, and imaginary parts of an aberrated Gaussian state
measured experimentally. The left column shows data from a pixel-by-pixel scan of
the state for N = 192. The middle column presents the reconstructed wavefront for
N = 192, and M/N = 20% of total measurements from the CDM method. The right
column demonstrates reconstruction of a higher dimensional state for N = 19200, and
M/N = 20% of total measurements. The transverse dimensions of the state are shown
in millimeters.

We perform the experiment on an aberrated Gaussian beam. This corresponds

to a complex wavefunction with non-trivial real and imaginary parts. First, the

wavefunction is reconstructed via standard direct measurement. The real and imaginary

parts from a pixel-by-pixel raster scan are shown on the left column of Fig. 2.6 for

an N = 12 x 16 = 192 dimensional Hilbert space. On the middle column, we have

shown the real and imaginary parts of the wavefunction reconstructed from CDM

using N = 192 and M/N x 100 = 20%. It is evident that a reconstruction with 20% of

measurements can find all the main features of the wavefunction. Nevertheless, a high
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quality reconstruction requires a more sparse signal. To achieve this, we use a smaller

pixel size. This results in a wavefunction with a larger dimension size. Moreover, the

increased sampling results in a more sparse representation in the gradient basis. On

the right column of Fig. 2.6 the reconstructions for N = 120 x 160 = 19200 and M/N

x 100 = 20% are shown. It can be seen that an experiment with 20% of measurements

provides an accurate reconstruction.

We use fidelity as a metric for quantifying our results. For a pair of pure states,

fidelity is defined as

F (|ÂÕÍ , |ÂÍ) = | ÈÂÕ|ÂÍ |. (2.13)

Here, the retrieved state |ÂÕÍ, via CDM, is compared with the target state |ÂÍ that is

retrieved from standard direct measurement. The results are shown in Fig. 2.7. The

horizontal axis represents the percentage of measurements. The blue line shows the

fidelity of the retrieved state with the CDM method. The red curve represents the

average fidelity of the reconstructed state using the data from a partial pixel-by-pixel

measurement. It is remarkable that the compressive method results in a drastic

increase of fidelity for the first few measurements and gradually settles to a value

close to 1. For example, a fidelity as high as 90% is achieved by performing 25% of

measurements, while the standard direct measurement (this is, a raster scan) requires

of approximately 80% of all the measurements to achieve the same fidelity.



CHAPTER 2. INTERFEROMETRIC WEAK VALUES 48

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Percent of Measurements

F
id

e
lit

y

 

 

CDM

Raster Scan

Figure 2.7: The fidelity of the reconstructed state with the target wavefunction
as a function of the percentage of total measurements for a 192 dimensional state.
The fidelity of the state reconstructed with CDM is shown in blue. The fidelity
of the retrieved state from a partial pixel-by-pixel scan with the same number of
measurements is shown in red. The error-bars represent standard deviation calculated
from 100 repetitions of the experiment.

The measurement of the quantum wavefunction has been one of the great ex-

perimental challenges in quantum physics. Over the past 20 years, many seminal

contributions have been made to this field [75, 76]. Despite this achievements, the

reconstruction of high-dimensional states remains challenging. The direct measure-

ment approach, introduced by Lundeen et.al, which can be explained in terms of self

interference, has provided a straight-froward experimental techniques that can be

easily adopted for measuring multi-level states. We have introduced the compressive

direct measurement as an e�cient and fast technique for the direct measurement of

quantum wavefunctions with very large dimensions. In addition to quantum optics,

our technique can be used for application in classical regimes were an array of detectors

is not available, such as the imaging and wavefront sensing with Terahertz waves.
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2.5 Summary

In this chapter we discussed two interference e�ects that led to remarkable forms of

weak values. In the first part of the chapter, we discussed how a spin-orbit interaction

in a polarization sensitive Sagnac interferometer induced a shift in the angular position

and orbital angular momentum of an optical beam when post-selection is performed.

We found that the real part of the weak value is responsible for the shift in angular

position whereas the imaginary part induces a shift in the OAM spectrum of the

beam.

In the second part of the chapter, we used direct measurement and compressive

sensing to reconstruct the quantum wavefunction with only a small fraction of the

total numbers of measurements required in direct measurement. We used fidelity to

characterize the performance of our technique. We demonstrated that a fidelity of

90 % can be obtained by using only 25 % of the required measurements. Along this

chapter we point out that both techniques rely on interference e�ects, the first exploits

angular coherence whereas the second is based on self interference.
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Chapter 3

Angular Interference in Phase Space

3.1 Introduction

In this chapter we introduce the Wigner distribution in the azimuthal space described

by the angular position and orbital angular momentum variables. The Wigner

distribution in the angular domain provides valuable insight into understanding the

wave behavior of the light field in the conjugate bases of OAM and azimuthal angle.

In addition, we discuss how our technique allows one to determine the azimuthal

first-order degree of coherence of a partially coherent beam [3]. In the context of

quantum optics, this novel technique allows the reconstruction of density matrices

for pure and mixed high-dimensional OAM states. We hope that this method for

characterization of the azimuthal Wigner distribution will constitute an essential

part of quantum information protocols that employ the azimuthal structure of single

photons [77–79] .
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3.2 Wigner distribution and its application in OAM

science

Ever since its introduction in 1932, the Wigner distribution has been widely applied in

di�erent fields of science [80]. For example in statistical mechanics, optics, quantum

physics, electrical engineering and even seismology [81, 82]. In optical physics, the

Wigner distribution has been utilized to bring the machinery of phase-space statistical

mechanics into the study of optical coherence [83]. The Wigner distribution provides

a comprehensive characterization of the system and, as a quasiprobability distribution,

the negativity of the Wigner distribution signals a wavelike behavior.

A wide variety of interferometric techniques have been employed to measure the

Wigner distribution in di�erent contexts. For example, the Wigner distribution

for transverse spatial modes of light has been measured using displaced Sagnac

interferometers [83]. In addition, the Wigner distribution in the time-frequency

quadratures for optical pulses has been measured by means of auto-correlators [84].

In the context of quantum optics, di�erent forms of homodyne measurements have

been employed to determine the quadratures of the field for di�erent excitation modes

[85]. Remarkably, this powerful representation has not been utilized to experimentally

measure properties of light in the azimuthal domain. This despite the remarkable

challenges involved in the measurement of OAM.
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Quantum mechanically, a pure state in the Hilbert space of OAM is described

by a discrete state vector. Thus, the probability distribution provided by projective

measurements along with the knowledge of relative phase between the di�erent

OAM components found by interferometry adequately describes a pure state [35].

Nevertheless, pure states are only a restricted set of physical states, because the vast

majority of conceivable states are mixed states [86]. The most general description of a

quantum state requires knowledge of its density matrix, which can be found through

use of standard quantum state tomography [85]. However, quantum state tomography

in the OAM basis requires the capability to perform projective measurements on

arbitrary superpositions of two or more OAM eigenstates [87], a task that remains

challenging due to technical limitations such as variations in the e�ciency of measuring

di�erent OAM modes and the cross talk between neighboring modes [88].

3.3 Wigner distribution in the angular quadratures

In this section we would like to introduce the Wigner distribution for the angular

quadratures and how we determined the density matrix in the basis of angular position

by using polarization as a pointer.

We begin our analysis by considering a quantum system with an unknown density

matrix, fl̂, in the basis of azimuthal angle, ◊. We choose to work in a finite-dimensional

state space spanned by the orbital-angular-momentum eigenvector |¸Í with
)
|¸| Æ N

*
.
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In this subspace, the discrete Wigner distribution reads [89]

W (◊, ¸) = 1
d

Nÿ

„=≠N

exp
1

≠ 4fii

d
¸„

2
È◊ ≠ „| fl̂ |◊ + „Í . (3.1)

The dimensionality of the state d is defined as 2N + 1, and ◊ œ {N, ..., N} denotes

the discrete angular coordinate. We have defined an angular eigenstate (ANG) through

the Fourier transform of the OAM states

|◊Í = 1Ô
d

¸=+Nÿ

¸=≠N

exp
1

≠ 2fii

d
¸◊

2
|¸Í . (3.2)

The ANG states were utilized in the previous chapter for angular amplification and

have been widely used in the context of quantum key distribution and for violation of

Bell inequalities with angular variables [1, 78, 90]. Now we introduce the theoretical

idea behind our scheme for measuring the Wigner distribution. To some extend, this

technique shares some similarities to the idea introduced in Chapter 2 for amplification

of angular rotations. In this case, we prepare an arbitrary OAM state in diagonal

polarization |+Í = (|HÍ + |V Í)/
Ô

2, where |HÍ and |V Í represent horizontal and

vertical polarization, respectively. The density matrix associated with the two degrees

of freedom of the beam is given by �̂ = fl̂ |+Í È+|. In the next step, we consider the
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unitary evolution of the joint system-pointer state characterized by the operator

Û(·) = exp
1

≠ 2fii

d
· L̂‡̂z

2
. (3.3)

Here, L̂ is the orbital angular momentum operator directed along the optical

axis and ‡z = |HÍ ÈH| ≠ |V Í ÈV |. As in the experiment for angular amplification [1],

the operator Û describes a polarization sensitive rotation by the angle · . After this

transformation, the system-pointer state is found as �̂(·) = Û(·)�̂Û(·)

The interaction described by the operator Û results in an entangled system pointer

state. Post-selection on a specific angular state ◊ leads to a reduced density matrix of

the pointer

‡̂ = È◊| �̂ |◊Í
Tr[È◊| �̂ |◊Í]

. (3.4)

Interestingly, the expectation value of the Pauli operators ‡̂x and ‡̂y in the

post-selected state is directly proportional to the density matrix fl̂. This calcu-

lation can be performed by using the shift property of the angular eigenstates,

exp[≠i(2fii/d)· L̂] |◊Í = |◊ + ·Í. Here, we have ◊± = ◊ ± · . Using this notation

we find that

È‡̂x(◊, ·)Í = Tr[‡̂x‡̂] = 2
N(◊, ·)Ÿ[È◊

+

| fl̂ |◊≠Í],

È‡̂y(◊, ·)Í = Tr[‡̂y‡̂] = 2
N(◊, ·)⁄[È◊

+

| fl̂ |◊≠Í].
(3.5)
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The normalization factor N(◊, ·) is given by Tr[È◊| �̂ |◊Í]. The pair of equation in

Eq. 3.5 can be inverted readily to find È◊
+

| fl̂ |◊≠Í. Thus, one can find the elements of

the density matrix in the ANG basis by performing rotation of value · , followed by

a post-selection on |◊Í. In this procedure, we separately find the real and imaginary

parts of the density matrix by measuring the expectation values of the two conjugate

variables of the pointer, ‡̂x and ‡̂y. This approach provides the density matrix in the

angular basis of |◊Í. Having found the density matrix in the angular basis, we use Eq.

3.1 to find the azimuthal Wigner distribution.

3.4 Experimental determination of the azimuthal

Wigner distribution

The technique described above can be experimentally implemented by means of a

Sagnac interferometer. The experimental setup is shown in Fig. 3.1, similar to the

interferometer used in Chapter 2, we use the light beam from a 3 mW He-Ne laser (633

nm), that is coupled to a single-mode fiber and the expanded to uniformly illuminate a

SLM. The SLM is used to realize computer generated holograms for creating arbitrary

spatial modes. We use a Dove prism inside a Sagnac interferometer for realizing the

rotational transformation Û . The polarization state of the beam injected to the input

port of the interferometer is diagonal. We use QWPs and HWPs along with a PBS

for performing the measurement of È‡̂xÍ and È‡̂yÍ.
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Figure 3.1: Left: Diagram for the experimental setup utilized for measuring the Wigner
distribution of a structured laser beam. Middle and right: Experimental results for
characterization of an OAM mode with ¸ = ≠1. The plots in the middle column show
the real and imaginary part of the of the density matrix in the ANG basis, and the
plots in the right column present the azimuthal Wigner distribution along with the
corresponding marginal distributions in the ANG and OAM bases.

The post-selection process consists on the measurement of the interference patterns

at specific angular positions defined by an angular wedge with sharp boundaries. This

task is performed in post-processing by analyzing an image of the beam at the two

output ports of the PBS. Once we record the intensity in the form of an image, it

can be binned to a sequence of numbers that correspond to post-selection on multiple

angular states.

Experimental results for the characterization of an OAM mode with |¸ = ≠1Í is

shown in Fig. 3.1. It is evident that most part of the photon population is in |¸ = ≠1Í

for this state, and consequently it has approximately equal components of ANG states.

The fidelity of the state, which is estimated in 90%, testifies the high quality of the

generation and characterization of the procedure. We use the standard method of
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maximum-likelihood estimation to find positive-definite density matrices in the ANG

basis from the experimental data.

We also test our technique with more complicated OAM states, we generate

and characterize a pure and a mixed superposition of the OAM states |¸ = 1Í and

|¸ ≠ 1Í. A pure and equal superposition state is generated directly through the use

of a computer generated hologram. To create a mixed state, we use a computer

to randomly switch the SLM between two holograms designed for generating ¸ = 1

and ¸ = ≠1 modes [16]. The mode switching occurs at a rate of 60 Hz, and we

use long (10 s) exposure time on the CCD to guarantee uniform averaging over the

changing beam structure. The results in Fig. 3.2 (a) show the intensity pattern and

the measured Wigner distributions for the coherent and incoherent superpositions of

the two states. As one would expect, the marginal distributions in the OAM bases are

nearly identical, demonstrating the two contributions from |¸ = 1Í and |¸ = ≠1Í in

both cases. Interestingly, our technique unveils the coherence properties of the state.

For example, we observe an interference pattern in the ANG marginal, and negative

values on the |¸ = 0Í portion of the Wigner distribution. For the incoherent mixture,

we see no interference in the ANG marginals, and the |¸ = 0Í portion of the Wigner

distribution remains positive. This is a manifestation of a well known property of the

Wigner distribution. Namely, wave interference gives rise to negative values on the

Wigner distribution, whereas such a pattern is absent for an incoherent mixture.
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Figure 3.2: (a) The intensity pattern of a pure superposition (top) and (bottom) an
incoherent mixture of ¸ = 1 and ¸ = ≠1 OAM modes with equal weights. (b) The
azimuthal Wigner distribution from the experiment. (c) The marginal distributions in
the OAM and ANG bases. (d) The real part of the OAM density matrices.

We have mapped the Wigner distribution onto the OAM density matrix for the

states presented in Fig. 3.2. The degree of coherence between the OAM components

|¸ = 1Í and |¸ = ≠1Í can now be quantified by the magnitude of the o�-diagonal

elements of the density matrix. The degree of coherence is calculated by using the

relation

“ =
--fl(≠1, 1)

--
Ò--fl(1, 1)

----fl(≠1, ≠1)
--

(3.6)

We find the degree of first-order coherence for the two states under consideration

as “pure = 0.80 and “mixed = 0.06. For the pure superposition state, the apparent low

coherence is attributed to the imperfections in the generation of the state and the

averaging over the nonuniform radial structure of the laser beam.
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We demonstrate the photon e�ciency of our method by characterizing the trans-

verse structure of heralded single photons using the setup depicted in Fig. 3.3. The

pairs of photons are generated by pumping a periodically poled potassium titanyl

phosphate crystal (PPKTP) with the beam from 405 nm laser diode. In our case,

he type-0 parametric down conversion converts a photon of the pump beam to a

pair of signal and idler photons at the wavelength of 790 and 830 nm, respectively.

We separate the two photons of each pair with a dichroic mirror. The idler photons

are collected with a lens and detected using an APD. The signal photons are sent

through a q plate that is sandwiched between two crossed polarizers. The q plate

we used has a charge of 1/2 to shape the transverse structure of the photon to a

superposition of |¸ = 1Í and |¸ = ≠1Í states. The structured photons are injected t the

Sagnac interferometer described above. In our experiment we utilized an Andor iStar

intensified charge coupled device (ICCD) camera for detecting the heralded single

photons. Each detection event is triggered by the electronic signal from the APD in

a 5 ns time window. Fig. 3.3 displays the structure of the shaped signal beam from

a 1200 sec exposure. We combine our measurement results for the di�erent rotation

angles to find the Wigner distribution and subsequently map it to the OAM density

matrix. The Wigner distribution exhibits regions of substantial negative value for

¸ = 0 portion, which demonstrated quantum interference between ¸ = 1 and ¸ = ≠1

components of the state.
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Figure 3.3: Left: Single photons from nondegenerate parametric down-conversion are
separated by a dichroic mirror. The idler photons (830 nm) are detected by an APD,
which heralds the detection of signal photons (790 nm) with an ICCD. A q plate
(q = 1/2) is placed between two crossed polarizers to prepare an equal superposition
of ¸ = 1 and ¸ = ≠1 OAM modes. Inset: The transverse structure of single photons
captured with an accumulation of 5-ns coincidence events over 1200 sec exposure time.
Right: The Wigner distribution, the OAM and ANG marginals, and the real and
imaginary parts of the OAM density matrix from experiment.

3.5 Summary

In this chapter we described a technique that used to demonstrate the full characteri-

zation of the azimuthal structure of a photon wave function. For the first time, we

measured the Wigner distribution in the azimuthal degree of freedom by performing

projections in the angular basis. We have tested our technique by applying it to the

characterization of both classical laser beams and heralded single photons. However the

formalism presented here can be applied to the tomography of any finite-dimensional

quantum system. Our approach readily scales to very large dimensions, involves no

photon loss from post-selection, and is capable of characterizing partially coherent
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OAM states. We anticipate that the presented method for characterization of the

azimuthal Wigner distribution will constitute an essential part of quantum information

protocols that employ the azimuthal structure of single photons.
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Chapter 4

HBT Interferometry with Twisted

Light

4.1 Introduction

The rich physics exhibited by random optical wave fields permitted Hanbury Brown

and Twiss to unveil fundamental aspects of light. Furthermore, it has been recognized

that optical vortices are ubiquitous in random light and that the phase distribution

around these optical singularities imprints a spectrum of orbital angular momentum

onto a light field. In this chapter, we demonstrate that random fluctuations of intensity

give rise to the formation of correlations in the orbital angular momentum components

and angular positions of pseudothermal light. The presence of these correlations is

manifested through distinct interference structures in the orbital angular momentum-

mode distribution of random light. These novel forms of interference correspond to

the azimuthal analog of the Hanbury Brown and Twiss e�ect [4]. This family of e�ects

can be of fundamental importance in applications where entanglement is not required
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and where correlations in angular position and orbital angular momentum su�ce. We

also suggest that the azimuthal Hanbury Brown and Twiss e�ect can be useful in the

exploration of novel phenomena in other branches of physics and in astrophysics

4.2 The rich physics in random fields of light

In 1956, Hanbury Brown and Twiss revolutionized optical physics with the observation

of a new form of interference produced by correlations of the intensity fluctuations of

light from a chaotic source. Their stellar interferometer collected light produced by

independent sources on the disc of a star and detected at two di�erent locations on

Earth [12]. The observation of a second-order interference e�ect in this configuration

was intriguing because at that time it appeared that classical and quantum theories of

light o�ered di�erent predictions [91]. Ever since, this e�ect has motivated extensive

studies of higher-order classical correlations and their quantum counterparts in optics,

as well as in condensed matter and particle physics [92–95]. Fundamental bounds

have been established for the degree of correlation for a wide variety of degrees of

freedom, such as in polarization, time, frequency, position, transverse momentum,

angular position and orbital angular momentum (OAM) [21, 96, 97].

The random nature of light is an essential element of the HBT e�ect. Moreover,

the random properties of light have been investigated and applied in a wide variety of

other contexts. For example, speckled light, intimately related to pseudothermal light,
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has played a fundamental role in the development of optical physics, imaging science,

and nanophotonics. In addition, the study of fundamental processes such as transport

phenomena, localization of light, optical vortices, and optical correlations has led to

the development of novel physics produced as a consequence of the chaotic properties

of light [98–103]. These results have motivated interest in the design of random lasers

and of disordered structures that scatter light in random directions, which serve as

sources of pseudothermal light [104].

As identified by Berry, optical vortices produced by the interference of random

waves are intrinsic elements in chaotic light[105, 106]. Interest in this field has exploded

since the recognition of a special class of vortices that carry OAM, characterized by

an azimuthal phase dependence of the form ei¸„, where ¸ is the OAM mode number

and „ is the azimuthal angle [17]. The azimuthal properties of light, described

by the conjugate variables of angular position and OAM, have shown potential

for technological applications in information science, remote sensing, imaging, and

metrology [107]. In astrophysics, recent theoretical studies have predicted that rotating

black holes can imprint an OAM spectrum onto light. The measurement of this

spectrum could lead to an experimental demonstration of the existence of rotating black

holes [108]. In addition, the optical vortex coronagraph has allowed the observation of

dim exoplanets by canceling a di�raction-limited image of a star [109]. More recently,

it has been proposed to use rotational Doppler shifts for astronomy [54].
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In this chapter, we show that random fluctuations give rise to the formation of

intensity correlations among the OAM components and among the angular positions

of pseudothermal light. Furthermore, we show that the presence of these correlations

leads to a variety of complex interference structures that correspond to the azimuthal

analog of the HBT e�ect. In the original HBT experiment, two detectors were used at

di�erent locations to gain information about the physical size of a distant incoherent

source. In our experiment, we use two detectors to measure intensity correlations

between two OAM components of an incoherent source with controllable spatial and

temporal coherence. We show that such correlations unveil the azimuthal structure of

the source, which is shaped in the form of double angular slits in our realization. We

study the far-field pattern by projecting it onto various OAM modes, and measure first-

and second-order interference patterns of this structure. We identify two key signatures

of the azimuthal HBT e�ect. The first is that HBT interference can show features

in the OAM mode distribution at both the frequency and at twice the frequency of

the first-order coherence produced by coherent light. The second consists of a shift of

the interference structure when plotted as a function of OAM. We find that each of

these e�ects depends on the strength of the fluctuations of the pseudothermal light.

We also study the nature of the correlations between di�erent OAM components and

between di�erent angular positions of pseudothermal light, and we find that these

depend on the strength of the fluctuations as well. These e�ects correspond to the

classical counterpart of azimuthal Einstein-Podolsky-Rosen (EPR) correlations [97],
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and throughout this chapter, we highlight the similarities and di�erences between

thermal and quantum correlations as manifested in the azimuthal degree of freedom.

4.3 Origin of HBT interference in the OAM do-

main

As in the original HBT experiment, we collect light from two portions of a random

field. This is carried out through the use of two angular slits. We represent the optical

field after the slits as

�(r, „) = E(r)�(r, „)[A(„) + A(„ ≠ „
0

)]. (4.1)

Here, E(r) represents the coherent optical field produced by a laser, �(r, „) is a

particular realization of a random phase screen, and A(„) describes the transmission

function of the angular slits. A(„) is centered at 0 radians, and, therefore, A(„ ≠ „
0

)

is centered at „
0

. We next consider the projection of the optical field of Eq. 4.1 onto a

set of OAM modes. The result of such a measurement is described by the quantity ap¸

defined as
s

r dr d„ (2fi)≠1/2Rú
p(r)e≠i¸„�(r, „), where Rú

p(r) is a radial mode function

with radial index p and ¸ is the OAM index. Consequently, the measured intensity

for each OAM projection I¸ is equal to q
p

---ap¸

---
2

. The average of the intensity over an
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ensemble of di�erent realizations of the fluctuating field is then given by

ÈI¸Í = –2sinc2

!
–¸/2

"

2fi2

⁄
r dr

--E(r)
--2 {2+e≠i¸„0È�ú(r, 0)�(r, „

0

)Í+ei¸„0È�ú(r, „
0

)�(r, 0)Í},

(4.2)

where – is the width of the slits, and the ensemble average is denoted by È...Í. It is

evident that the angular double slit gives rise to Young’s (first-order) interference in the

OAM-mode distribution of the optical field and that this interference is dependent on

the angular separation of the two slits, „
0

. Furthermore, the visibility of the interference

pattern is determined by the terms È�ú(r, 0)�(r, „
0

)Í and È�ú(r, „
0

)�(r, 0)Í, which

quantify the field correlation between two di�erent angular positions. These terms

are sensitive to the phase di�erence of the field at two points. Consequently, the

interference visibility becomes smaller as the degree as spatial coherence is reduced.

In direct analogy to the HBT experiment, in which two detectors measure the

transverse momentum (far-field) distribution of a random field emitted from two

locations of a star, we measure the correlation between two OAM components of light

emitted from a random source shaped as two angular slits. Similar to linear position

and linear momentum, angular position and OAM are conjugate variables and form a

Fourier pair. Thus, we consider the second-order coherence function G(2)

¸1,¸2 = ÈI¸1I¸2Í,

which is the key quantity that describes the azimuthal HBT e�ect. This quantity is a

measure of the intensity correlations between the components of the the field with

OAM values ¸
1

and ¸
2

.
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We consider a special case in which we measure the the second-order correlation

at symmetrically displaced OAM values of ¸ and ≠¸. In the context of the original

experiment of HBT, this situation would involve measuring the receiving apertures by

equal amounts in opposite directions. To analyze this situation, we need to determine

the second-order coherence function G(2)

¸,≠¸ = ÈI¸I≠¸Í. We find that this quantity can

be expressed (see Appendix B) as

ÈI¸I≠¸Í = G
0

+ G¸ + G
2¸. (4.3)

The intensity correlation function thus consists of three contributions. The first is a

constant term denoted by G
0

whose form is shown in the Appendix B. The second

term, G¸, describes an interference pattern that oscillates in ¸ at the same frequency

as ÈI¸Í and is given by

G¸ = –2 sinc2(–¸/2)
2fi2

⁄
r

1

dr
1

r
2

dr
2

--E(r
1

)
--2--E(r

2

)
--2

1
e≠i¸„0{È�ú(r

1

, 0)�(r
1

, „
0

)Í

+È�ú(r
2

, „
0

)�(r
2

, 0)Í} + c.c.
2
.

(4.4)

The last term, G
2¸, shows an interference pattern that oscillates in the OAM value ¸

with twice the frequency of ÈI¸Í and it is given by

G
2¸ = –4sinc4

!
–¸/2

"

4fi4

⁄
r

1

dr
1

r
2

dr
2

--E(r
1

)
--2--E(r

2

)
--2

1
e≠2i¸„0{È�ú(r

1

, 0)�(r
1

, „
0

)

◊ �ú(r
2

, „
0

)�(r
2

, 0)Í} + c.c.
2
.

(4.5)
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We see that the contribution G¸ depends on a phase-sensitive term È�ú(r, 0)�(r, „
0

)Í

that decreases in magnitude with increasing randomness induced by field fluctua-

tions. The visibility of this contribution to the interference pattern thus decreases

with increasing field fluctuations. However the contribution G
2¸ is proportional to a

positive-definite quantity È
--�(r, 0)

--2--�(r, „
0

)
--2Í that survives even in the presence of

the fluctuations in the chaotic field.

4.4 Experimental demonstration of azimuthal HBT

interference

Our experimental setup is depicted in Fig. 4.1 (A and B). We use a solid state laser

working at 532 nm along with a digital micro-mirror device (DMD) and a 4f optical

system containing two lenses and a spatial filter in the Fourier plane to isolate one order

of di�raction from the DMD. We first impress a sequence (at a 1.4-kHz writing rate) of

random transverse structures having Kolmogorov statistics onto the beam to simulate

thermal light [16, 110, 111]. For details, see Appendix C. This procedure modifies the

spatial and temporal coherence of the beam in a fashion similar to the modification

induced by a rotating ground glass plate [112] (see the intensity distribution of the

beam in Fig. 4.1 C), which is often used to produce light with thermal statistics. We

quantify the spatial coherence of the beam by means of the Fried coherence length

r
0

[113]. The strength of spatial phase variations within the beam increases as r
0
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Figure 4.1: Experimental setup for the study of the azimuthal HBT e�ect. (A) The
532 nm output of a solid laser is directed onto a digital micro-mirror device (DMD),
where a random transverse phase structure is impressed onto the beam. A 4f optical
system consisting of two lenses with di�erent focal lengths (figure not to scale) and
a pinhole is used to isolate the first di�raction order from the DMD, which is a
pseudothermal beam of light. This beam is then passed through a beam splitter (BS)
to create two identical copies. Each copy is sent to a separate spatial light modulator
(SLM) onto which a computer-generated hologram is encoded. (B) For the HBT
measurements, a pair of angular slits is encoded onto the SLMs. In addition, forked
holograms corresponding to OAM values are encoded onto the same holograms to
project out controllable OAM components. For our measurements of the OAM and
angular-position correlation functions, we do not use the double slit but simply project
onto OAM values or angular wedges, respectively. (C) Intensity distribution of a
generated pseudothermal beam of light.
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decreases. By virtue of ergodicity, iterating through an ensemble of such holograms

results in random phase fluctuations in time characterized by the parameter r
0

. The

structured beam is then split into two parts at a beam splitter, and each is imaged

onto a spatial light modulators (SLM). On each SLM, a pair of angular slits and a

forked di�raction grating are encoded (see Fig. 4.1B). The first di�raction order of

the SLM is collected by a single-mode optical fiber (SMF), measured by avalanche

photodiodes (APDs), and their degree of correlation is then computed. The time

window for determining coincidence events is set to 42 ns, and the total accumulation

time is set to 15 s.

We begin with the measurement of first-order (Young’s) interference in the OAM

domain, which can be observed in the OAM-mode distribution of light measured by

either of the two detectors. For each value of ¸, we impress several hundred random

phase screens onto the DMD, all characterized by the same value of r
0

, and we then

calculate the correlation of the intensity. We repeat the experiment for all ¸ in the

range ¸ = ≠15 to ¸ = +15. We perform this task by encoding holograms onto the

SLMs in which the two angular apertures are multiplied by di�erent forked di�raction

gratings (see Fig. 4.1B). The OAM-mode distributions of the field as given by ÈI¸Í are

shown in Fig. 4.2 (A to D). Fig. 4.2 A shows the interference obtained when spatially

coherent light is used, and Fig. 4.2 (B to D) shows the interference for di�erent regimes

of pseudothermal light, as characterized by successively decreasing values of r
0

. The

visibility is seen to decrease with the decrease of the spatial coherence of the source.
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Figure 4.2: Interference transitions in the OAM-mode distribution of light. (A to D)
First-order (Young’s) interference. (E to H) Second-oder HBT interference. The first
column (A and E) shows interference produced by coherent light, whereas the other
panels show the measured interference for di�erent strengths of the fluctuations of
pseudothermal light, as characterized by the Fried coherence length. In each case, the
angular width of the slits – is fi/12 and the angular separation of the slits „

0

is fi/6.
Bars represent data, whereas the line is the theoretical curve predicted by theory.

We next study second-order coherence. Our experimental results for the second-

order coherence function �G(2)

¸,≠¸, defined as G¸ + G
2¸, are shown in Figs. 4.2 (E to H).

For a coherent beam (Fig. 4.2 E), G¸ is the dominant contribution to �G(2)

¸,≠¸. We

reach this conclusion by noting that the data oscillate at the same frequency as the

first-order interference shown in Fig. 4.2A and by recalling the discussions of Eqs.

(4.4) and (4.5). We also note that G¸ decreases as the degree of the spatial coherence

of the source is reduced, making G
2¸ the dominant contribution in this case; we reach

this conclusion by an examination of Eq. (4.5), which shows that G
2¸, in contrast to

G¸, does not decrease with decreasing degree of spatial coherence of the source. We

see this behavior in the sequence of results shown in Figs. 4.2 (F to H). For example,

in Fig. 4.2F, the contribution from G
2¸ is smaller than that from G¸. This transition
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is marked by the formation of second-order correlations in the angular position and

OAM variables.

It is interesting that there is a regime of random fluctuations for which strong

frequency-¸ oscillations are seen in the first-order interference while strong frequency-2¸

oscillations are seen in the second-order interference (see Figs. 4.2, B and F). Note

also that, for the case of quantum correlations, entangled photons do not produce

interference in singles but only in correlations such as those shown in Fig. 4.2 (D and

H) [21, 100]. The interplay between G¸ and G
2¸ might be useful to the study of the

relationship between coherence and the quantum nature of light.

It is important to remark that di�erent degrees of coherence define regimes of the

HBT e�ect [114], as shown in Fig. 4.2. In our case, the varying relative magnitude of

the three terms contributing to the second-order coherence G(2)

¸,≠¸ results in di�erent

shapes (see Eq. 4.3). For example, G
2¸ makes the pattern in Fig. 4.2E sharper, but

the same term changes the frequency of the interference structure in Fig. 4.2H.

The general form of the azimuthal HBT e�ect is obtained when the intensity

correlations are calculated for arbitrary mode indices ¸
1

and ¸
2

. As discussed above,

the HBT e�ect depends on the degree of coherence of the source. Specifically, an

interesting feature is observed for the partially coherent regime characterized by r
0

equal to 150 µm. In our experimental study of this situation, we hold the OAM value

measured in one arm of our interferometer fixed at the value ¸
0

whereas we vary the

OAM value in the other arm. We set the value of ¸
0

first to +2 and later to ≠2. In
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the other arm, we perform measurements for each value in the range ¸ = ≠15 to +15.

The results of these measurements are shown in Fig. 4.3. It should be noted that the

OAM spectrum plotted as a function of the the OAM value of arm 2 is shifted left

(see Fig. 4.3A) or right (Fig. 4.3B) depending on the value of OAM chosen for arm

1. The procedure used in the measurement is analogous to using one fixed detector

and one moving detector in the original setup of HBT [12]. The results of Fig. 4.3

(A and B) are described by the quantity ÈI¸I¸0Í and can be expressed in terms of five

contributing terms (see Appendix B).

For the strength of fluctuations that we used for these measurements, one of

the detectors measures an interference pattern equal to the one shown in Fig. 4.2C,

whereas the other measures a noisy but constant signal. When the correlation of

the two signals is calculated, the visibility of the interference pattern is dramatically

increased and shifted in the OAM-mode distribution of the field. E�ectively, we are

using the random fluctuations of the field to increase the fringe visibility. For example,

if instead of projecting an OAM value equal to 2 or -2 as we did, we could project on

¸ equal to zero and retrieve the original but improved pattern with increased visibility.

This e�ect could find importance in realistic applications. These e�ects manifest the

presence of second-order correlations in the OAM components and angular positions

of pseudothermal light.

We would like to emphasize that although the angular slits and the forked holograms

for OAM projections are realized on the same SLMs, they correspond to conceptually
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Figure 4.3: Experimental demonstration of the azimuthal HBT e�ect of light. (A and
B) �G(2)

¸,¸0 plotted as a function of the OAM value of arm 2 for two di�erent values
of the OAM number of arm 1. The green bar shows the center of the interference
pattern for singles counts shown in Fig. 2C, whereas the purple bar shows the center
of the displayed interference pattern.

distinct components of the experiment. The angular slits are used to provide a

nontrivial azimuthal structure for the incoherent source, whereas the forked holograms

are used to measure correlations in the OAM domain.

4.5 Measurement of angular momentum correla-

tions and angular position correlations

Now we explore the nature of the underlying fluctuation-induced correlations in OAM

and in angular position that lie at the origin of the HBT e�ect. The superposition

of randomly fluctuating waves produces an OAM spectrum that broadens with the

degree of fluctuation in the source of pseudothermal light. In the present experiment,

the OAM spectrum is controlled by setting r
0

equal to 70 µm. This situation produces
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a broad OAM spectrum that remains almost constant over the range of OAM values

that we measure. We use the same setup as that of Fig. 4.1, although we omit the two

angular slits that we used in the studies of azimuthal HBT interference e�ects reported

above. On the first SLM (see Fig. 4.1), we display a forked hologram corresponding to

a fixed value of OAM, whereas on the second SLM, we display a series of holograms

with di�erent values of OAM. The measured intensity for a single value of OAM ÈI¸Í

that is projected out using the SLM can be approximated as
s

r2dr2d„2

--E(r)
--2 g(r)2,

where g(r) is the Gaussian mode supported by the SMF (see Appendix B).

In Fig. 4.4A, we plot the measured value of g(2) = ÈI¸1I¸2Í/ÈI¸1ÍÈI¸2Í. We find a

strong positive correlation between the OAM values measured in the two arms. As

shown in Appendix B, in the limit of a strong fluctuations, second-order correlations

in the OAM degree of freedom can be described by

ÈI¸1I¸2Í = ÈI¸1ÍÈI¸2Í(1 + ”¸1,¸2). (4.6)

Our experimental results show crosstalk between di�erent OAM numbers that is

not predicted by Eq. 4.6. This crosstalk results from experimental imperfections in

the projective measurement process used to characterize OAM. The correlations in

Fig. 4.4A show two significant di�erences from the quantum correlations observed

in spontaneous parametric down conversion (SPDC). The first is that SPDC shows

strong anti-correlations of the the two OAM values. This behavior is a consequence

of the conservation of OAM in a parametric nonlinear optical process. The second
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di�erence is the presence of a background term (the “1" in Eq. 4.6), which prevents

the existence of perfect correlations.

Figure 4.4: Measurement of intensity correlations in the angular domain for random
light. (A) Normalized second-order correlation function in the OAM domain. (B)
Presence of strong correlations for the conjugate space described by the angular
position variable.

Randomly fluctuating beams also produce correlations in angular position. These

correlations are investigated by encoding angular apertures onto the SLMs. In order

to make our measurements precise, we utilize narrow angular apertures of fi/15 radian

size. We keep one aperture at a fixed location, and we measure correlations for 60

di�erent angular positions of the other aperture. Because of rotational symmetry,

this procedure permits the full characterization of correlations in angular position.

As shown in Fig. 4.4B, for this level of fluctuation, the intensities of the projected

angular apertures are strongly correlated, and the nature of these correlations can be

approximated by ÈI„I„0Í = ÈI„ÍÈI„0Í(1 + f(„ ≠ „
0

)). In this equation, the subscript

„ refers to the arm where the variable-position angular aperture is placed and „
0
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represents the arm with the fixed-position aperture. Also, f(„ ≠ „
0

) represents some

strongly peaked function (see Appendix B).

As we have shown throughout this paper, the HBT correlations of pseudothermal

light lead to e�ects that show resemblance to those previously observed with entangled

photons [21, 58, 97, 115]. The reason for this behavior is that, in contrast to the

degree of second-order coherence that describes coherent light, the functions that

describe second-order correlations in angular position and OAM for random fields

are nonseparable. For example, Eq. 4.6 does not contain the product of the averaged

intensities measured by each of the two detectors. The presence of a term that

describes point-to-point correlations (in this case, the delta function ”¸1,¸2) does not

allow the factorization of the degree of coherence as the simple product of intensities

between the two arms. As a consequence, the HBT structures are also described by

a nonseparable function, and its frequency, visibility, and shifts increase with the

fluctuations of the source or the strength of angular position and OAM correlations.

As the strength of the fluctuations decreases, the nonseparable part of the function

tends to vanish, and thus, the second order correlation function can be factorized in

terms of OAM or angular position. A separable function will not lead to the HBT

e�ect in the OAM-mode distribution of light; see the transition shown in Fig. 4.2.

Intensity correlation in the OAM components and angular position of pseudother-

mal light show similarities with the azimuthal EPR e�ect, observed in photons

entangled in angular position and OAM [97]. However, our results show that for
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pseudothermal light, the correlations are present but not perfect, unlike the case of

entangled photons where the correlations are perfect. Thus, it is impossible to violate,

for example, the azimuthal EPR criterion (�¸)2(�„)2 Ø 1/4. However, as shown in

Fig. 4.4, our correlations are stronger for same values of OAM or angular positions.

For example, if background subtraction is performed, the variance product for �¸

and �„ is similar to that achieved for nonclassical light. For our experimental results

(�¸)2(�„)2 is 0.054, of similar order to the one reported by Leach et al. [97]. The

uncertainties were measured by performing a least squares fit of the data to a Gaussian

distribution and recording the standard deviation of the result. Note that this does

not imply a violation of the EPR criterion.

4.6 Summary

The azimuthal HBT e�ect unveils fundamental physics that can be applied to develop

novel applications that exploit OAM correlations in random light. We believe that many

interesting protocols for remote sensing and object identification that use azimuthal

correlations in entangled photons will be able to exploit azimuthal correlations in

random light and the azimuthal HBT e�ect [58, 115, 116]. Furthermore, in recent years,

researchers have developed interest in utilizing beams carrying OAM for applications

in astronomy, but unfortunately the propagation through random media produces

chaotic phase fluctuations and optical vortices [116–120]. These e�ects pose serious

problems for methods based on OAM of light, limiting their applications [107, 121].
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However, it has been shown that second-order interference e�ects are less sensitive

to the coherence properties of the source. This is one of the advantages of the HBT

interferometer against the Michelson interferometer [122]. In addition, it has been

demonstrated that imaging schemes based on second-order correlations are robust

against turbulence [123]. Therefore, we suggest that the azimuthal HBT e�ect o�ers

the possibility of exploring novel phenomena in astrophysics, one example being the

relativistic dynamics produced by rotating black holes [108].

We have demonstrated that random fluctuations of light give rise to the formation of

intensity correlations in the OAM components and angular positions of pseudothermal

light. These correlations are manifested through a new family of interference structures

in the OAM-mode distribution of pseudothermal light that can be described by the

azimuthal HBT e�ect. We have shown how the strength of the random fluctuations

of light determines various regimes for this e�ect. In addition, we identified two key

features of the azimuthal HBT e�ect. The first is characterized by a structure in which

the OAM frequency is doubled with respect to the interference produced by a coherent

beam of light. The second is marked by a shift of the OAM spectrum with a change

in the OAM reference value. We anticipate that these properties of random optical

fields will be fundamentally important for applications where quantum entanglement

is not required and where correlations in angular position and OAM su�ce.
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Chapter 5

Compressive Tracking using Quantum

Correlations

5.1 Introduction

In the previous chapter we discussed the physical processes that give rise to the

formation of second-order classical correlations in the azimuthal degree of freedom.

However, quantum correlations in the variables of linear position and linear momentum

have been an important subject of interest in the last 20 years and a wide variety of

fundamental and applied research has been performed. One representative research

area is quantum imaging, this area has progressed so fast and a wide variety of

applications have been proposed. Here we present a compressive sensing protocol

that tracks a moving object by removing static components from a scene. The

implementation is carried out on a ghost imaging scheme to minimize both the number

of photons and the number of measurements required to form a quantum image of the

tracked object. This procedure tracks an object at low light levels with fewer than 3%
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of the measurements required for a raster scan, permitting us to more e�ectively use

the information content in each photon.

5.2 Compressive Sensing and Quantum Imaging

As discussed in Chapter 2, CS has recently been of great utility in quantum optical and

low-light level applications, for instance, single-photon level imaging, entanglement

characterization and ghost imaging [71, 73, 124, 125]. CS provides a resource-e�cient

alternative to single-photon arrayed detectors, permitting us to reduce operational

problems involved in systems employing raster scanning [72].

Ghost imaging is a technique which employs correlations between two light fields

to reproduce an image. For example, entangled photons exhibit strong correlations

in many properties such as time-energy and position-momentum. One photon of an

entangled pair illuminates an object and is collected by a bucket detector, which does

not provide spatial information. Its entangled partner photon is then incident on a

spatially resolving detector gated by the first photon’s bucket detector. Remarkably,

an image of the object appears on the spatially resolving detector, even though its

photon never directly interacted with the object [126].

Compressive ghost imaging [71] allows one to replace the spatially resolving detector

with a bucket detector. This procedure reduces both acquisition times for systems

based on raster scanning and the required number of measurements for retrieving
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images[72]. These improvements have motivated an ongoing e�ort to implement

technologies based on ghost imaging such as image encryption [127], quantum sensors

[128], object identification [129] and most recently ghost imaging ladar [130].

In spite of the advantages that technologies based on ghost imaging o�er, they can

be hard to implement in practice. Most current quantum optical technologies work at

the single photon level, and are unfortunately vulnerable to noise and are ine�cient,

requiring many photons and many measurements [131]. To reduce these limitations,

we apply an e�cient form of compressive sensing. This allows us to overcome the main

problems which undermine the practical application of many attractive correlated

optical technologies. To demonstrate these improvements, we implement a ghost

object tracking scheme that significantly outperforms traditional techniques. This

opens the possibility of using correlated light in realistic applications for sparsity-based

remote-sensing.

5.3 Compressive Object Tracking using Entangled

Photons

We present a proof-of-principle experiment based on a quantum ghost imaging scheme

that allows us to identify changes in a scene using a small number of photons and

many fewer realizations than those established by the Nyquist-Shannon criterion.

[132] Object tracking and retrieval is performed significantly faster in comparison to
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previous protocols [71, 72, 101, 126, 133]. This scheme uses compressive sampling to

exploit the sparsity of the relative changes of a scene with a moving object. With this

approach we can identify the moving object and reveal its trajectory. Our strategy

involves removing static components of a scene and reduces the environmental noise

present during the measurement process. This leads to the reduction of the number

of measurements that we take and the number of photons required to form an image,

both important issues in proposals for object tracking and identification [129, 134].

The reduction of noise and removal of static components of a scene is carried out by

subtracting two observation vectors, corresponding to two realizations of a scene. We

call this technique ghost background subtraction. Our results demonstrate that this

technique is adequate for object tracking at low light levels.

Consider the ghost imaging scheme depicted in Fig. 5.1. A laser pumps a nonlinear

crystal oriented for type-I SPDC. The approximated output state is given by first

order perturbation theory, which leads us to the following two-photon entangled state:

|�Í =
⁄

dk̨gdk̨of(k̨g + k̨o)â†
g(k̨g)â†

o(k̨o) |0Í. (5.1)

We refer to the down-converted photons as the ghost and object photons denoted

by the subindices g and o, respectively. The two-photon probability amplitude, which

is responsible for the transverse momentum correlations existing between the ghost

and object photons, is represented by the non-factorizable function f(k̨g + k̨o), where
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k is the transverse wavevector of the ghost or object photon. The form of this function

depends on the phase-matching conditions, but it is often approximated by a double

gaussian function [135]. This two-photon entangled state is strongly anti-correlated in

transverse momentum, such that if the transverse momentum of the object photon is

measured, the transverse momentum of the ghost photon is found to have the same

magnitude and opposite direction. These momentum anti-correlations allow us to

perform quantum ghost imaging.

Figure 5.1: Entangled photons at 650 nm are generated in a Bismuth Barium Borate
(BiBO) crystal through type-I degenerate SPDC. The far field of the BiBO crystal
is imaged onto two DMDs with a lens and a BS. One DMD is used to display the
object we want to track, while the other is used to display random binary patterns.
Single-photon counting modules (SPCMs) are used for joint detection of the ghost
and object photons.
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In our experiment, we use DMDs to impress spatial information onto the entangled

photon pair. The DMDs work by controlling the retro-reflection of each individual

pixel on the display. After each photon is reflected by a DMD, a single-photon counting

module (SPCM) counts the number of photons in it. The correlations between the two

down-converted photons allows one to correlate the images displayed in the DMDs.

We jointly detect photons pairs reflected o� a changing scene O and a series of

random matrices Am. The subindex m indicates the m-th realization. The coincidence

counts between the two detectors are given by

Jm Ã
⁄

dfl̨DMD

------
Am

A
fl̨DMD

mr

B------

2

------
O

Q

a≠̨flDMD

mo

R

b

------

2

, (5.2)

where Am and O are the reflectivity functions displayed on the DMDg located in

the ghost arm and on DMDo in the object arm, respectively. Meanwhile mr and mo

are their corresponding magnification factors. These are determined by the ratio of

the distance between the nonlinear crystal to the lens and the distance from the lens

to DMDg or DMDo. In our experiment mr and mo, are equal. fl̨DMD represents the

transverse coordinates of one of the DMDs.

Eq. 5.2 critically shows that the joint-detection rate is proportional to the spatial

overlap between the images displayed on DMDo and DMDg. This behavior can be in-

terpreted as a nonlocal projection, which demonstrates the suitability for implementing

compressive sensing techniques nonlocally with ghost imaging [72].
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Compressive sensing uses optimization to recover a sparse n-dimensional signal

from a series of m incoherent projective measurements, where the compression comes

from the fact that m < n. Image reconstruction via compressive sensing consists

of a series of linear projections [136]. Each projection is the product of the image

O consisting of n pixels, with a pseudorandom binary pattern Am. Each pattern

produces a single measurement, which constitutes an element of the observation vector

J . After a series of m measurements, a sparse approximation Ô of the original image

O can be retrieved by solving the optimization problem, known as total variation

minimization [74], given by Eq. 5.3.

min
ˆOœCn

ÿ

i

----
---DiÔ

---
----
1

+ µ

2

----
---AÔ ≠ J

---
----
2

2

. (5.3)

DiÔ is a discrete gradient of Ô at pixel i, µ is a weighting factor between the two

terms, and A is the total sensing matrix containing all the pseudorandom matrices

Am. Each matrix Am is represented into a 1D vector and constitutes a row of the

total sensing matrix A. The algorithm known as “Total Variation Minimization by

Augmented Lagrangian and Alternating Direction” (TVAL3) allows us to solve the

aforementioned problem. The solution of the optimization problem allows us to recover

the image Ô, which is the compressed version of the original image O, with a resolution

given by the dimensions of the matrix Am. The original image O is characterized by a

sparsity number k, which means that the image can be represented in a certain sparse

basis where k of its coe�cients are nonzero. The number of performed measurements
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m is greater than the sparsity number k, but far fewer than the total number of pixels

n contained in the original image. The constraints imposed in the recovery algorithm

minimize the noise introduced during the measurement process.

We are able to compressively track and identify a moving object in a scene by

discarding static pixels. A scene with a moving object possesses static elements

that do not provide information about the object’s motion or trajectory. These

redundancies can be discriminated from the moving object as follows. Let us consider

the projection of two di�erent frames onto the same pseudorandom pattern. Each

projective measurement picks up little information about the components of a frame.

If the two projective measurements produce the same correlation value, it would imply

that the two frames are identical and we are retrieving meaningless information which

can be ignored. The opposite case would reveal information about the changes in a

scene.

This protocol is formalized as follows. Two di�erent correlation vectors, J j and

J j≠1, corresponding to two consecutive frames are subtracted, giving �J . This

introduces the following important modification to Eq. 5.3.

min
ˆOœCn

ÿ

i

----
---Di�Ô

---
----
1

+ µ

2

----
---A�Ô ≠ �J

---
----
2

2

. (5.4)

The subtracted vector �J is sparser than both J j or J j≠1, thus requiring fewer

measurements for its reconstruction. This corresponds to fewer realizations of Am,
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and hence smaller sensing matrix A. Furthermore, subtracting the background in this

manner mitigates the environmental noise present during the tracking process. The

retrieved image �Ô will provide information about the relative changes in the scene.

5.4 Experimental Results

Our experimental setup is sketched in Fig. 5.1. A 325 nm, continuous-wave HeCd

laser pumps a type-I phase matched BiBO crystal to produce degenerate entangled

photon pairs at 650 nm. Two interference filters are placed after the nonlinear crystal.

The first is a low pass filter that removes the pump and the second is a 650/12

nm narrowband filter that transmits the down-converted photons. A beam splitter

probabilistically separates the two photons into ghost and object modes. An 88 mm

focal length lens puts the far field of the crystal at the location of DMD. Two free space

detectors receive the light reflected from the DMDs by means of two collection lenses

with a 25 mm focal length. One DMD is used to display a scene with a moving object

while the other is used to impress a series of random binary patterns. Coincidence

counts are obtained within a 3 ns time window.

We apply this method to a scene with a flying object. The static components of

the scene are a house, the moon and a tree. The object moves a certain distance in

each iteration of the scene (insets of Fig. 5.2). We first reconstruct a compressed ghost

image of the static frame of the scene, which represents the background. In order to
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Figure 5.2: Compressed ghost image of (a) the background of the scene and (b-f) the
tracked object in di�erent positions. These reconstructions were obtained by defining
di�erent �J vectors with 400 elements, corresponding to the number of measurements.
The insets show the original frames of the scene displayed on the DMD.
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do this, we put 2000 di�erent random patterns on DMDg, with DMDo displaying the

background scene. These realizations represent 49% of a raster scan. For each random

pattern, we count coincidence detections for 8 s. Typical single count rates were 13.8 x

103 counts/s for the ghost and object arms with the coincidence counts approximately

2% of the single counts. Fig. 5.2(a) shows the retrieved background scene Ô. After

this, subsequent frames of the scene with the object in di�erent positions are displayed

on DMDo. After applying the optimization algorithm, the moving object was clearly

identified as shown in Figs. 5.2(b)-(f). The reconstructions were done using 400

patterns, which represents 9.7% the measurements of a raster scan. The negative

values in the retrieved images are due to background subtraction and fluctuations in

the measurements process.
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Figure 5.3: Reconstructed ghost image of (a-e) tracked object with 200 measurements.
(f-j) same object with 100 measurements.

A straightforward examination of the limits of our protocol is carried out by

reducing the number of measurements used to track an object. The images shown

in Fig. 5.3 were reconstructed with only 200 and 100 measurements, corresponding
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to 4.88% and 2.44% of the measurements of a raster scan. The metric employed

to characterize the fidelity of these reconstructions is the mean-squared error[71]

defined as MSE = (1/n)ÎO ≠ ÔÎ2. The MSE is seen to increase as the number of

measurements is decreased. Although, it is still possible to detect the object trajectory

with just 100 measurements.

The photon e�ciency is studied by estimating the dependence of the MSE on the

number of photons per measurement, for a fixed number of measurements. A simulation

of the protocol was carried out by using the data employed in the experiment. In order

to achieve realistic experimental conditions, dark and shot noise were introduced by

means of poissonian distributions. The amount of dark noise was modeled based on the

frequency distribution of counts obtained when both of the DMDs were turned o�. We

have considered reconstructions employing 100 and 400 measurements. Fig. 5.4 shows

the dependence of image quality on the number of detected photons per measurement.

The minimum number of photons per measurement needed to distinguish the silhouette

of the object by eye are 500 photons/measurement and 200 photons/measurement

for 100 and 400 measurements respectively. The estimated thresholds correspond to

a MSE oscillating around 0.04. For the situation where an object was tracked with

100 measurements and 500 photons/measurement, we estimate that we can impress

approximately 0.082 bits/photon. This is considering that for a binary image the

number of pixels corresponds to the number of bits [137].
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Figure 5.4: (Color online) Calculated mean-squared error of the compressed tracked
object at the position shown in Fig. 2(b). Green (Red) line indicates the MSE using
400 (100) measurements. The thresholds indicate that a low quality image is retrieved
and is not possible to track the object.
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5.5 Summary

In this chapter we have proposed and demonstrated a proof-of-principle object-tracking

protocol in a ghost imaging scheme. This protocol uses compressive sensing to exploit

the sparsity existing between two realizations of a scene with a moving object. It

also reduces the environmental noise introduced during the measurement process.

Further, it allows us to perform image retrieval significantly faster by employing single

pixel detectors. Our method is photon-measurement e�cient, allowing us to track an

object with only 2.44 % of the number of measurements established by the Nyquist

criterion, even at low light levels. This economic procedure shows potential for real-life

applications.
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Chapter 6

The Born Rule and Looped

Trajectories of Light

6.1 Introduction

The validity of the superposition principle and of Born’s rule are well-accepted tenants

of quantum mechanics. Surprisingly, it has recently been predicted that the intensity

pattern formed in a three-slit experiment is seemingly in contradiction with the

predictions of the most conventional form of the superposition principle when exotic

looped trajectories are taken into account. However, the probability of observing such

paths is typically very small and thus rendering them extremely di�cult to measure.

In this work, we confirm the validity of Born’s rule and present the first experimental

observation of these exotic trajectories as additional paths for the light by directly

measuring their contribution to the formation of optical interference fringes. We

accomplish this by enhancing the electromagnetic near-fields in the vicinity of the

slits through the excitation of surface plasmons. This process e�ectively increases
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the probability of occurrence of these exotic trajectories, demonstrating that they are

related to the near-field component of the photon’s wavefunction.

6.2 The Born Rule

The phenomenon of interference has been recognized as “the only mystery” of quantum

mechanics [7]. The enormous interest and history of this fundamental e�ect can be

traced back to the two-slit experiment devised by Thomas Young in the early 19th

century. Young’s experiment is conceptually the simplest method for demonstrating

the superposition principle, as the appearance of interference fringes in the far-field

is unexplainable unless it is understood that the particle seemingly travels through

both slits simultaneously. Such an experiment, originally performed with light, has

since been conducted on particles ranging from individual photons, neutrons, and

atoms, to large molecules consisting of dozens of atoms [8]. As the superposition

principle lies at the core of quantum physics, many of its counterintuitive features

such as entanglement, non-locality, wave-particle duality, and delayed-choice concepts

can be demonstrated or tested using a two-slit system [9, 11, 24, 138–141].

The standard interpretation of the two-slit experiment is given by solving the

wave equation for an initially prepared complex wavefunction, Â. For example, if ÂA

represents the wavefunction at the detector for a photon emerging from slit A, and

ÂB is the wavefunction for a photon emerging from slit B, then the implementation
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of the superposition principle is to assume that the wavefunction is a superposition of

the di�erent paths given by ÂAB = ÂA + ÂB. The probability of detection is given by

Born’s rule as

P
AB

© |Â
AB

|2 = P
A

+ P
B

+ (Âú
A

Â
B

+ Â
A

Âú
B

) , (6.1)

where P
A

= |Â
A

|2 and P
B

= |Â
B

|2. From this equation it is clear that the outcome of

the two-slit experiment is given by the sum of outcomes from each slit alone, plus an

additional interference term.

Due to the inherent structure of any wave theory, Born’s rule always bounds the

complexity of any e�ect involving superpositions of an arbitrary number of wavefunc-

tions to a sum of terms denoting the interference between pairs of wavefunctions [142].

For instance, in accordance with Born’s rule, the interference pattern obtained in a

three-slit experiment can be described by the following probabilities

P
ABC

= P
AB

+ P
BC

+ P
AC

≠ P
A

≠ P
B

≠ P
C

. (6.2)

Note that this expression does not include a probability term that involves three slits,

but is entirely described by probabilities involving only one and two slits. Any possible

contribution from higher-order interference terms (i.e., a path involving the three slits)

has been quantified by the so-called Sorkin parameter [142, 143]

‘ = P
ABC

≠ P
AB

≠ P
BC

≠ P
AC

+ P
A

+ P
B

+ P
C

, (6.3)
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which should be identically zero if only the direct paths through the three individual

slits are considered. Sinha et al. [143] showed that ‘ can be evaluated experimentally

by making a set of measurements for each term in Eq. (6.3).

Although it might appear that the measurement of a non-zero ‘ implies a clear

violation of quantum mechanics [143], De Raedt et al. demonstrated by numerically

solving Maxwell’s equations that a non-zero value of ‘ can exist without such viola-

tion [144]. Later it was found that this result is a consequence of the presence of exotic

looped trajectories of light (e.g. red curve in Fig. 6.1a) that arise in the Feynman

path integral formulation with extremely low probability of occurrence [145]. This

interpretation was subsequently shown to agree with the exact numerical solution of

the wave equation [146].

In this work we demonstrate that looped trajectories of photons are physically due

to the near-field component of the wavefunction, which leads to an interaction among

the three slits. As such, it is possible to increase the probability of occurrence of these

trajectories by controlling the strength and spatial distribution of the electromagnetic

near-fields around the slits. By a proper control of the conditions in a three-slit

experiment, we successfully demonstrate a dramatic increase of the probability of

photons to follow looped trajectories, and present the first successful measurement of

a non-zero value of ‘.
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6.3 Origin of the looped trajectories of light

Under the scalar wave approximation, the propagation of light is described by the

Helmholtz equation
1
Ò2 + k2

2
Â(r) = 0, (6.4)

subject to the boundary conditions specifying the physical setup. This equation can

be solved by computing the propagation from any point r
1

to any other point r
2

via

the Green’s function kernel, which according to Rayleigh-Sommerfeld theory is given

by

K(r
1

, r
2

) = k

2fii

eik |r1≠r2|

|r
1

≠ r
2

| ‰, (6.5)

where ‰ is an obliquity factor [147]. This equation satisfies Eq. (6.4) and the Fresnel-

Huygens principle in the form of the following propagator relation

K(r
1

, r
3

) =
⁄

dr
2

K(r
1

, r
2

)K(r
2

, r
3

). (6.6)

If one repeatedly applies Eq. (6.6), the path-integral formulation of the propagation

kernel is obtained in the form [148]

K(r
1

, r
2

) =
⁄

D[x(s)] exp
3

ik
⁄

ds
4

, (6.7)

where
s

D[x(s)] is the functional integration over paths x(s). The boundary conditions

can be included by restricting the possible paths x(s). If one is concerned only with
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di�raction from slits in a single plane, then Eq. (6.7) can be perturbatively expanded

as [145]

K = K
1

+ K
2

+ K
3

+ · · · , (6.8)

where Kn represents the nth application of Eq. (6.6) and each integration is carried

over the plane containing the slits, see Appendix C.

Solving the wave equation taking K = K
1

is equivalent to considering only direct

paths, such as the paths in Fig. 6.1b. These paths propagate from the source and

through one of the slits to the detector. We call these wavefunctions Â
A

, Â
B

and

Â
C

. The higher-order terms in Eq. 6.8 are responsible for the looped trajectories of

photons that propagate from the source to a slit, and to at least one other slit before

propagating to the detector (see Fig. 6.1c). It follows that the wavefunction of a

photon passing through the three slits is given by

Â
ABC

= Â
A

+ Â
B

+ Â
C

+ Â
L

, (6.9)

where ÂL represents the contribution of the looped trajectories to the wavefunction

Â
ABC

. Note that in general ‘, as defined by Eq. 6.3, is not zero because of the existence

of these looped trajectories. Thus, the presence of looped paths leads to an apparent

deviation of the superposition principle [145] (see Appendix C).
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Figure 6.1: Trajectories of light in a three-slit interferometer. a, The three-slit
structure considered in this study. The red path going from point s to point d
illustrates a possible looped trajectory of light. b, Direct trajectories of light resulting
from considering only the first term in Eq. (C.2). The widely used superposition
principle, i.e. Eq. (6.1), accounts only for these direct trajectories. c, Examples of
exotic looped trajectories arising from the higher order terms in Eq. (C.2). The red
cloud in the vicinity of the slits depicts the near-field distribution, which increases the
probability of photons to follow looped trajectories. d, Normalized Poynting vector P
in the vicinity of the three slits obtained through full wave simulations at a wavelength
⁄ = 810 nm, using w = 200 nm, p = 4.6 µm, t = 110 nm, and h = Œ. The simulations
consider a Gaussian beam excitation polarized along x, and focused onto slit A. The
Poynting vector clearly exhibits a looped trajectory such as the solid path in c. e,
Far-field interference patterns calculated under x-polarized (solid) and y-polarized
(dashed) optical excitation. Interference fringes are formed in the far field only when
strong near fields are excited (x-polarization), and occur from the interference of
light following a direct trajectory and a looped trajectory. f, Experimental evidence
that shows the far-field pattern for a situation in which only one slit is illuminated
with y-polarized light from an attenuated laser. g, The presence of exotic looped
trajectories leads to an increase in the visibility of the far-field pattern. This e�ect is
observed when x-polarized light illuminates one of the slits. h, The transverse profile
of the patterns shown in f and g.
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6.4 Increasing the probability of occurrence of the

looped trajectories of light

The conclusion that Â
ABC

is not simply the superposition of the wavefunctions Â
A

, Â
B

,

and Â
C

is a consequence of the actual boundary conditions in a three-slit structure.

Changing the boundary conditions a�ects the near-field components around the slits,

but it typically does not a�ect the far-field distribution because of the short range

extension of the near fields [149]. As shown below, the looped trajectories of photons

are physically due to the near-field components of the wavefunction. Therefore, by

controlling the strengths and the spatial distributions of the near-fields around the

slits, it is possible to drastically increase the probability of photons to undergo looped

trajectories, thereby allowing a straightforward visualization of their e�ect in the

far-field interference pattern. To demonstrate this phenomenon, a three-slit structure

was designed such that it supports surface plasmons, which are strongly confined

electromagnetic fields that can exist at the surface of metals [150, 151]. The existence

of these surface waves results in near fields that extend over the entire region covering

the three slits [152, 153], thereby increasing the probability of looped trajectories.

As a concrete example, we consider the situations depicted in Fig. 6.1d and 6.1e.

First, we assume a situation in which the incident optical field is a Gaussian beam

polarized along the long axis of the slit (y polarization) and focused to a 400-nm spot

size onto the left-most slit. For this polarization, surface plasmons are not appreciably
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excited and the resulting far-field distribution is the typical envelope, with no fringes,

indicated by the dashed curve in Fig. 6.1e. This intensity distribution is described by

the quantity |Â
A

|2. The presented results were obtained through a full-wave numerical

analysis based on the finite-di�erence-time-domain (FDTD) method, on a structure

with dimensions w = 200 nm, p = 4.6 µm, and t = 110 nm and at a wavelength

⁄ = 810 nm (see Appendix C). The height of the slit, h, was assumed to be infinite.

Interestingly, the situation is very di�erent when the incident optical field is polarized

along the x direction. The Poynting vector for this situation is shown in Fig. 6.1d.

This result shows that the Poynting vector predominantly follows a looped trajectory

such as that schematically represented by the solid path in Fig. 6.1c. The resulting

far-field interference pattern, shown as the solid curve in Fig. 6.1e, is an example of

the interference between a straight trajectory and a looped trajectory. Thus, it is clear

that the naive formulation of the superposition principle does not provide an accurate

description for the case where near fields are strongly excited.

6.5 Experimental Results

First, we experimentally verify the role that looped trajectories have in the formation

of interference fringes. For this purpose we exclusively illuminate one of the three slits.

This experiment is carried out in the setup shown in Fig. 6.2a. As shown in Fig. 6.1f,

no interference fringes are formed when the light illuminating the slit is y-polarized.

Remarkably, when the illuminating light is polarized along the x direction the visibility
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of the far-field pattern is dramatically increased, see Fig. 6.1g and h. This e�ect

unveils the presence of looped trajectories. In our experiment, the contributions from

looped trajectories are quantified through the Sorkin parameter by measuring the

terms in Eq. (6.3). To this end, we measured the interference patterns resulting from

the seven arrangements of slits depicted in Fig. 6.2b, thus the illumination field fills

each arrangement of slits. In this case, the experiment was carried out using heralded

single-photons with wavelength of 810 nm produced via degenerate parametric down-

conversion (see Appendix C). The single photons were weakly focused onto the sample,

and the transmitted photons were collected and collimated by an infinity-corrected

microscope objective (see Fig. 6.2c). The resulting interference pattern was magnified

using a telescope and recorded using an ICCD camera, which was triggered by the

detection event of the heralding photon. The strength of the near fields in the vicinity

of the slits was controlled by either exciting or not exciting surface plasmons on the

structure through proper polarization selection of the incident photons.

The scanning electron microscope images of the fabricated slits are shown in the

first row of Fig. 6.3. The dimensions of the slits are the same as those used for the

simulation in Fig. 6.1, with h = 100 µm being much larger than the beam spot size

(≥ 15 µm). The interference patterns obtained when the contribution from near-field

e�ects is negligible (y polarization) are shown in the second row, while those obtained

in the presence of a strong near fields in the vicinity of the slits (x polarization)

are shown in the third row. These interference patterns are obtained by adding 60
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Figure 6.2: Experimental setup utilized to measure exotic trajectories of light. a,
Sketch of the experimental setup used to measure the far-field interference patterns
for the various slit configurations. b, The seven di�erent slit arrangements used in
our study. This drawing is not to scale; in the actual experiment each slit structure
was well separated from its neighbors to avoid undesired cross talk. c, Detail of the
structure mounted on the setup. The refractive index of the immersion oil matches
that of the glass substrate creating a symmetric index environment around the gold
film.
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background-subtracted frames, each of which is captured within a coincidence window

of 7 nsec over an exposure time of 160 sec (see insets in Fig. 6.3). Only the pattern

for P
AB

is shown in Fig. 6.3 because P
AB

and P
BC

produce nearly identical patterns

in the far field, a similar situation occurs for P
A

, P
B

and P
C

. The bottom panels show

detail views of the interference patterns measured along an horizontal line.

Note that the intensities of the interference patterns (i.e., the probability ampli-

tudes) for the two polarizations scale di�erently for each arrangement of slits. This

is shown by the ratios of the position-averaged probabilities, Px/Py, indicated at

the bottom of Fig. 6.3. The significant changes in the probabilities obtained with

x-polarized photons ultimately lead to a value of ‘ that significantly deviate from zero.

This interesting e�ect is produced by constructive and destructive interference among

looped trajectories, whose probability has been increased through the enhancement of

the near fields, see Appendix C.

We quantify the contribution from the looped trajectories through the normalized

Sorkin parameter, defined as Ÿ © ‘/I
max

with I
max

being the intensity at the central

maximum of the three-slit interference pattern [145]. Both theoretical and experimental

values of this parameter are shown in Fig. 6.4a. The theoretical values were obtained

via FDTD simulations, while the experimental values were calculated from the results

in Fig. 6.3. Clearly, we observe that when the near fields are not enhanced, the

parameter Ÿ is much smaller than the uncertainty associated with our measurements.

However, when the near fields are enhanced, Ÿ is dramatically increased due to the



CHAPTER 6. THE BORN RULE AND LOOPED TRAJECTORIES OF LIGHT107

Figure 6.3: Experimental results. a–d, Measured interference patterns corresponding
to the various probability terms in Eq. (6.3) (indicated as a label within each panel
of the bottom). In this case the illumination field fills each arrangement of slits.
The first row shows scanning electron microscope images of the slits used for the
measurements. The second and third panels show, respectively, the background-
subtracted interference patterns formed when 60 frames, such as those in the insets
are added, for the situations in which the probabilities of looped trajectories are
negligible (using y-polarized illumination), and when such probabilities are increased
due to the enhancement of near fields (using x-polarized illumination). Each of the
frames shown in the insets was taken with an ICCD camera using heralded single-
photons as a source. The bottom show the intensity dependence of the interference
pattern measured along a horizontal line on the second and third panels. The ratio of
the average probabilities obtained using x-polarized illumination to those obtained
using y-polarized illumination, Px/Py, is shown at the bottom. All the measurements
are conducted at a wavelength ⁄ = 810 nm, and using structures with dimensions
w = 200 nm, h = 100 µm and p = 4.6 µm



CHAPTER 6. THE BORN RULE AND LOOPED TRAJECTORIES OF LIGHT108

increased probability for the looped trajectories [145], enabling the measurement of

this parameter despite experimental uncertainties. Taking as a reference the central

maximum of the Ÿ profile, the experimental results indicate that the contribution of

looped trajectories has been increased by almost two orders of magnitude.

Finally, we show that it is possible to control the probability of photons undergoing

looped trajectories by modifying the dimensions of the three slit structure or by

changing the wavelength of the optical excitation. Fig. 6.4b and 6.4c show theoretical

predictions and experimental data at the central maximum for di�erent slit parameters

and wavelengths. These measurements were taken with classical light from a tunable

diode laser. Fig. 6.4b shows the normalized Sorkin parameter for a situation in

which looped trajectories significantly contribute to the formation of interference

fringes, whereas Fig. 6.4c shows the same parameter for a situation in which near-field

e�ects, and consequently looped trajectories, are negligible. In general, we note that

the theoretical and experimental results are in good agreement, with the observed

discrepancies being attributed to experimental uncertainties due to imperfections in

the fabricated sample and due to the limited dynamic range of the camera.

6.6 Conclusions

We have demonstrated that exotic looped paths occur as a physical consequence of

the near-field component of the wave equation. As such, it is possible to control
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Figure 6.4: Quantifying the contribution of looped trajectories through the normalized
Sorkin parameter, Ÿ. a shows numerical and experimental results, for a sample with
w = 200 nm, h = 100 µm and p = 4.6 µm and an illuminating field consisting of
heralded single-photons at a wavelength of 810 nm. The experimental points are
obtained by measuring Ÿ at di�erent peaks of the interference patterns shown in
Fig. 3. b shows theoretical and experimental evidence at the central maximum for
di�erent widths and for various wavelengths for an attenuated laser diode, in this
case the contributions from looped paths makes the Ÿ di�erent from zero. c shows a
situation in which looped trajectories are not enhanced and consequently Ÿ is almost
zero. These results confirm that the strengths of looped trajectories can be controlled
by engineering the size of the slits and the wavelength of the illuminating field. These
values of Ÿ were measured at the center of the interference pattern. The labels x and
y indicate the polarization state of the incident light.
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the probability of occurrence of such paths by controlling the strength and spatial

distribution of the near-fields around the slits. By doing so, we have shown a drastic

increase in the probability of photons to follow looped paths, leading to the first

experimental observation of such exotic trajectories in the formation of interference

fringes. We believe that looped paths can have important implications in the study of

decoherence mechanisms in interferometry and to increase the complexity of protocols

for quantum random walks, quantum simulators and other algorithms used in quantum

computation.
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Chapter 7

Conclusions

In this thesis we introduced a series of exotic interference e�ects that were utilized

to unveil novel behaviors of light. These findings o�er the possibility of exploring

new physics of light in classical and quantum contexts. We also proposed di�erent

schemes that demonstrate the possibility of developing optical technologies for di�erent

purposes.

In the first chapters of this thesis we discussed weak measurements in the context

of weak value amplification and direct measurement. We also pointed out that

the underlying nature behind weak value amplification and direct measurement are

interference e�ects. In addition, we introduced a new form of interferometric weak

values in the variables of angular position and orbital angular momentum. We

demonstrate that these weak values can be used to amplify angular rotations. In the

second part of Chapter 2 we described how self-interference mediated by compressive
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sensing can be utilized to e�ectively measure the spatial wave function of photons in

a direct fashion.

The Wigner function has been recognized as a fundamental tool in optical physics

and quantum optics, in Chapter 3 we introduced a technique that allows one to

directly measure the Wigner distribution in the azimuthal quadratures described by

the angular position and orbital angular momentum of light. In addition, we utilized

our interferometric technique to measure the density matrix of high-dimensional states.

We also showed how the first-order properties of coherence for a classical beam can

be easily determined through our technique. Finally, we demonstrate its e�ciency

by measuring the Wigner function and density matrices for single photons carrying

orbital angular momentum.

In Chapter 4, we exploited the rich physics behind random optical fields to

demonstrate the formation of intensity correlation in the orbital angular momentum

components and angular position of pseudothermal light. We showed that the presence

of these correlations is manifested through distinct interference structures in the orbital

angular momentum-mode distribution of random light. We found that these novel

forms of interference correspond to the Hanbury Brown and Twiss e�ect for twisted

light. We predict that this family of e�ects can be of fundamental importance in

applications where entanglement is not required and where correlations su�ce. We

also suggest that the azimuthal Hanbury Brown and Twiss e�ect can be useful in the

exploration of novel phenomena in other branches of physics and astrophysics.
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Quantum imaging utilizes quantum correlations to form images that benefit greatly

from the quantum properties of light. Unfortunately, the low photon flux in sponta-

neous parametric down conversion and the fragile nature of photons impose important

limitations for realistic applications. In Chapter 5, we introduced a compressive

sensing protocol that is implemented in a quantum imaging scheme to minimize both

the number of photons and the number of measurements required to form a quantum

image of a moving object. Our experiment demonstrated a form that allows one to

more e�ectively use the information content in each photon.

As mentioned along this thesis, the famous two-slit interferometer revolutionized

the field of physics in the early 19th century. Remarkably, this experiment keeps

surprising the scientific community and it is the basis of many striking e�ects in

quantum mechanics. In Chapter 6, we showed the first experimental evidence that

demonstrates the existence of exotic looped trajectories in a three-slit interferometer.

We also unveiled the physical process that lead to this remarkable e�ect. The evidence

presented in this thesis opens the door for new research directions in the field of optical

physics and quantum optics.
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Appendix A

Amplification of Rotations Using

Weak Values

The main purpose of this document is to provide more detailed information about the

design of our experimental setup and recast its functionality in terms of the “weak

measurement” formalism. In addition, we describe the scheme employed to measure

the OAM spectrum of a beam of light.

Sagnac interferometer

We use a Sagnac interferometer composed of a polarized beam splitter (PBS), a Dove

prism (DP) and a series of rotatable plates. In this first section, we will describe the

role of the DP and how we use the rotatable plates to introduce geometric phases.

As mentioned in the article, a spatial mode |f(„)Í is diagonally polarized and

injected into the input port of the interferometer, and the polarization information is
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described by the state |�prÍ. Therefore we can describe the initial state as |f(„)Í |�prÍ.

The beam is split into two polarization components that circulate in opposite directions

within the interferometer. The role of the DP is to rotate the beam. When the DP is

rotated by an angle of �„/4 about its optical axis, the transmitted beam su�ers a

rotation of ±�„/2, where the sign is determined by the propagation direction of the

beam. In our experiment, the DP couples the polarization degree of freedom (DoF)

to the spatial DoF of the beam. The action of the DP inside the polarized Sagnac

interferometer is described as follows:

|�prÍ |f(„)Í Dove≠≠≠æ
P rism

1Ô
2

(R(≠„/2) |f(„)Í |HÍ + R(„/2) |f(„)Í |V Í)
= 1Ô

2

|f(„ ≠ �„/2)Í |HÍ + |f(„ + �„/2)Í |V Í),
(A.1)

where the operator R(„/2) is given by eiˆ¸�„/2. ˆ̧ is the generator of rotations and is

proportional to the operator representing angular momentum along the optical axis.

The role of the wave plates is to induce a geometric phase, which we will describe

using the Jones matrix formalism. Here the polarization states are defined as:

|HÍ =
C
1
0

D

and |V Í =
C
0
1

D

. (A.2)
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The action of the quarter-wave plate QWP and half-wave plate HWP are described

by the following matrices,

QWP =
C

ei„x1cos2(◊Q) + ei„y1sin2(◊Q) (ei„x1 ≠ ei„y1) cos(◊Q) sin(◊Q)
(ei„x1 ≠ ei„y1) cos(◊Q) sin(◊Q) ei„x1sin2(◊Q) + ei„y1cos2(◊Q)

D

,
(A.3)

and

HWP =
C

cos(2◊H) sin(2◊H)
sin(2◊H) ≠ cos(2◊H)

D

. (A.4)

◊Q represents the orientation of the fast axis of the QWP, with respect to the x-axis,

and ◊H represents the orientation of the HWP. The value „y ≠ „x determines the

induced retardation phase between the two components of the electric field. For a

QWP this number is equal to fi/2.

The configuration used to induce the geometric phase consists of a HWP sandwiched

between two QWPs. The angle ◊Q was set to fi/4 whereas the angle of the HWP, ◊H ,

was set to ◊H/4. Thus the Eqs. (A.3)–(A.4) become

QWP± =
C

1

2

+ i
2

±(1

2

≠ i
2

)
±(1

2

≠ i
2

) 1

2

+ i
2

D

, (A.5)

and

HWP± =
C

cos(◊H/2) ± sin(◊H/2)
± sin(◊H/2) ≠ cos(◊H/2)

D

. (A.6)

Di�erent orientation angles have to be considered for each of the counter-propagating

beams. Here we use positive and negative values for the horizontally and negative
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polarized beams respectively. The transformation su�ered by each beam is thus given

by

|HgÍ = QWP
+

· HWP
+

· QWP
+

|HÍ

= e≠i(◊H/2≠fi/2) |HÍ ,

(A.7)

and

|V gÍ = QWP≠ · HWP≠ · QWP≠ |V Í

= ei(◊H/2≠fi/2) |V Í .

(A.8)

As can be seen, the net e�ect is the acquisition of a phase given by ±(◊H/2 ≠ fi/2),

which is the geometric phase.

The action of sagnac interferometer in terms of the

weak measurement formalism

In this section we describe our weak measurement protocol. The action of the

interferometer is described by the following interaction Hamiltonian:

ĤT = Ĥg + ĤSO. (A.9)
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The Hamiltonian Ĥg describes the role of the three wave plates. It is given by ”‡̂.

The spin-orbit interaction caused by the DP is described by ĤSO, which is given by a

Hamiltonian of the form µ‡̂ ˆ̧, where ‡̂ is the Pauli operator defined as |HÍ ÈH|≠|V Í ÈV |,

(◊H/2 ≠ fi/2) = ”�t and �„/2 = µ�t. Given this, the evolution of the initial state

|�iÍ = |�prÍ |f(„)Í to a final state |�fÍ is given as

|�fÍ = e≠i ˆHT �t |�prÍ |f(„)Í

= e≠i ˆHg�t

S

U 1Ô
2

(|HÍ + |V Í) |f(„)Í

≠ i
�„

2
Ô

2
(|HÍ ÈH| ≠ |V Í ÈV |)(|HÍ + |V Í)ˆ̧|f(„)Í + . . .

T

V,

(A.10)

This expression can be rewritten as

|�fÍ =

e≠iĤg�t
Ô

2

Ë
|HÍ (1 ≠ i�„

2

ˆ̧+ ...) |f(„)Í + |V Í (1 + i�„
2

ˆ̧+ ...) |f(„)Í
È

.
(A.11)

The expression in parenthesis is a translation operator in the azimuthal degree of

freedom which leads to the state

|�fÍ = e≠i ˆHg�t

Ô
2

[|HÍ |f(„ ≠ �„/2)Í + |V Í |f(„ + �„/2)Í]. (A.12)
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The action of Ĥg leads to the state

|�fÍ = 1Ô
2

[e≠i(◊H/2≠fi/2) |HÍ |f(„ ≠ �„/2)Í

+ ei(◊H/2≠fi/2) |V Í |f(„ + �„/2)Í].
(A.13)

The state above describes our experiment just before post-selection by the polarizer

is performed.
---�f

f
is the state of the photons emerging from the output port of the

polarized beam splitter. The post-selection process is described by the projection

operator |�psÍ È�ps| which gives the post-selected state

|�pÍ = |�psÍ È�ps| |�fÍ

= [È�ps| e≠i ˆHg�t |�prÍ |f(„)Í

≠ i
�„

2 È�ps| e≠i ˆHg�t‡̂ |�prÍ ˆ̧|f(„)Í + ...] |�psÍ .

(A.14)

This expression can be approximated to the first order and then normalized:

|�pÍ ¥
Q

a|f(„)Í ≠ i
�„

2
È�ps| e≠i ˆHg�t‡̂ |�prÍ
È�ps| e≠i ˆHg�t |�prÍ

ˆ̧|f(„)Í
R

b |�psÍ (A.15)

Since ‡̂ commutes with e≠i ˆHg�t

|�pÍ =
A

|f(„)Í ≠ i
�„

2
È�ps| ‡̂ |�fprÍ

È�ps|�fprÍ
ˆ̧|f(„)Í

B

|�psÍ , (A.16)
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where
---�fpr

f
© e≠i ˆHg�t |�prÍ. Defining the weak value of ‡̂ as

‡w © È�ps| ‡̂ |�fprÍ
È�ps|�fprÍ

, (A.17)

then the total e�ect of the post-selection can be written as

|�pÍ = |f(„ ≠ ‡w�„/2)Í |�psÍ . (A.18)

The weak value of the polarization operator can be determined by using the

following form for the states:

|�fprÍ = 1Ô
2

1
e≠i(◊H/2≠fi/2) |HÍ + ei(◊H/2≠fi/2) |V Í

2

|�psÍ = sin
!
“/2 ≠ fi/4

"
|HÍ + cos

!
“/2 ≠ fi/4

"
|V Í .

(A.19)

It is worth noting that |�psÍ is almost orthogonal with respect to |�prÍ. Using the

above states the weak value becomes

‡w = tan
!
“/2 ≠ fi/4

"
e≠i(◊H≠fi) ≠ 1

tan
!
“/2 ≠ fi/4

"
e≠i(◊H≠fi) + 1 . (A.20)

For simplicity we can define the angle ◊H ≠ fi as ◊. If we assume that “/2 and ◊

are very small, corresponding to the weak measurement regime, then this expression
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becomes

‡w =
e≠i◊ tan(“/2)≠tan(fi/4)

1+tan(“/2) tan(fi/4)

≠ 1
e≠i◊ tan(“/2)≠tan(fi/4)

1+tan(“/2) tan(fi/4)

+ 1

¥
(1 ≠ i◊)“≠2

2+“ ≠ 1
(1 ≠ i◊)“≠2

2+“ + 1

= “ ≠ 2 ≠ i◊“ + 2i◊ ≠ “ ≠ 2
“ ≠ 2 ≠ ◊“ + 2i◊ + “ + 2

¥ ≠2
“ + i◊

= ≠2 “

“2 + ◊2

+ 2 i◊

“2 + ◊2

.

(A.21)

Projective measurements

In this section we describe a simple form of measuring the OAM power spectrum of an

ensemble of photons. The technique employed is known as projection measurements.

Here a spatial mode (in our case an angular mode f(r)), which can be written in

terms of the modal expansion q
¸ a¸ei¸„, is imaged onto a SLM that transforms the

field in the first di�racted order to:

f(r)e≠i¸„. (A.22)
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A Fourier transforming lens takes the field above to

f¸(fl) = F [f(r)e≠i¸„], (A.23)

which is spatially filtered using a SMF coupled to an avalanche photodiode (APD)

which allows measurement at single photon levels. The coupling e�ciency into the

fiber, ÷¸ is given by

÷¸ Ã
-----

⁄
f¸(fl)e≠ fl2

2÷2 d2fl

-----

2

, (A.24)

where ÷ is the Gaussian width of the fiber mode. Assuming features of f¸ to be of size

scale larger than ÷, this filtering function becomes

÷¸ ¥
-----

⁄
f¸(0)e≠ fl2

2÷2 d2fl

-----

2

Ã |f¸(0)|2 =
------

ÿ

¸Õ

⁄
a¸e

i(¸Õ≠¸)„d2r

------

2

= |a¸|2 , (A.25)

permitting us to obtain the OAM power spectrum component |a¸|2. This process is

repeated for the di�erent modes contained in the spatial mode. The e�ciency of

this technique for di�erent spatial modes, such as radial modes, has been studied in

reference [88].
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Appendix B

HBT Interferometry with Twisted

Light

Source of Pseudothermal light.

Pseudothermal light was generated by means of phase screen holograms obeying

Kolmogorov statistics. Kolmogorov’s statistical theory is used to model chaotic

turbulent fluids. We have generated Kolmogorov phase screens for varying levels of

simulated randomness by using the approximate power spectral density of �(f) ¥

0.023r≠5/3

0

f≠11/3. Fried’s parameter r
0

is related to the average coherence length

between two points in the beam. By adjusting Fried’s parameter r
0

, we can increase

or decrease the size of and the distance between the phase cells and thus the amount

of randomness in the phase screens. By adding normally distributed deviations to the

power spectral density, we can then take the real part of the inverse Fourier transform

in order to generate a single Kolmogorov phase screen.
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A DMD can be used to manipulate both the phase and amplitude profile of a light

beam. A translation in a binary di�raction grating will cause a phase shift to occur

in the di�racted light, whereas varying the duty cycle of the periodic grating will

change the e�ciency, and thus the amplitude, of the di�racted beam. Both of these

techniques can be done locally to spatially control the phase and amplitude of the

beam. The generated Kolmogorov screens were then converted into binary di�raction

gratings to be displayed on a DMD.

Figure B.1: Example of a frame sent to the DMD. It contains 24 binary holograms
encoded in bit plane slices.

We used the Texas Instruments LightCrafter Evaluation Module (DLPC300) which

drives a Texas Instruments DLP3000 DMD. The DMD contains an array of 608 ◊ 684

micromirrors with a total diagonal length of 7.62 mm. The DMD was operated in

a mode that allowed a binary pattern to be displayed at a rate of 1440 Hz. The

DMD takes a 24-bit color 60 Hz signal over an HDMI connection. Because the image

contains 24 bits, a single video frame can contain 24 binary images. In this mode, the

DMD will cycle through the least significant bit to the most significant bit in the blue

signal of a frame. Then, the DMD will display the bits in the red signal and, finally,

the green signal. Kolmogorov screens (72,000) were encoded into three thousand 24-bit
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frames for each value of Fried’s parameter r
0

= 70 µm, 150 µm and 210 µm. Figure

B.1 shows an example of one of the generated frames sent to the DMD. This frame

contains 24 binary holograms encoded in the bit planes of the image to be displayed

sequentially.

Figure B.2: Example DMD holograms and resulting beams measured before the image
plane.

Figure B.2 shows examples of the intensity distribution for three random beams

generated by this method. In addition, in each case, an example of one of the holograms

used to produce the beam is shown. Note that the randomness within the beam

increases as the value of r
0

decreases.

The HBT e�ect for symmetrically displaced modes

(¸ and ≠¸).

Here, we derive the equations utilized in the manuscript. We start by describing

HBT interference of pseudothermal light. We assume that the beam of light from our
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laser is described by the electric field E(r), where r is the radial coordinate in the

transverse plane. In addition, we assume that the initial electric field does not possess

any azimuthal dependence. We encode a random Kolmogorov phase screen �(r, „)

onto the beam. Later, the field illuminates two angular apertures centered on angles 0

and „
0

. Thus the field after the two slits is given by

�(r, „) = E(r)�(r, „)[A(„) + A(„ ≠ „
0

)].. (B.1)

As described earlier in the manuscript, we replace the widely used ground-glass plate

with a series of phase screens that change rapidly in comparison to the accumulation

time of the measurement, thus creating an ensemble of field realizations. The next

step is to find the intensity of the field for a given OAM eigenstate. We can write

the electric field after the two slits as a linear combination of radial-OAM modes.

We designate a complete radial basis as Rp(r), although we do not make use of any

explicit form for this basis. We thereby express the field after the slits as

�(r, „) =
ÿ

¸,p

ap¸Rp(r) ei¸„

Ô
2fi

, (B.2)

where the expansion coe�cients ap¸ are given by

ap¸ =
⁄

rdrd„Rú
p(r)e≠i¸„

Ô
2fi

�(r, „). (B.3)
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Thus, the measured intensity after projecting the beam onto OAM mode ¸ is given by

I¸ =
ÿ

p

|ap¸|2 =
ÿ

p

⁄
r

1

dr
1

r
2

dr
2

d„
1

d„
2

�ú(r
1

, „
1

)Rp(r
1

) ei¸„1
Ô

2fi

e≠i¸„2
Ô

2fi
Rú

p(r
2

)�(r
2

, „
2

)

=
⁄

r
1

dr
1

r
2

dr
2

d„
1

d„
2

�ú(r
1

, „
1

)�(r
2

, „
2

)ei¸(„1≠„2)

2fi

ÿ

p

Rp(r
1

)Rú
p(r

2

)

= 1
2fi

⁄
rdrd„

1

d„
2

�ú(r, „
1

)�(r, „
2

)ei¸(„1≠„2),

(B.4)

where the last form comes from using the relation q
p Rp(r

1

)Rú
p(r

2

) = (1/r
1

)”(r
1

≠ r
2

),

which is true for any complete normalized set of basis functions, where ”(r) is the

usual Dirac delta function. Now we replace �(r, „) with the electric field after the

two angular slits given by Eq.1. For simplicity, we first approximate A(„) by ”(„) and

A(„ ≠ „
0

) by ”(„ ≠ „
0

). The quantity I¸ then becomes

I¸ = 1
2fi

⁄
rdr

--E(r)
--2

Ó
2 + e≠i¸„0�ú(r, 0)�(r, „

0

) + ei¸„0�ú(r, „
0

)�(r, 0)
Ô

. (B.5)

We next take the ensemble average to obtain

ÈI¸Í = 1
2fi

⁄
rdr

--E(r)
--2

Ó
2 + e≠i¸„0È�ú(r, 0)�(r, „

0

)Í + ei¸„0È�ú(r, „
0

)�(r, 0)Í
Ô

. (B.6)

In reality, however, the finite size of the slits produces an envelope, caused by di�raction,

that modulates the form of the interference pattern. If a slit with a width – is

considered, the interference pattern can be easily calculated to be
s fi

≠fi d„f(„)e≠i„¸,
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where in our case f(„) is equal to 1 in the range from ≠–/2 to –/2 and is equal to

0 otherwise. This integral produces a di�raction envelope given by –
2fi sinc

1
¸–
2

2
. The

di�raction produced by the second slit can likewise be described as –
2fi sinc

1
¸–
2

2
e≠i¸„0 .

The intensity of the total di�raction is described as
1

–
fi

2
2

sinc2

1
¸–
2

2
(1 + cos (¸„

0

)).

Taking this result into account, we find that the first-order-interference di�raction

pattern is given not by Eq. B.6. but rather by

ÈI¸Í = –2sinc2(¸–/2)
2fi2

⁄
rdrE2(r)

Ó
2 + e≠i¸„0È�ú(r, 0)�(r, „

0

)Í + ei¸„0È�ú(r, „
0

)�(r, 0)Í
Ô

.

(B.7)

We next develop appropriate approximations for the quantities defined above. A

reasonable assumption is that the field fluctuations follow Gaussian statistics such

that

È�ú(r
1

, 0)�(r
2

, „
0

)Í = exp (≠r2

1

+ r2

2

≠ 2r
1

r
2

cos „
0

r2

0

). (B.8)

By setting r
1

equal to r
2

, we find that

È�ú(r, 0)�(r, „
0

)Í = exp(≠
4r2| sin „0

2

|2

r2

0

) = exp(≠—r2). (B.9)

The last form of this expression defines the quantity —. For a fully coherent beam,

(that is, for r
0

∫ r, where r
0

is the Fried parameter introduced in Section 3) we see

that to very high accuracy È�ú(r, 0)�(r, „
0

)Í is equal to 1. As r
0

decreases the value
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of the correlation function È�ú(r, 0)�(r, „
0

)Í also decreases. Through use of Eq. B.8

expression (B.6) for the intensity can be expressed as

ÈI¸Í = I
0

+ I¸

I
0

= 1
fi

⁄
rdrE2(r)

I¸ = cos(¸„
0

)
fi

⁄
rdr

--E(r)
--2 exp(≠—r2).

(B.10)

As r
0

decreases, — increases and most of the contribution to the integral in the last

expression comes from r ¥ 0, but since the integrand is zero at that point, the integral

vanishes. In this limit, I
0

makes the only contribution to ÈI¸Í and the spectrum

becomes flat, that is, ÈI¸Í shows no dependence on the value of ¸.

Next we derive an expression for the correlations between projections onto OAM

values of ¸ and ≠¸, that is,

I¸I≠¸ = 1
4fi2

⁄
r

1

dr
1

--E(r
1

)
--2

Ó
2 + e≠i¸„0�ú(r

1

, 0)�(r
1

, „
0

) + ei¸„0�ú(r
1

, „
0

)�(r
1

, 0)
Ô

◊
⁄

r
2

dr
2

--E(r
2

)
--2

Ó
2 + ei¸„0�ú(r

2

, 0)�(r
2

, „
0

) + e≠i¸„0�ú(r
2

, „
0

)�(r
2

, 0)
Ô

© G
0

+ G¸ + G
2¸,

(B.11)



APPENDIX B. HBT INTERFEROMETRY WITH TWISTED LIGHT 143

where the three contributions to I¸I≠¸ are given by

G
0

= 1
fi2

⁄
r

1

dr
1

r
2

dr
2

--E(r
1

)
--2--E(r

2

)
--2

+ 1
4fi2

⁄
r

1

dr
1

r
2

dr
2

--E(r
1

)
--2--E(r

2

)
--2 �ú(r

1

, 0)�(r
1

, „
0

)�ú(r
2

, 0)�(r
2

, „
0

)

+ 1
4fi2

⁄
r

1

dr
1

r
2

dr
2

--E(r
1

)
--2--E(r

2

)
--2 �ú(r

1

, „
0

)�(r
1

, 0)�ú(r
2

, „
0

)�(r
2

, 0)

(B.12)

G¸ = 1
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G
2¸ = 1

4fi2
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r

1
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1

r
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We next estimate the ensemble averages of these quantities. For a field with strong

random fluctuations, the field correlation between two di�erent angular positions

is very small and thus the term G¸ does not contribute significantly to ÈI¸I≠¸Í. A

similar situation occurs for the second and third contributions of G
0

; it is important

to note that these terms contain the quantities È�ú(r
1

, 0)�(r
1

, „
0

)�ú(r
2

, 0)�(r
2

, „
0

)Í

and È�ú(r
1

, „
0

)�(r
1

, 0)�ú(r
2

, „
0

)�(r
2

, 0)Í, and these quantities vanish when r
1

= r
2

.

They vanish because they describe the average of the product of two chaotic and

independent variables. Thus, the main contributions to the second-order interference
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are the first term in Eq.12 (which does not vary with „
0

) and the contribution

ÈG
2¸Í =e≠2i¸„0

4fi2

⁄
r

1

dr
1

r
2

dr
2

--E(r
1

)
--2--E(r

2

)
--2 È�ú(r

1

, 0)�(r
1

, „
0

)�ú(r
2

, „
0

)�(r
2

, 0)Í + c.c..

(B.15)

We would like to remark the fact that, contrary to the correlation functions given

by È�ú(r
1

, 0)�(r
1

, „
0

)�ú(r
2

, 0)�(r
2

, „
0

)Í and È�ú(r
1

, „
0

)�(r
1

, 0)�ú(r
2

, „
0

)�(r
2

, 0)Í, the

correlation function È�ú(r
1

, 0)�(r
1

, „
0

)�ú(r
2

, „
0

)�(r
2

, 0)Í is equal to unity for r
1

= r
2

.

We therefore obtain

ÈG
2lÍ = e≠2i¸„0

4fi2

⁄
r2

1

dr
1

--E(r
1

)
--4 + c.c. (B.16)

We thus conclude that the quantity ÈIlI≠lÍ is given by the sum of the contributions of

Eq. B.16 and the first term in Eq. B.12 or

ÈIlI≠lÍ ¥
A

1
fi

⁄
rdr

--E(r)
--2

B
2

+
A

cos 2l„
0

2fi2

⁄
r2dr

--E(r)
--4

B

. (B.17)

For the case of slits with finite size, this result must be modified for the same reasons

given in the discussion following Eq. B.6. One thereby obtains

ÈIlI≠lÍ ¥
A

1
fi

⁄
rdr

--E(r)
--2

B
2

+
–4sinc4

1
¸–
2

2

4fi4

A
cos 2l„

0

2fi2

⁄
r2dr

--E(r)
--4

B

. (B.18)
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The HBT e�ect for arbitrary mode indices ¸1 and

¸2.

The intensity correlation between two arbitrary OAM modes ÈI¸1I¸2Í produces a com-

plicated second-order correlation function comprised of five terms. The contribution

of each term is determined by the degree of fluctuations in the field. One is the

constant term G
0

given by 1

fi2
s

r
1

dr
1

r
2

dr
2

È
--E(r

1

)
--2--E(r

2

)
--2Í. There are two terms whose

contributions are equally important; one oscillates with a frequency ¸
1

„
0

and the other

with ¸
2

„
0

. The strength of these terms is determined by the quantity È�ú(r, 0)�(r, „
0

)Í,

which is negligible for highly chaotic light (r
0

π r). The frequency of the fourth

component is determined by the quantity (¸
1

+ ¸
2

)„
0

, although its strength is dictated

by the quantity È�ú(r, 0)�(r, „
0

)�ú(r, 0)�(r, „
0

)Í. For highly chaotic fields this is an

extremely small contribution. The primary contribution to ÈI¸1I¸2Í is therefore given

by the term

G¸1,¸2 =
–4sinc4

1
[¸1≠¸2]–

2

2

4fi4

⁄
r

1

dr
1

r
2

dr
2

--E(r
1

)
--2--E(r

2

)
--2 (e≠i(¸1≠¸2)„0

◊ È�ú(r
1

, 0)�(r
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0

)�ú(r
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)�(r
2

, 0)Í + c.c.)
(B.19)

Note that this contribution describes an interference pattern that depends on the

values of both ¸
1

and ¸
2

.
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Orbital angular momentum correlations and angu-

lar position correlations.

In this section we derive expressions for the correlations of pairs of OAM values

and pairs of angular positions. The light that emerges from the DMD is given by

E(r)�(r, „). We make two copies of this field using a beam splitter and find the

coincidences between projections onto two di�erent modes of light. Let us first discuss

the projection of one of the beams. The amplitude of the projection onto OAM mode

¸ is given by

a¸ =
⁄

rdrd„E(r)�(r, „)e≠i¸„

Ô
2fi

g(r), (B.20)

where g(r) is the radial profile of the single-mode collection fiber, which is a Gaussian

function. The intensity |a¸|2 is given by

I¸ =
⁄

r
1

dr
1
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) ei¸„2
Ô
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(B.21)

Therefore the ensemble-averaged intensity after the projection is given by

ÈI¸Í =
⁄

r
1

dr
1

r
2

dr
2

d„
1

d„
2

E(r
1

)g(r
1

)Eú(r
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)g(r
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2fi
È�(r

1

, „
1

)�ú(r
2

, „
2

)Í.

(B.22)
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We are considering the case of highly fluctuating light; in this regime È�(r
1

, „
1

)�ú(r
2

, „
2

)Í

can be approximated by (1/r
1

)”(r
2

≠ r
1

, „
2

≠ „
1

), leading to the result

ÈI¸Í = 1
2fi
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dr
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--E(r
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)
--2 g(r

1

)2. (B.23)

Note that this quantity is independent of the value ¸. Now let us consider the case of

two coincident projections. The amplitude of coincident projections is given by

a¸1a¸2 = �2

i=1

Q

a
⁄

ridrid„iE(ri)�(ri, „i)
e≠i¸i„i

Ô
2fi

g(ri)
R

b . (B.24)

We measure the rate at which these coincidences occur, which is given by
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After taking the statistical average, we obtain

ÈI¸1I¸2Í =
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Following the same considerations and a similar procedure those used in obtaining Eq.

B.11, we write the four-point coherence function as the sum of three contributions,

each a product of two 2-point coherence functions. One of the contributions is always

negligible for highly chaotic light. Another contribution leads to the simple product

ÈI¸1ÍÈI¸2Í. This contribution is actually independent of the values ¸
1

and ¸
2

in the

limit of highly chaotic light for the same reason stated above in connection with Eq.

B.9. The last contribution is given by

⁄
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By invoking the same approximation used above to evaluate the coherence functions

as delta functions, we simplify this expression to

------

⁄
rdrd„

--E(r)
--2 g(r)2

e≠i(¸1≠¸2)„

2fi

------

2

. (B.28)

Note that the integral over „ vanishes unless ¸
1

= ¸
2

. Thus, we finally obtain

ÈI¸1,¸2Í = ÈI¸1ÍÈI¸2Í(1 + ”¸1,¸2), (B.29)
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which is the expression used in the body of this paper to explain our experimental

results. Note that the correlations between two di�erent values of OAM are half as

large as those between the same value of OAM.

We can perform a similar calculation to find the correlations between two angular

positions. For the case of a single beam (no beam splitter), the amplitude of the

projection for a single value of „ is given by

a„ =
⁄

rdrE(r)�(r, „)g(r). (B.30)

It follows that the ensemble-averaged intensity at one of the detectors is given as

follows

ÈI„Í = È|a„|2Í (B.31)
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=
⁄

rdr
--E(r)

--2 g(r)2. (B.34)

The last form follows from the substitution È�(r,
1

„)�(r
2

, „)úÍ = (1/r
1

)”(r
1

≠ r
2

). If

we now add the beam splitter and find the probability for coincidence detection of
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two beams, we obtain
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⁄
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Similar to the OAM case, we find that this expression yields two contributions. One

of these contributions is independent of the values „
1

and „
2

whereas the other

contribution is large only if the two intensities are measured at „
1

= „
2

. This result

can be described by the relation

ÈI„1I„2Í = ÈI„1ÍÈI„2Í[1 + ”(„
1

≠ „
2

)]. (B.38)

As expected, and similar to the case of correlating two OAMs, two non-overlapping

angles share no correlation. However, in contrast to the OAM variable, the angular

position variable is not discrete, and one is allowed to correlate two regions defined

by two angular positions that are not orthogonal, and consequently there is a partial

overlap between the two correlated regions. Thus the degree of second-order correlation

can take any value between 1 and 2. Therefore an appropriate expression for this

correlation function is given by



APPENDIX B. HBT INTERFEROMETRY WITH TWISTED LIGHT 151

ÈI„1I„2Í = ÈI„1ÍÈI„2Í[1 + f(„
1

≠ „
2

)], (B.39)

where f(„
1

≠ „
2

) is defined as

f(„
1

≠ „
2

) =
Y
]

[
0 for |„

1

≠ „
2

| > –/2
1 ≠ |„1≠„2|2

–2 for |„
1

≠ „
2

| Æ –/2.

f(„
1

≠ „
2

) can be interpreted as the fractional angular overlaps of the two slits.
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Appendix C

Measuring Looped Trajectories of

Light

Experiment

We generate single photons by means of heralding a photon by a“partner” photon

detection from a photon pair source. The photon pairs were created in a spontaneous

parametric down conversion process using a 2mm-long type-I nonlinear crystal (period-

ically poled potassium titanyl phosphate (ppKTP)). We pump the crystal with a blue

405nm continuous-wave diode laser (≥200mW), thereby creating degenerate photon

pairs at 810nm wavelength. Both photons are passed through a 3nm band-pass filter,

coupled into a single-mode fiber and split by a 50/50-fiber beams splitter, which led

to a coincidence count rate of approximately 40kHz. The heralding photon is detected

with a single-photon avalanche photo diode. Its partner photon is delayed by a 22m

long fiber, send through the setup and imaged by an ICCD. The ICCD is operated

in the external triggering mode (7ns coincidence gate time), where the heralding
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detection signal is used as an external trigger, to ensure that only these single photon

events are registered. Note that due to the low coincidence count rate there is only

one photon at a time in the experimental setup. For experiments using a weak laser

instead of heralded single photons, the ICCD was operated in the continuous mode,

where the intensifier is permanently switched on.

For the case in which we used single photons, the idler photons are detected by an

APD that heralds the detection of signal photons with an ICCD. We used either y- or

x-polarized light which is selected by means of a polarizer and half-wave plate. The

beam is weakly focused onto the arrangement of slits that is mounted on a motorized

three-axis translation stage that can be displaced in small increments of 60 nm. An

infinity-corrected oil-immersion microscope objective (NA=1.4, magnification of 60◊,

working distance of 100 µm) was used to collect the light emerging from the slit

patterns. The light collected by the objective was then magnified with a telescope

and measured by an ICCD camera..

Data Analysis

The background subtracted interference patterns were used to determine the magni-

tudes of Ÿ shown in Fig. 6.4. In Fig. 6.4a, we show the values of Ÿ, obtained in the

single photon regime, for di�erent positions of the detector. The deviation from the

theory and the magnitude of the error bars are larger at the edges of the Ÿ profile
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because the signal is low at the edges of the interference patters, which results in a

noisier signal. On the other hand, the central maximum of the interference patterns

permits a more reliable characterization of Ÿ. The values of Ÿ obtained for classical

light as a function of the wavelength, shown in Fig. 6.4b and 6.4c, were calculated

using central maximum of the interference patterns. For these cases, we used only the

regions of central fringe having intensities within 70% of the peak value. The data

was then used to obtain the mean value and standard deviations for Ÿ.

Fabrication

The glass substrates are standard BK7 cover slips (SCHOTT multipurpose glass D

263r T eco Thin Glass) with a thickness of ≥ 170µm, polished on both sides to optical

quality. The substrate was ultrasonically cleaned for 2 hours in 2% Hellmanex III

alkaline concentrate solution and subsequently rinsed and sonicated in MEK denatured

Ethanol and then in demineralized water. The gold films were evaporated directly onto

the clean glass substrates with no additional adhesive layer using a Plassys MEB 550S

e-beam evaporation system. The growth of the film thickness was monitored in-situ

during the evaporation by a water cooled quartz micro-balance. The slit patterns were

structured by Ga ion beam milling using a Tescan Lyra 3 GMU SEM/FIB system with

a canion FIB column from Orsay Physics. Each slit pattern consisted of 100µm long

slits. While fabricating the di�erent slit sets, proper focusing of the FIB was checked
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by small test millings and if needed the FIB settings were readjusted accordingly to

provide a consistent and reproducible slit quality.

Structure design

Full-wave electromagnetic simulations were conducted using a Maxwell’s equation

solver based on the finite di�erence time domain method (Lumerical FDTD). The

dispersion of the materials composing the structure was taken into account by using

their frequency-dependent permittivities. The permittivity of the gold film was

obtained from Ref. [155], the permittivity of the glass substrate (BK7) was taken from

the manufacturer’s specifications, and the permittivity of the index matching fluid

(Cargille oil Type B 16484) was obtained by extrapolation from the manufacturer’s

specification.

Model

As described in the main text, the path integral formulation of the wave equation

propagation kernel is given by

K(r
1

, r
2

) =
⁄

D[x(s)] exp
3

ik
⁄

ds
4

, (C.1)



APPENDIX C. MEASURING LOOPED TRAJECTORIES OF LIGHT 156

and can be perturbatively expanded as [145]

K = K
1

+ K
2

+ K
3

+ · · · , (C.2)

where Kn represents the nth application of of the Fresnel-Huygens principle. For

instance, considering the propagation through the slits from the source located at rs

to the detector at rd, the expression for K
2

would be given by

K
2

(rs, rd) =
⁄

�

dr1

⁄

�

dr2K(rs, r1)K(r1, r2)K(r2, rd), (C.3)

where integration is over the slit areas �. Furthermore, assuming that the slits are

much smaller than the wavelength, we can rewrite this equation as a discrete sum

over paths. In this case, the expression above becomes

K
2

(rs, rd) ¥
ÿ

j,k

K(rs, rj)K(rj, rk)K(rk, rD), (C.4)

which represents propagation from the source rs, to slit j at rj, and then from slit j

to k at rk, and then finally propagation to the detector at rd.

Each term in Eq. C.4 represents a simple propagation solution. Assuming that the

slits are illuminated with a planewave normally incident onto the surface of the slits,
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then the propagation from the source to the screen is

K(rs, rA) = K(rs, rB) = K(rs, rC) = constant, (C.5)

and the three straight paths in the (paraxial) far field will be given by

K(rB, D) Ã sinc
A

kxw

2fi

B

K(rA, D) = K(rB, D)ei„f

K(rC, D) = K(rB, D)e≠i„f ,

(C.6)

where ◊ is the far field angle in the (x, z) plane (◊ = 0 corresponding to propagation

in the z direction), w is the slit size, p is the spacing between slits, k
0

= 2fi/⁄ is the

free-space wavenumber, kx = k
0

sin(◊) is the transverse wavenumber, and „f = pkx is

the phase di�erence due to di�erences in the distance between each slit and the far

field.

For the case at hand, the looped paths involve an enhancement of the near field by

surface plasmon modes which we solve for via numerical simulations using the FDTD

method. For the simple configuration of slits in a metal screen, it has been shown

that this is well approximated by the simple input-output relations [153]

K(rA, rB) = K(rB, rA) = K(rB, rC) = K(rC, rB) = aei„SP (C.7a)

K(rA, rC) = K(rC, rA) = bei2„SP , (C.7b)
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where a and b are the relevant field strengths quantifying the coupling of a free-space

to surface plasmon back to free-space mode for neighboring slits and paths with an

extra slit between, and „
SP

= k
SP

p is the phase accumulated along the plasmon path

between slits.
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Figure C.1: Plot of the normalized Sorkin parameter, Ÿ, assuming experimental
parameters similar to those used in the main text.

A plot of the normalized Sorkin parameter, Ÿ, is shown in Fig. C.1 assuming

the parameters p = 3.8 µm, w = 400 nm, and ⁄ = 755 nm, equivalent to the main

paper. This plot was generated using the surface plasmon mode coupling parameters

a = 2b = 0.06, and k
SP

= 1.6k
0

. When this plot is compared with Fig. 6.4a and

6.4b, it can be seen that this simple model matches the observed features in both the

experiment and full FDTD simulations of the experiment.
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Signs of Looped Trajectories

Since the exotic looped trajectories of light are intimately related to the evanescent

component of the fields, the conditions under which the probability of photons following

looped trajectories is increased depends on the characteristics of the three slits and the

physical processes that take place in their vicinity. The most suitable characteristics

for the slits were found by investigating the regimes under which the looped trajectories

show a significant role in the formation of interference fringes. We carried out this

task by performing a series of FDTD simulations in which di�erent slit sizes, slit

separations, and metal thickness were studied.
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Figure C.2: The wavelength-dependent intensity distribution of the interference pattern
for a three-slit experiment in the absence (a) and pretense (b) of looped trajectories.
Looped trajectories are enhanced by using along the short direction of the slit.

In Fig. C.2 we show distinct interference structures that unveil the importance of

looped trajectories in the formation of interference structures. We plot the intensity

as a function of wavelength and detector angles, or positions in the far-field of the

three slits. In our calculations, we consider that the slits have a width of w = 150 nm,
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the separation between slits is p = 3.6µm, the hight of the slits is infinite, and the

three-slit structure is illuminated by a planewave at normal incidence. We show two

interference structures produced by the same three-slit structure but under di�erent

illumination conditions. When these slits are illuminated with light polarized along

the long axis of the slits, surface plasmon modes are not excited in the structure and

the interference pattern shown in Fig. C.2a is shown in the far field. This pattern

is practically identical to that obtained by simply applying the Fourier transform

of the three slits. However, this simple experiment shows a striking interference

structure when the slits are illuminated with light polarized along the short axis of

the slits. In this case, surface plasmon modes are e�ciently excited, leading to an

increased probability for looped paths, which in turn leads to the significantly di�erent

interference pattern shown in Fig. C.2b. In addition, from this pattern it is quite

clear how interference e�ects among looped trajectories lead to a clear wavelength

dependence of the experiment.

The remarkable di�erence between these two interference structures o�ered us

a clear signature of the presence of looped trajectories. We used this knowledge to

decide the characteristics of the slits and the conditions we used when we performed

the experiment.
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