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Abstract

Shannon’s theory of communication created a set of tools for studying complex

systems in an abstract and powerful way, providing the core foundations for the field

of information theory. This thesis uses these ideas to provide a framework for studying

the transverse degree of freedom of an optical field, appropriate for both classical

and quantum states of light. This degree of freedom is in principle an unbounded

space, providing a complex resource for encoding a large amount of information. This

work focuses on studying the physical limits to the information of this space, both in

terms of fundamental theoretical limitations as well as practical limitations due to

experimental implementation and error.

This thesis will pay particular interest to the design and implementation of a

quantum key distribution system encoded using a particular set of transverse modes

for encoding known as orbital angular momentum states, which represent normal

modes of a typical free-space optical system. This specific technological implementation

provides a motivation that acts to unify many of the themes in this work including

quantum state preparation, state detection or discrimination, and state evolution
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or propagation. Additionally, such a setup gives a specific physical meaning to the

abstract tools we will be utilizing as the information that we will be quantifying can

be thought of as a measure of the possible complexity or information content of a

single photon.

Chapter 1 provides a brief introduction to information theory and the basic

concepts and tools that are used throughout this work, as well as a basic introduction

to quantum key distribution. Chapter 2 theoretically explores the fundamental limits

of the information capacity of a channel due to diffraction, as well as computes the

communication modes of a channel using a normal mode approach to propagation.

Chapter 3 concerns the experimental implementation of a free-space quantum key

distribution system including quantum state preparation and detection, as well as

demonstration of a working system. Finally, in chapter 4 we consider the effects

of a noisy channel on our analysis, especially decoherence due to the presence of

atmospheric turbulence.
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Chapter 1

Introduction

As conscious living beings we all have our own subjective experiences that we live with.

One of the amazing features of the human race is the ability to abstract these feelings

and experiences and represent these thoughts and ideas. The appearance of language

within our species has sharpened and extended this ability tremendously, as well as

has given us the ability to transmit meaning to others. This ability to communicate

with other people is one of the fundamental elements of what makes us human.

The tools we use to transmit information have grown and evolved through history

enabling ever more complex communication. The creation of spoken language encoded

ideas or meanings into distinct sounds. The invention of writing put the information

into a form that gave the ideas a permanence that allowed ideas to spread further and

be remembered longer. The modern era gave birth to electronic means of encoding

and transmitting information that now allows the flow of ideas to occur virtually

instantly and between nearly any two points on the earth.
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This chapter will introduce the basics of information theory from the perspective of

communication. These tools will provide the basic context for describing the transverse

degree of freedom of light within the framework of communication or information.

This provides a universal framework for thinking about such topics as spatial mode

modulation, optical beam propagation, and measurement theory that will be explored

in later chapters. In addition, section 1.2 will give a brief introduction to the field of

quantum communication and cryptography which provides a specific technological

implementation that integrates many of the topics that will be discussed throughout

this thesis and thus provides a motivation for many of the ideas that will be presented.

1.1 Shannon Information Theory

The complexity of modern communication has given rise to a number of fields that

try to model and thus better understand this phenomena. One of the major areas

that has arisen in this context is the field of information theory. Information theory

tries to analyze information qua information, and is seen as having been formally

established in the seminal paper by Claude Shannon, “A mathematical theory of

communication” [9]. Shannon gave a generalized picture of communication which is

shown schematically in Fig. 1.1 and consists of three stages; a sender and receiver

(traditionally named Alice and Bob), and a physical medium or channel over which

the intended information is transmitted between Alice and Bob.
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Intended
message

Received
message

ReceiverTransmitter

Channel

Figure 1.1: Schematic of Shannon’s general communication system

Alice must encode the intended information onto some physical medium that

can be transmitted to Bob. This stage is the fundamental stage of abstracting or

symbolically representing meaning. Language is a natural example of this. In speech a

specific idea is represented by a specific sound or grouping of sounds, while in written

language the representation of the idea is in the form of visual characters or symbols.

In general, ideas are represented in some physical form that can be transmitted and

ultimately experienced or sensed by another person. Each physical symbol is chosen

from a set of distinct possible symbols with pre-agreed upon meanings.

So in the general communication scheme of Fig. 1.1, Alice translates the intended

message into a series of abstract symbols. Each symbol is encoded onto the state of

the physical medium in one of a number of different possible configurations. The list

of possible configurations or symbols x ∈ X is called the alphabet, in analogy with

written communication. The information I(X) of a random symbol X with N equally

likely possible values x ∈ X is defined to be

I(X) = logb(N). (1.1)



CHAPTER 1. INTRODUCTION 4

The logarithmic measure of information is chosen because the number of distinct

possible messages generally grows exponentially with resources. For example if a

message contains n independent random symbols X, each chosen from an alphabet of

size N , then the total number of possible combinations of sequences is Nn, and the

amount of information contained in this sequence is

I(Xn) = logb(Nn) = n logb(N) = nI(X). (1.2)

It should be noted that information as defined by Eq. (1.1) is only defined to within a

constant, which is equivalent to the freedom to choose the base b of the logarithm which

defines the units of information. If the natural logarithm is chosen then information is

given by nats, and if base two is chosen then the information is in bits.

Although Eq. (1.1) specifies the information for a message with equally likely

outcomes, this is not always the case. A more general method of quantifying the

information of an unknown process or message is to consider a set of possibilities

x ∈ X that are not equally likely. In this case each outcome will have an associated

probability

p(x) ≡ p(X = x), (1.3)

that represents the relative likelihood that the event X will be represented by the

particular possibility x. The more probable an event x is to occur, the less weight

or information is conveyed when x occurs. For instance if p(x) = 1, then there is no
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difference in knowledge before and after the event occurs and thus I(x) = 0. Whereas,

if p(x) ≈ 0, then if x occurs this is very surprising, i.e. a lot of information is gained

and thus I(x) should be large. The information gained from measuring x ∈ X is

therefore given by

I(x) ≡ I(X = x) = log
(

1
p(x)

)
= − log(p(x)). (1.4)

The average information per event X is given by

H(X) = E[I(x)] =
∑
x

p(x)I(x) = −
∑
x

p(x) log(p(x)), (1.5)

where E is the expected value operator. H(X) is known as the Shannon information

or entropy by analogy between Eq. (1.5) and the thermodynamic formula for entropy

S given by

S = kBHB = −kB
∑
x

p(x) log(p(x)), (1.6)

where kB is Boltzman’s constant, p(x) represents probabilities of a system existing in

microstate x, and HB is the function used in Boltzman’s H-theorem. Note that if all

outcomes of an event X are equally likely, i.e. if the probabilities are given by

p(x) = 1/N ∀x ∈ X, (1.7)
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then the information is

I(x) = − log(1/N) = log(N), (1.8)

and we recover the expression given by Eq. (1.1).

The Shannon information given by Eq. (1.5) can describe equally well the amount

of information that Alice can encode in a message as well as the amount of information

that Bob learns upon receiving that message. If we say that the channel transmits

from A → B, i.e. Alice sends some symbol A = a ∈ A and Bob measures some

possible state B = b ∈ B, then the expectation value of the amount of information

that Bob obtains upon measurement of his received symbol is given by H(B), where

the probabilities p(x) in Eq. (1.5) are replaced by the probability of Bob detecting

mode b ∈ B given by p(b). If the channel is ideal, than Bob receives the exact encoded

message Alice transmitted and thus Bob has the same amount of information as was

sent and H(B) = H(A). However for a general channel there will be errors and some

of the information necessary to describe Bob’s detection will be caused by these errors.

Assuming that Alice sent a, the amount of the information that Bob gains from his

measurement B = b that are due to these errors alone can be quantified by considering

the entropy of B conditioned on A = a given by

H(B|A = a) = −
∑
b

p(b|a) log(p(b|a)). (1.9)
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The average or expected error is given by the conditional entropy H(B|A) given by

H(B|A) = E[H(B|A = a)] = −
∑
a,b

p(a)p(b|a) log(p(b|a)). (1.10)

The average amount of information that Alice transmits to Bob in a noisy or imperfect

channel is thus given by the mutual information which is simply the information Bob

measures minus the information that is not due to Alice quantified by the conditional

entropy, i.e.

I(A;B) ≡ H(B)−H(B|A). (1.11)

The relationships between the Shannon entropies, the conditional entropy, and the

mutual information is shown schematically in Fig. 1.2.

Generally one does not know the probabilities p(b) a priori, as this depends both

on the encoding scheme as well as the channel itself. Therefore it is often convenient

to use the identity

p(b) =
∑
a

p(b|a)p(a), (1.12)

to make the dependence on p(a) and p(b|a) explicit. This way information due to

the encoding and to the channel are separated as p(a) is based on the encoding used

and the conditional probabilities p(b|a) are a property of the channel which can be
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I(A;B) H(B|A)H(A|B)

H(A) H(B)

Figure 1.2: The marginal entropies representing the information that Alice encodes
H(A) and Bob measures H(B) is represented by the blue and red circles respectively.
The areas that do not overlap are the conditional entropies and the overlapping region
represents the mutual information I(A;B).

experimentally tested. Using this identity Eq. 1.11 can be written as

I(A;B) = −
∑
b

p(b) log(p(b)) +
∑
a,b

p(b|a)p(a) log(p(b|a))

= −
∑
a,b

p(b|a)p(a) log
∑

a′
p(b|a′)p(a′)

+
∑
a,b

p(b|a)p(a) log(p(b|a))

=
∑
a,b

p(b|a)p(a) log
(

p(b|a)∑
a′ p(b|a′)p(a′)

)
,

(1.13)

where the last line is given in terms of quantities that are directly available to the

experimenter.
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The final stage of communication shown in Fig. 1.1 is decoding of the received

message by Bob. However, a noisy channel (i.e. a channel with a non-zero value of

H(B|A)) means that Bob’s message will contain errors, and the average amount of

information contained in the received message that correlates with the message Alice

sent is I(A;B). Alternatively, if Alice and Bob know in advance that the channel

is imperfect, then Alice can encode redundant information in the sent message in a

predetermined way which Bob can than use to correct for possible errors in his received

message. In what is now known as Shannon’s noisy-channel coding theorem [10],

Shannon showed that in principle an intended message could be recovered using error

correction with negligible probability of error. However, this is true only if the average

amount of information that is extracted per symbol is less than the channel capacity

C given by mutual information maximized over all input weightings p(a), i.e.

C = sup
p(a)

I(A;B). (1.14)

The maximum information rate transmitted into the channel is simply the symbol

rate times I(A;B). In order to maximize communication there are three primary

methods available. The first method is to maximize the rate at which symbols are

generated and sent. The second method is to maximize the information of each symbol,

represented by either H(A) or H(B), which is done primarily by using the largest

alphabet possible. Finally one wants to find a means of communication that minimizes
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the errors of transmission H(B|A), which may come from the channel or imperfect

transmitters or receivers.

Much of this work focuses on communication with optical fields that exploit the

large configuration space afforded by the transverse spatial degree of freedom of the

field to maximize the symbol alphabet and the limitations of such a scheme.

1.2 Quantum Cryptography

Maximization of the information capacity of a channel is not the only parameter that

is generally cared about in communication. If the channel is a public channel, or there

is a fear of an eavesdropper listening in on the channel, then it may be desirable to find

a way for Alice and Bob to communicate in a secure fashion. One standard method

used is to encrypt the message with a cryptographic key. This is an algorithm that

takes the message plus a random key to generate a new message that (ideally) contains

only random information if one does not know how to decrypt the message (such as

by knowing the key). Standard methods generally rely on computational complexity

for encryption, but an exciting alternative is quantum cryptographic methods such as

quantum key distribution (QKD), which relies on using quantum resources to securely

distribute a random key for use in encrypting an intended message [11].
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1.2.1 Communication with quantum states

Section 1.1 gave an introduction to some of the theoretical foundations of information

and communication. Expanding this theory to include tools that require quantum

resources leads to the fields of quantum communication and quantum information.

One of the fundamental features of a quantum system that becomes one of the basic

tools in quantum information is the phenomena of superposition. Consider a system

that can be measured in one of two mutually exclusive states which we can write

in the standard Dirac notation as |0〉 or |1〉. If this were simply a classical system

then we would have each symbol or bit x = 0 or 1 encoded using the states |0〉 or |1〉.

However as a quantum system the most general possible state |ψ〉 of this system is

represented as the (normalized) linear combination

|ψ〉 = a |0〉+ b |1〉 , (1.15)

where a, b ∈ C, and

|a|2 +|b|2 = 1. (1.16)

The state in Eq. (1.15) is a general representation of what is called a quantum bit or

qbit with the states |0〉 and |1〉 acting as a basis for this representation.

If Alice prepares a qbit in the state given by Eq. (1.15) and Bob checks to see if

the state was in the |0〉 or |1〉 state, he will get a definite answer of one or the other
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with probabilities given by

p(x = 0) = |a|2 , and p(x = 1) = |b|2 . (1.17)

Thus at most Bob only gets one bit of information per measurement. This type of

measurement is known as projection measurement. In general a projection measure-

ment is described by a Hermitian operator M̂ which can be expanded in terms of it’s

spectral decomposition

M̂ =
N∑
n

λnP̂n =
N∑
n

λn |φn〉〈φn| , (1.18)

where P̂n = |φn〉〈φn| are projectors of the N orthogonal eigenstates |φn〉 spanning the

N -dimensional space, and λn are corresponding eigenvalues of M̂ . A projection style

measurement of M̂ will result in one of the N outcomes λn with the probability of

measuring the nth state given by

pn = 〈ψ|P̂n|ψ〉 =
∣∣〈ψ|φn〉∣∣2 . (1.19)

Therefore the case of Bob testing if the state is |0〉 or |1〉 corresponds to projectors

P̂0 = |0〉〈0| and P̂1 = |1〉〈1| . (1.20)
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A special feature of measurements of quantum systems is the ability to choose a

different measurement scheme M̂ ′ for the same system with projectors over states |φ′n〉

that are superpositions of the eigenstates |φn〉 of M̂ . M̂ and M̂ ′ are said to represent

incompatible observables and will introduce uncertainty into Bob’s measurement, i.e.

the entropy of Bob’s measurement conditioned on Alice’s preparation will not be zero.

For instance if Alice prepares the system in the state |0〉 and Bob measures the state

using the projectors given by Eq. (1.20), he will decide the symbol was zero with 100%

certainty. However if instead Bob makes a measurement by projecting over the states

|φ±〉 = 1
2
(
|0〉 ± |1〉

)
, (1.21)

he will find the state in either |φ+〉 or |φ−〉 each with 50% probability. Therefore, even

in the absence of noise the conditional entropy is one bit and the mutual information

between Alice and Bob is exactly zero. After the measurement either the particle itself

will have been destroyed, such as when a photon is detected, or the quantum state

will have been collapsed into the detected state and any subsequent measurement will

yield the same result and so there is nothing more Bob can do to recover the lost

information.
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1.2.2 Quantum key distribution

One of the first papers on QKD was given by Bennett and Brassard in 1984 and is

aptly known as the BB84 protocol [12]. In a BB84 scheme Alice sends a random key

to Bob using at least two distinct sets of modes from incompatible observables M̂ and

M̂ ′ for encoding. For each symbol that is transmitted, Alice randomly chooses which

alphabet or basis of states to choose her symbol from, and Bob randomly chooses

which basis to measure in. An important constraint on these modes is the requirement

that both sets of modes span the same Hilbert (sub)space and each basis of states

must represent a mutually unbiased basis (MUB) with respect to any other basis

used in the scheme. This means that if a state in one basis is measured by projecting

in another, then the probability of detection is equal among all states and thus the

mutual information between the prepared state and measured state is identically zero.

This can alternately be written as

∣∣〈a | b〉∣∣2 = 1/N, (1.22)

where |a〉 and |b〉 are any two states from different MUBs and N is the dimensionality of

the Hilbert space. Security comes from the fact that any eavesdropper (conventionally

referred to as Eve) who may have access to the transmitted state will be ignorant of

which basis each state was prepared and as a result, will introduce errors into the
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stream of symbols due to this ignorance and the inherent quantum uncertainty in

measuring such general unknown states.

H/V basis D/A basis
Symbol 0 1 0 1
State |H〉 |V 〉 |D〉 |A〉

Table 1.1: Encoding of binary symbols in the original BB84 scheme of Ref. [12]
demonstrating the use of two incompatible polarization bases.

The original example in Ref. [12] used the polarization of photons to encode the

key. Each symbol consisted of a single linearly polarized photon whose orientation

determines whether the state is a binary zero or one. In the first basis the photon

polarization is either horizontally or vertically oriented i.e.

|0〉1 = |H〉 and |1〉1 = |V 〉 . (1.23)

A second basis was chosen such that the polarization is linear and orientated along

the diagonal and anti-diagonal directions, which can be represented in terms of the

original basis as

|0〉2 = |D〉 = 1√
2

(|H〉+ |V 〉) and |1〉2 = |A〉 = 1√
2

(|H〉 − |V 〉) (1.24)

respectively. Alice randomly sends in either the H/V or D/A basis and Bob chooses

which basis to make a measurement in. After sending a sufficiently long message Alice
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and Bob will sift the key by announcing which basis was used for each symbol and

keep only the part of the message in which both choose the same basis.

Alice and Bob then announce part of their key to test for errors to check for the

presence of Eve, as her presence will necessarily introduce errors. For instance if

Eve measures and then resends in a randomly chosen basis, she will measure in the

wrong basis half of the time and thus Bob, measuring in the correct basis, will get an

incorrect bit half of these times. For instance if Alice prepares the symbol x = 0 in the

H/V basis she will send state |H〉. There is a 50% chance Eve will choose the correct

H/V basis in which case she will measure and send the same state to Bob introducing

no errors. However, if Eve choses to measure in the D/A basis then she will measure

and resend either |D〉 or |A〉 to Bob. In both of these cases a measurement by Bob in

the correct H/V measurement will be completely random with a measurement of |H〉

and |V 〉 both occurring with a probability of 50%. A list of possible combinations is

given in Table 1.2. If Eve is using an intercept-resend strategy she will induce an error

rate of at least 25%. Therefore if Alice and Bob measure an error rate of less than

25%, then they can be certain there was no eavesdropper making such an attack.

Alice/Bob’s Basis Eve’s Basis Frequency Error Contribution to total error
H/V H/V 1/4 0% 0%
H/V D/A 1/4 50% 25%
D/A H/V 1/4 50% 25%
D/A D/A 1/4 0% 0%

Table 1.2: Introduction of errors into the sifted key in a BB84 QKD scheme due to an
eavesdropper (Eve) intercepting and measuring each symbol in a random basis and
then resending the measured symbol to Bob.
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The error rate caused by Eve in an intercept-resend strategy can be generalized

to using more than two MUBs and using a state space dimensionality greater than

two. If the number of MUBs used is N , then Eve will choose the wrong basis with

probability (N − 1)/N . If the dimensionality of the Hilbert space is d, and Eve

measures in the incorrect basis, Bob will get an error with probability (d − 1)/d.

Therefore the intercept-resend strategy will in general create an error with probability

(N − 1)(d− 1)/Nd. Thus the security of the protocol can be improved by increasing

the state space or the number or MUBs and it can be shown that this holds true even

for more sophisticated eavesdropping strategies [13, 14]. Although security is improved

by increasing either N or d, increasing the number of MUBs has the disadvantage of

not only increasing the probability that Eve will choose the wrong basis, but also that

Bob will choose incorrectly as well, thus decreasing the sifted key rate by a factor of

N . For this reason our work focuses entirely on an increase in the number of symbols

used for encoding, rather than on finding a large number of MUBs.
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Chapter 2

Theory of spatial mode communication

As was demonstrated in chapter 1, using large alphabets or state spaces to encode

information in a communication channel can allow for significant increases to channel

communication rates as well as improvements in security in QKD. A particularly

attractive physical resource that allows for many distinct states is the transverse or

spatial degree of freedom of light, as the number of modes needed to describe an

arbitrary field in a plane are unbounded. Optical means of communication are a

natural and common means of communication, although exploiting spatial modes of

light have only recently begun to be explored in this context. This interest includes

both increasing transmission rates in classical channels [15] as well as for use in QKD

systems [3, 14, 16, 17]



CHAPTER 2. THEORY OF SPATIAL MODE COMMUNICATION 19

2.1 Diffraction limited communication

As previously seen, the benefit of using a resource for communication depends largely

on the number of distinct possible states N for that resource. Although the spatial

degree of freedom of an optical field appears unbounded, in practice N will always be

limited. The primary physical mechanism limiting N will be diffraction and loss due

to the sender and receiver having finite apertures. N can be estimated by imagining

Alice communicates to Bob by focusing a beam to a spot in Bob’s receiver as shown

in Fig. 2.1. Two spots will be barely resolvable if they are separated by the Rayleigh

criterion given by

δx ∝ λz/DT , (2.1)

where λ is the wavelength, z is the separation between apertures and DT is the

transmitter diameter. The area of each spot therefore takes up roughly

(δx)2 ∝ (λz)2/AT , (2.2)

where AT is the area of the transmitting aperture.

The total number of spots distinguishable in the receiver aperture is therefore

equal to the number of spots that fit within an area of the receiver AR which gives

N ≈ AR/(δx)2 ≈ ARAT
(λz)2 = DF , (2.3)
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Figure 2.1: Communication scheme where various symbols are encoded by the location
of distinct spots focused within the receiver’s aperture. The number of distinct spots
is given by the Fresnel number product DF of the sender and receiver.

where DF is known as the Fresnel number product of the sender and receiver. There-

fore the amount of information that can be transmitted by a diffraction limited

communication channel is expected to be approximately

I(A;B) ≈ log(DF ). (2.4)

2.2 Communication modes

The more rigorous method of counting the number of available modes is to consider

the Green’s function operator Ĝ that maps functions in Alice’s aperture A to Bob’s

aperture B, i.e.

Ĝ : A → B. (2.5)

The Green’s function operator Ĝ includes loss from both apertures as well as the

propagation in the channel, and is therefore generally not a unitary or information
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preserving map. For all physically realistic situations Ĝ will be represented as a

Hilbert-Schmidt operator, meaning an operator that is a linear operator with a norm

of finite measure and therefore by Mercer’s theorem [18] there will be a normal mode

decomposition of Ĝ. Thus we can write the propagator as

Ĝ =
∑
n

gn |bn〉〈an| , (2.6)

where |an〉 ∈ A and |bn〉 ∈ B are orthonormal sets of modes within their respective

apertures. Equation (2.6) can be rewritten as the set of eigenequations

Ĝ†Ĝ |an〉 = |gn|2 |an〉 ĜĜ† |bn〉 = |gn|2 |bn〉 . (2.7)

The modes in Eqs. (2.6) – (2.7) are known as the communication modes [19], and

Eq. (2.6) can be interpreted as a one-to-one map of the set of modes |an〉 onto the set

|bn〉 with coupling constant gn (i.e. power efficiency ηn = |gn|2). Such a decomposition

discretizes the problem and allows us to apply the discrete tools developed in section 1.1

that allow us to quantify a physical process in terms of information theoretical concepts.

In addition, the communication modes abstract the problem of propagation from all

further analysis, allowing a full characterization of the problem in terms of a single

special set of modes. Therefore a careful examination of the problem of diffraction

using this perspective is both desirable and advantageous.
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2.3 Channel capacity with communication mode

encoding

Since Eqn. (2.6) specifies a one-to-one map of modes, this means we can write the

conditional probability of Bob detecting mode |bn〉 given that Alice sends mode |an〉

as

p(bn|am) = δm,nps(ηn), (2.8)

where ps(ηn) is the probability that Bob measures a signal. For communication using

single photons (such as in QKD) then ηn is the probability of Bob receiving a photon

or not and thus for ideal detection

pQKD
s (ηn) = ηn. (2.9)

For classical communication communication, Bob will still receive a signal, even in

the presence of loss. If the original signal was some power P0, then Bob will receive a

signal with power ηP0. If the noise equivalent power (NEP) is significantly less than

ηP0, then Bob will register the correct symbol with very high probability. Therefore,

a simple model for ps is to treat it as a threshold or step function, i.e.

pclassical
s (ηn) =

1 if ηn > ηmin

0 otherwise
. (2.10)
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The value of ηmin must be chosen high enough that errors are not introduced from

noise, but low enough that the capacity of the channel isn’t artificially restricted. The

ideal value will depend on optimising these effects which depend on the exact nature

of the noise of the system. This is a major area of study within the fields of signal

processing and estimation theory, the details of which is beyond the scope of this

thesis.

Using the conditional probability defined in Eq. (2.8), the marginal probability of

Bob measuring mode |bn〉 therefore takes on the simple form

p(bn) =
∑
m

p(bn|am)p(am) =
∑
m

δm,nps(ηn)p(am) = ps(ηn)p(an). (2.11)

Using these two equations allows us to write the mutual information in a form that

only depends on the values of p(an) and ps(ηn),

I(A;B) =
∑
m,n

p(am)p(bn|am) log
(
p(bn|am)
p(bn)

)

=
∑
m,n

p(am)δm,nps(ηn) log
(
δm,nps(ηn)
ps(ηn)p(an)

)

=
∑
n

p(an)ps(ηn) log
(

1
p(an)

)

= −
∑
n

p(an)ps(ηn) log
(
p(an)

)
.

(2.12)
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An expression for the channel capacity can be found by finding the supremum of

Eq. (2.12) subject to the constraint

∑
n

p(an) = 1. (2.13)

Using the method of Lagrange multipliers this requires extremizing the function

L = I(A;B) + λ

(∑
n

p(an)− 1
)

= −
∑
n

p(an)ps(ηn) log
(
p(an)

)
+ λ

(∑
n

p(an)− 1
)
,

(2.14)

where λ is a constant chosen to satisfy the constraint in Eq. (2.13). The function L in

Eq. (2.14) will be maximized at points of stationarity with respect to the probabilities

p(an), i.e.
∂L

∂p(an) = 0 = −ps(ηn) log(p(an))− ps(ηn) + λ. (2.15)

Solving this equation for p(an) gives

p(an) = exp
(

λ

ps(ηn) − 1
)
. (2.16)

Since this equation yields non-negative values for p(an), and the sum of probabilities

is equal to one, we can see that Eq. (2.16) gives the correct range of values

0 ≥ p(an) ≥ 1 ∀n. (2.17)
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For the quantum case where we use the signal probability pQKD
s (ηn) = ηn from

Eq. (2.9) the channel capacity is

CQKD = −
∑
n

pQKD(an)ηn log(pQKD(an)) (2.18)

with

pQKD(an) = exp
(
λ

ηn
− 1

)
. (2.19)

For the classical case we assume there are N total states with efficiencies greater than

the threshold ηmin given by Eq. (2.10), i.e.

pclassical
s (ηn) =

1 if n ≤ N

0 otherwise
. (2.20)

In this case

pclassical(an) =
exp (λ− 1) if n ≤ N

0 otherwise
, (2.21)

which solving for the constraint specified in Eq. (2.13) gives

pclassical(an) =
1/N if n ≤ N

0 otherwise
. (2.22)

Therefore by Eq. (2.12) the channel capacity of a classical channel is given as

Cclassical =
N∑
n=1

1
N

log(N) = log(N). (2.23)
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2.4 Communication modes of a free-space channel

An important metric that will be shown to correspond roughly to the total number of

modes is the Hilbert-Schmidt inner product of Ĝ defined as

∥∥∥Ĝ∥∥∥2
≡ Tr

(
Ĝ†Ĝ

)
=
∑
n

|gn|2 =
∑
n

η2
n. (2.24)

Assuming propagation over a distance z within a free-space optical channel assumed

to be within the paraxial regime, then the Green’s function can be written as [20]

〈
r
∣∣∣ Ĝ ∣∣∣ r′〉 ≡ G(r, r′) = PR(r)PT (r′)

iλz
exp

(
ikz + ik

∣∣∣r− r′
∣∣∣2 /2z), (2.25)

where λ is the wavelength, k = 2π/λ is the wavenumber, and PT (r) and PR(r) are the

pupil transmission functions for Alice and Bob. For such a propagator

∥∥∥Ĝ∥∥∥2
=
∫∫ ∣∣∣G(r, r′)

∣∣∣2 dr′ dr = ARAT/(λz)2 = DF (2.26)

where

A =
∫ ∣∣P (r)

∣∣2 dr (2.27)

is the area of the aperture. Therefore by combining the above expressions with

Eq. (2.24), we see that the sum of the mode coupling efficiencies equals the Fresnel
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number product DF , i.e. ∑
n

|gn|2 = DF . (2.28)

In order to gain any more information about the communication modes or their

coupling strengths gn, we need to solve the eigenequations in Eq. (2.7). The spatial

representation of these eigenequations is

∫∫ 〈
rT

∣∣∣ Ĝ†Ĝ ∣∣∣ r′T〉Ψn(r′T) dr′T =
∫∫

K(rT, r′T)Ψn(r′T) dr′T = |gn|2 Ψn(rT)∫∫ 〈
rR

∣∣∣ ĜĜ† ∣∣∣ r′R〉Φn(r′T) dr′T =
∫∫

K ′(rR, r′R)Φn(r′R) dr′R = |gn|2 Φn(rR),
(2.29)

where

Ψn(r) ≡ 〈r|an〉 and Φn(r) ≡ 〈r|bn〉 (2.30)

are the spatial representations of the communication modes in Alice and Bob’s

apertures respectively. The integral kernels K and K ′ of Eq. (2.29) can be found using

Eq. (2.25). This is given by

K(rT, r′T) =
〈
rT

∣∣∣ Ĝ†Ĝ ∣∣∣ r′T〉
=
∫∫ 〈

rT

∣∣∣ Ĝ† ∣∣∣ rR
〉〈

rR

∣∣∣ Ĝ ∣∣∣ r′T〉 drR

= P ∗T (rT)PT (r′T)
(λz)2

∫∫ ∣∣PR(rR)
∣∣2 e−i k2z|rT−rR|2ei

k
2z |r

′
T−rR|2 drR,

(2.31)

and similarly

K ′(rR, r′R) = PR(rR)P ∗R(r′R)
(λz)2

∫∫ ∣∣PT (rT)
∣∣2 ei k2z|rR−rT|2e−i

k
2z |r

′
R−rT|2 drT. (2.32)
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Note that if the channel is symmetric, i.e. if

PT (r) = PR(r), (2.33)

then K ′ = K∗ and thus the eigenequations in Eq. (2.29) are complex conjugates of

each other. In this situation the eigenstates are simply related as

Φn(r) = Ψ∗n(r). (2.34)

The solutions to Eq. (2.29) depend on the form of the pupil functions PT and

PR. Two typical cases are are given in sec. 2.5 – 2.6. Section 2.5 looks at the case

of rectangular apertures, which gives solutions in separable Cartesian coordinates.

Section 2.6 gives solutions for the more typical round apertures which leads to a

natural decomposition in cylindrical coordinates.

2.5 One dimensional apertures (square geometry)

The first and simplest geometry we consider is one in which the pupil functions are

separable in Cartesian coordinates, i.e.

PR(x, y) = PR,x(x)× PR,y(y) and PT (x, y) = PT,x(x)× PT,y(y). (2.35)
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In this case Eq. (2.31) can be written as

K(rT, r′T) = P ∗T (rT)PT (r′T)
(λz)2

∫∫ ∣∣PR(rR)
∣∣2 e−i k2z|rT−rR|2ei

k
2z |r

′
T−rR|2 drR

=
P ∗T,x(xT )PT,x(x′T )

λz

∫ ∣∣∣PR,x(xR)
∣∣∣2 e−i k2z|xT−xR|2ei k2z |x′T−xR|2 dxR

×
P ∗T,y(yT )PT,y(y′T )

λz

∫ ∣∣∣PR,y(yR)
∣∣∣2 e−i k2z|yT−yR|2ei k2z |y′T−yR|2 dyR

= K1D(xT , x′T )×K1D(yT , y′T ).

(2.36)

Therefore we can write the eigenequation for Ψ(x, y) from Eq. (2.29) as

∫
K1D(xT , x′T )ψm,x(x′T ) dx′T ×

∫
K1D(yT , y′T )ψn,y(y′T ) dy′T

= ηm,xψm,x(xT )× ηn,yψn,y(yT ),
(2.37)

where Ψm,n(x, y) = ψm,x(x) × ψn,y(y) and ηn = ηm,x × ηn,y. This means that for a

square geometry we only need to solve the one dimensional eigenequations

∫
K1D(x, x′)ψm,x(x′) dx′ = ηm,xψm,x(x)∫
K1D(y, y′)ψn,y(y′) dy′ = ηn,yψn,y(y).

(2.38)

It is convenient to define the one dimensional version of the norm,
∥∥∥Ĝ∥∥∥2

, given in

Eq. (2.26). This can be written as

∥∥∥Ĝ1D

∥∥∥2
=
∫∫ ∣∣∣G1D(x, x′)

∣∣∣2 dx dx′ ≡
∫ ∣∣K1D(x, x)

∣∣2 dx = LRLT
λz

= DF,1D, (2.39)
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where DF,1D is the 1D Fresnel number product and

L =
∫ ∣∣P (x)

∣∣2 dx (2.40)

is the generalized pupil length, which acts as the 1D analog to the area defined in

Eq. (2.27).

2.5.1 Gaussian apodized apertures

In order to solve for the eigenequations in Eq. (2.38), we need to know K1D and thus

have a specific form for the apertures. We first consider apertures that are Gaussian

apodized as these results are known to have analytic solutions [21]. Such apertures

will be specified by the (one dimensional) pupil functions

PT (x) = exp
(
−x2

2σ2
T

)
and PR(x) = exp

(
−x2

2σ2
R

)
, (2.41)

which have characteristic lengths based on Eq. (2.40) of

LR/T =
∫ ∣∣∣PR/T (x)

∣∣∣2 dx =
∫
e
−x2/σ2

R/T dx = σR/T
√
π. (2.42)

This system has a (one dimensional) Fresnel number product of

DF = LRLT
λz

= πσRσT
λz

= kσRσT
2z . (2.43)
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Now we can compute the kernel K1D by plugging the pupil expressions into

Eq. (2.36). This gives

K1D(x, x′) =
P ∗T,x(x)PT,x(x′)

λz

∫ ∣∣∣PR,x(xR)
∣∣∣2 e−i k2z (x−xR)2

ei
k

2z (x′−xR)2 dxR

= e−(x2+x′2)/2σ2
T

λz
ei

k
2z (x′2−x2)

∫
e−x

2
R/σ

2
Rei

k
z

(x−x′)xR dxR

= e−(x2+x′2)/2σ2
T

λz
ei

k
2z (x′2−x2)LRe

−k2σ2
R(x−x′)2/4z2

= e−(x2+x′2)/2σ2
T

λz
ei

k
2z (x′2−x2)LRe

−2D2
F (x−x′)2/2σ2

T .

(2.44)

Our eigenequation now becomes

ηmψm(x) =
∫
K(x, x′)ψm(x′)

= LR
λz

∫
e−(x2+x′2)/2σ2

T ei
k

2z (x′2−x2)e−2D2
F (x−x′)2/2σ2

Tψm(x′) dx′.
(2.45)

If we make the substitution

ψ(x) = ψ′(x) exp
(
−i k2zx

2
)
, (2.46)

then this becomes the real-valued eigenequation

ηmψ
′
m(x) = ei

k
2zx

2
∫
K1D(x, x′)ψm(x′)

= LR
λz

∫
e−(x2+x′2)/2σ2

T e−2D2
F (x−x′)2/2σ2

Tψ′m(x′) dx′

= LR
λz

∫
e−(1+2D2

F )(x2+x′2)/2σ2
T e4D2

F xx
′/2σ2

Tψ′m(x′) dx′.

(2.47)
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Using a substitution of variables we can write the exponential function as

exp
(
−(1 + 2D2

F )(x2 + x′2) + 4D2
Fxx

′

2σ2
T

)
= exp

(
−(1 + t2)(y2 + z2) + 4tyz

2(1− t2)

)

=
√
π(1− t2)

∑
n

HGn(y) HGn(z)tn,
(2.48)

where we have used Mehler’s formula [22] to express the exponential function in terms

of a bilinear expansion using the complete and orthogonal Hermite-Gaussian functions.

These functions are given by

HGn(z) = 1√
2nn!
√
π
e−z

2/2Hn(z), (2.49)

where Hn(z) are the Hermite polynomials which can be written as

Hn(z) = (−1)nex2 dn
dxn e

−x2
. (2.50)

The first few Hermite-Gaussian functions are plotted in Fig. 2.2. The value of n

corresponds to the degree of the Hermite polynomial Hn(z) that makes up HGn(z).

As a result of this the HGn mode will have n−1 nodes and thus a larger mode number

can be seen as corresponding to higher spatial frequencies of the mode. In addition

the width (or variance) of the function itself will also grow with n as can be seen in

the figure.
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Figure 2.2: Plots of the six lowest order Hermite-Gaussian functions HGn(z) given by
the expression in Eq. (2.49).

The substitution in Eq. (2.48) is true if we have

y =
√

1− t2
1 + t2

√
1 + 2D2

F

σT
x, z =

√
1− t2
1 + t2

√
1 + 2D2

F

σT
x′,

and t

1 + t2
= D2

F

1 + 2D2
F

.

(2.51)

Solving for t gives

t = 1 + 2D2
F −
√

1 + 4D2

2D2
F

(2.52)

and

y = (1 + 4D2
F )1/4

σT
x, z = (1 + 4D2

F )1/4

σT
x′. (2.53)
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With this substitution our eigenequation becomes

ηmψ
′
m(y) = LR

λz

∫
e−(1+2D2

F )(x2+x′2)/2σ2
T e4D2

F xx
′/2σ2

Tψ′m(x′) dx′

= DF√
1 + 2D2

F

√
1 + t2

∑
n

tn HGn(y)
∫

HGn(z)ψ′m(z) dz

=
√
t
∑
n

tn HGn(y)
∫

HGn(z)ψ′m(z) dz

=
√
t tmψ′m(y),

(2.54)

where the integration is performed by assuming that ψ′m(z) ∝ HGm(z). We have

therefore found the communication modes which are given by the normalized functions

ψm(x) =
√

(1 + 4D2
F )1/4

σT
HGm

(1 + 4D2
F )1/4

σT
x

 e−i k2zx2 (2.55)

in Alice’s aperture, and similarly by

φm(x) =
√

(1 + 4D2
F )1/4

σR
HGm

(1 + 4D2
F )1/4

σR
x

 ei k2z x2 (2.56)

at Bob’s aperture. These modes have a power coupling efficiency given by the

eigenvalues

ηm =
√
t tm =

1 + 2D2
F −

√
1 + 4D2

F

2D2
F


1
2 +m

. (2.57)
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HG0,0 HG1,0 HG2,0

HG0,1 HG1,1 HG2,1

HG0,2 HG1,2 HG2,2

Figure 2.3: Plots of the nine lowest order 2D Hermite-Gaussian wavefunctions
HGm,n(x, y) given by the expression in Eq. (2.61). The magnitude of the ampli-
tude is represented by the color brightness, while phase (e.g. sign) is represented by
the color hue with red representing a real and positive value and blue representing a
real and negative value.

The full two dimensional solutions are just given as the product of the one

dimensional solution, i.e.

Ψm,n(x, y) = ψm(x)× ψn(y), Φm,n(x, y) = φm(x)× φn(y),

and ηm,n = ηm × ηn.
(2.58)
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In particular, if σR,x = σR,y = σR and σT,x = σT,y = σT then the communication

modes are given by

Ψm,n(x, y) = (1 + 4D2)1/4

σT
exp

(
−i k2z

(
x2 + y2

))

× HGm,n

(1 + 4D2)1/4

σT
x,

(1 + 4D2)1/4

σT
y

 (2.59)

in Alice’s aperture, and similarly by

Φm,n(x, y) = (1 + 4D2)1/4

σR
exp

(
i
k

2z
(
x2 + y2

))

× HGm,n

(1 + 4D2)1/4

σR
x,

(1 + 4D2)1/4

σR
y

 (2.60)

at Bob’s aperture, where we have defined the two dimensional Hermite-Gaussian

functions

HGm,n(x, y) ≡ HGm(x)× HGn(y). (2.61)

These modes have a power coupling efficiency given by the eigenvalues

ηm,n = ηm × ηn = t1+m+n =

1 + 2DF,2D −
√

1 + 4DF,2D

2DF,2D


1+m+n

, (2.62)

where

DF,2D = DF,x ×DF,y = D2
F (2.63)

is the usual (two dimensional) Fresnel number product.
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We can use the expression for the power efficiencies ηm,n given by Eq. (2.62) to

compute the informational capacity of the channel. For communication using single

photons the capacity as given by Eq. (2.18) is

CQKD = −
∑
m,n

pQKD(an)ηm,n log(pQKD(an))

= −
∑
m,n

exp
(

λ

ηm,n
− 1

)
ηm,n log

exp
(

λ

ηm,n
− 1

)
= −

∑
m,n

exp
(

λ

t1+m+n − 1
)
t1+m+n log

exp
(

λ

t1+m+n − 1
) ,

(2.64)

where λ is the Lagrange multiplier that must be chosen such that the probabilities

are properly normalized.

There is no simple analytic formula for λ in Eq. (2.64), so one must resort to using

numerical methods such as by minimizing the error function

ε(λ) ≡
1−

∑
m,n

pm,n(λ)
2

=
1−

∑
m,n

exp
(

λ

t1+m+n − 1
)2

. (2.65)

The results of numerically computing the channel capacity from Eq. (2.18) for a range

of values for the Fresnel number product NF,2D are plotted in Fig. 2.4. As is shown in

the figure the capacity can be expressed as

CQKD ≈ 1
2 log(DF,2D). (2.66)
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Figure 2.4: Plot of the single photon channel capacity for a free-space channel with
apodized apertures encoded using the Hermite-Gaussian communication modes of the
channel as given by Eq. (2.64). Also plotted (dashed lines) for comparison are the
plots for log(DF,2D) and 1

2 log(DF,2D).

The classical channel capacity given by Eq. (2.23) is simply logN , where N is

the number of modes with efficiencies greater than ηmin. This means we are only

considering modes HGm,n such that

ηm,n = t1+m+n > ηmin. (2.67)

The maximum value of Nmax such that m+ n < Nmax is given by

ηmin = t1+Nmax → Nmax = log(ηmin)
log(t) − 1. (2.68)
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m

n

N ′max

N ′max

Figure 2.5: A configuration space diagram of Hermite-Gaussian communication modes
HGm,n. The red area indicates those states for which m+ n ≤ N ′max.

The total number of modes N is given by counting all the modes HGm,n such

that m+ n < Nmax which is shown diagramatically as the modes in the red region in

Fig. 2.5. This is equivalent to

N =
∑

m+n<Nmax

1

=
N ′max∑
m=0

N ′max−m∑
n=0

1


=

N ′max∑
m=0

(
N ′max −m+ 1

)

= 1
2(N ′max + 2)(N ′max + 1),

(2.69)
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where N ′max = bNmaxc is the largest interger less than Nmax. Therefore the channel

capacity is

Cclassical = log
(

1
2(N ′max + 2)(N ′max + 1)

)

≈ log
1

2

(
log(ηmin)

log(t) + 1
)

log(ηmin)
log(t)

 . (2.70)
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Figure 2.6: Plots of the classical channel capacity for a free-space channel with
apodized apertures encoded using the Hermite-Gaussian communication modes of the
channel for various threshold values ηmin. Also plotted (dashed lines) for comparison
is the plot for log(DF,2D).

The classical channel capacity was computed and the results are plotted in Fig. 2.6.

The capacity was plotted for a range of values for ηmin from 0.1 to 0.4. In addition a

dashed curve representing log(DF,2D) is also shown. As can be seen a threshold value
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of ηmin = 0.25 gives a capacity that is close to log(DF,2D), while smaller values of ηmin

give larger capacities and vice versa.

2.5.2 Hard rectangular apertures

Although the Gaussian apodized pupils given in Eq. (2.41) allowed us to analytically

solve the one dimensional eigenequations of Eq. (2.38), a more realistic situation is to

have hard apertures. For hard apertures with Cartesian or rectangular symmetry the

(one dimensional) pupil functions are given by

PT (x) = rect
(
x

LT

)
and PR(x) = rect

(
x

LR

)
, (2.71)

where rect(x) is the rectangle function defined as

rect(x) =
1 for |x| < 1

2
0 otherwise

. (2.72)

We can see immediately that LT and LR are the characteristic lengths based on

Eq. (2.40) as ∫ ∣∣P (x)
∣∣2 dx =

∫
P (x) dx =

∫
rect

(
x

L

)
dx = L. (2.73)

This system also has the simple (one dimensional) Fresnel number product as given in

Eq. (2.39) of

DF = LRLT
λz

. (2.74)
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Now again we must compute the kernel K1D by plugging the pupil expressions

into Eq. (2.36). Doing this gives

K1D(x, x′) = PT (x)PT (x′)
λz

∫ ∣∣PR(xR)
∣∣2 e−i k2z (x−xR)2

ei
k

2z (x′−xR)2 dxR

=
rect

(
x
LT

)
rect

(
x′

LT

)
λz

ei
k

2z (x′2−x2)
∫

rect
(
xR
LR

)
ei
k
z

(x−x′)xR dxR

=
rect

(
x
LT

)
rect

(
x′

LT

)
λz

ei
k

2z (x′2−x2)LR sinc
(
LR
λz

(x− x′)
)

=
rect

(
x
LT

)
rect

(
x′

LT

)
λz

ei
k

2z (x′2−x2)LR sinc
(
DF

x− x′

LT

)
,

(2.75)

where the function sinc(x) is defined to be

sinc(x) ≡ sin(πx)
πx

. (2.76)

As we did before, we make the substitution

ψ(x) = ψ′(x) exp
(
−i k2zx

2
)
, (2.77)

which gives us the real-valued eigenequation

ηmψ
′
m(x) = ei

k
2zx

2
∫
K1D(x, x′)ψm(x′)

= DF

LT
rect

(
x

LT

)∫
rect

(
x′

LT

)
sinc

(
DF

x− x′

LT

)
ψ′m(x′) dx′.

(2.78)
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The solutions to Eq. (2.78) are known as the prolate spheroidal wavefunctions

(PSWs) [23]. Writing Eq. (2.78) in standard form [24] gives

2R2
0,m(c, 1)S0,m(c, t) =

∫ 1

−1
sinc

(
c(t− s)

π

)
S0,m(c, s) ds, (2.79)

which is equivalent to Eq. (2.78) with the substitutions

s = 2x′
LT

, t = 2x
LT

, c = πDF

2 ,

R2
0,m(c, 1) = ηm

DF

, and ψ′m(t) = S0,m(c, t).
(2.80)

The functions Sm,n(c, t) and Rm,n(c, t) are known as the angular prolate spheroidal

and radial prolate spheroidal functions respectively. These functions are solutions of

the differential eigenequation [24]

(t2 − 1)d2u

dt2 + 2tdudt +
(
c2t2 − m2

t2 − 1

)
u = λm,nu, (2.81)

where

um,n(c, t) =
Sm,n(c, t) for |t| ≤ 1
Rm,n(c, t) for |t| ≥ 1

. (2.82)

Our eigenvalues, which are related to the radial prolate spheroidal functions, are

given by

ηm = DFR
2
0,m(c, 1) = DFR

2
0,m

(
πDF

2 , 1
)
. (2.83)
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Figure 2.7: Plot of the transmission efficiencies ηm for a free-space channel with hard
apertures encoded using the prolate spheroidal communication modes of the channel.
The efficiencies display a sharp cutoff for m > DF .

A plot of ηm is given in Fig. 2.7. Generally, ηm falls off very rapidly for m ≥ DF .

Therefore, for systems with DF > 1, the eigenvalues are well approximated by the

step functions

ηm =
1 for m < DF

0 otherwise
. (2.84)

For DF ≤ 1 we only have approximately one mode which is transmitted with an

efficiency

η ≈ DF . (2.85)

It is a general feature of systems with hard apertures to have an abrupt cutoff in the

transmission of spatial modes as one goes to larger spatial frequencies [25]. This can
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be simply understood using Abbe’s model of diffraction in which optical propagation

between pupils is understood in terms of geometrical optical rays [20]. Each ray leaves

the aperture at a different angle with larger angles being associated with larger spatial

frequencies. The light that can be collected after the second pupil is simply the sum of

all spatial frequencies that are within the solid angle of the pupil. Since the aperture

has a hard edge, there is a hard cutoff in the angle of the rays that make it into the

aperture. This is represented diagrammatically in Fig. 2.8.

Figure 2.8: Schematic representing Abbe’s model of diffraction in which a field at a
pupil can be represented by a set of geometrical rays representing the different spatial
frequency components of that field within the first aperture. The second aperture
blocks the rays representing the high order spatial frequencies while leaving untouched
the moderate and low order frequencies.

The sharp cutoff in the spectrum of ηm, as well as the fact that ∑ η = DF ,

means that we essentially have DF good modes to communicate with nearly lossless

transmission. For a classical channel this gives a capacity of

Cclassical = log(DF ). (2.86)
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We expect this also to be the case for communication with single photons. Again we

use the expression in Eq. (2.18) for communication using single photons given as

CQKD = −
∑
m

pQKD(am)ηm log(pQKD(am))

= −
∑
m

exp
(
λ

ηm
− 1

)
ηm log

exp
(
λ

ηm
− 1

) , (2.87)

and solve for the value of λ that properly normalizes the probabilities. The results are

plotted in Fig. 2.9 along with log(DF ) (as the dashed line). As can clearly be seen,

the two are nearly identical and thus to a very good approximation we can claim that

CQKD = log(DF ). (2.88)

We have also uptained the eigenfunctions to Eq. (2.78) which are given by

ψm(x) = So,m

(
πDF

2 ,
2x
LT

)
exp

(
−i k2zx

2
)

(2.89)

at Alice. Repeating the procedure to find the modes at Bob gives us the kernel K ′1D

in the eigenequation for φm that is identical to the complex conjugate of K1D if we

make the substitution

LT → LR. (2.90)
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Figure 2.9: Plot of the single photon channel capacity for a free-space channel with
hard apertures encoded using the prolate spheroidal communication modes of the
channel (Eq. (2.87)). Also plotted (dashed lines) for comparison is the plot for log(DF ).

Therefore the communication modes at Bob are simply

φm(x) = So,m

(
πDF

2 ,
2x
LR

)
exp

(
i
k

2zx
2
)
. (2.91)

The functions So,m
(
πDF/2, 2x/L

)
are real and continuous and have exactly m

zeros within the aperture (i.e. for x ∈ (−L/2, L/2)) [24]. These eigenfunctions are very

similar to the eigenmodes that were derived in section 2.5.1 (Eqs. (2.55) – (2.56)), and

for mode numbers m� DF , the two sets of modes are nearly indistinguishable [26].

Plots of the communication modes for a system with a (one dimensional) Fresnel

number product of DF = 5 are shown in Fig. 2.10 for the modes with non-negligible
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Figure 2.10: Plots of the prolate spheroidal wavefunctions that act as the commu-
nication modes for a system with hard apertures and a Fresnel number product of
DF = 5. In addition the Hermite-Gaussian communication modes of an analogous
channel with Gaussian apodized apertures are plotted (dashed lines) in order to show
the close similarities between the two sets of modes.

transmission efficiencies ηm. In addition the Hermite-Gaussian modes for a system

with identical Fresnel number product and aperture size L = σ
√
π are superimposed

as the dashed line demonstrating the similarities between the two sets of modes.
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2.6 Cylindrical apertures

The second type of geometry we consider is one in which the pupil functions are

cylindrically symmetric, i.e.

PT (r) = PT (r) and PR(r) = PR(r), (2.92)

where r ≡|r|. The area of such pupils can be given by the one dimensional integral

over r as

A ≡
∫∫ ∣∣P (r)

∣∣2 dr = 2π
∫ ∣∣P (r)

∣∣2 r dr. (2.93)

Such a geometry represents round pupils which is a more typical case relative to

the geometry discussed in section 2.5. Assuming such a geometry, Eq. (2.31) can be

written as

K(rT, r′T) = P ∗T (rT )PT (r′T )
(λz)2

∫∫ ∣∣PR(rR)
∣∣2 e−i k2z|rT−rR|2ei

k
2z |r

′
T−rR|2 drR

= P ∗T (rT )PT (r′T )
(λz)2 exp

(
ik

2z
(
r′2T − r2

T

)) ∫∫ ∣∣PR(rR)
∣∣2

× exp
[
i
krR
z

(
rT cos(φR − φT )− r′T cos(φR − φ′T )

)]
drR.

(2.94)

We can expand the exponential terms in the integral in terms of Bessel functions using

the identity

eiz cos(φ) =
∞∑

n=−∞
ineinφJn(z), (2.95)
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where the functions Jn(z) are the Bessel functions which can be defined by the

generating sequence [27]

e
1
2 (t−1/t)z =

∞∑
n=−∞

tnJn(z). (2.96)

Equation (2.95) is known as the Jacobi-Anger expansion and is derived by the substi-

tution t = i exp(iφ) in Eq. (2.96). Therefore our kernel becomes

K(rT, r′T) = P ∗T (rT )PT (r′T )
(λz)2 e

ik
2z (r′2T −r2

T )(−1)nim+n
∫ ∣∣PR(rR)

∣∣2 rR drR

×
∑
m,n

einφ
′
T e−imφT Jm

(
krRrT
z

)
Jn

(
krRr

′
T

z

)∫ 2π

0
ei(m−n)φR dφR

= P ∗T (rT )PT (r′T )
(λz)2 e

ik
2z (r′2T −r2

T )∑
m

eim(φ′T−φT )

× 2π
∫ ∣∣PR(rR)

∣∣2 Jm
(
krRrT
z

)
Jm

(
krRr

′
T

z

)
rR drR.

(2.97)

Now if we make the substitution

Ψ`,p(r, φ) = ψ`,p(r)e−i
k

2z r
2
ei`φ, (2.98)
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where we have used the ansatz that all of the azimuthal dependence is due to ei`φ,

where ` is an integer, then our eigenequation (Eq. (2.29)) becomes

η`,pψ`,p(r) =
∫∫

e−
ik
2z (r′2−r2)ei`φe−i`φ′K(r, r′)ψ`,p(r′) dr′

= P ∗T (r)PT (r′)
(λz)2

∑
m

∫
ei(`−m)φe−i(`−m)φ′ dφ′

∫
ψ`,p(r′)r′ dr′

× 2π
∫ ∣∣PR(rR)

∣∣2 Jm
(
krRr

z

)
Jm

(
krRr

′

z

)
rR drR

=
(
k

z

)2

P ∗T (r)
∫ ∣∣PR(rR)

∣∣2 J`
(
krRr

z

)
rR drR

×
∫
PT (r′)ψ`,p(r′)J`

(
krRr

′

z

)
r′ dr′.

(2.99)

We can simplify Eq. (2.99) if we assume that the pupil functions PT and PR are

simply scaled versions with the same functional form. Therefore, we assume we can

write our pupil functions as

PT (ρLT ) = PR(ρLR) = P (ρ), (2.100)

where LT and LR are characteristic lengths for the transmitter and receiver pupils

respectively, and ρ is a dimensionless radial coordinate. Now if we rewrite Eq. (2.99)

with the coordinate change

ρ = r/LT , ρ′ = r′/LT , and ρR = rR/LR, (2.101)
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then we get

η`,pψ`,p(ρ) =

c2P ∗(ρ)
∫ ∣∣P (ρR)

∣∣2 J` (cρRρ) ρR dρR
∫
P (ρ′)ψ`,p(ρ′)J`

(
cρRρ

′
)
ρ′ dρ′,

(2.102)

where

c = kLTLR/z. (2.103)

Eigenfunctions of the above equation are also eigenfunctions of the simpler equation

λ`,pψ`,p(ρ) = P ∗(ρ)
∫
P (ρ′)ψ`,p(ρ′)J`(cρ′ρ)ρ′ dρ′. (2.104)

This can be shown by applying the integral operator

Ô = P ∗(ρ̄)
∫
P (ρ)J(cρρ̄)ρ dρ (2.105)

to Eq. (2.104), i.e.

λ`,pÔψ`,p(ρ) = λ2
`,pψ`,p(ρ̄)

= P ∗(ρ̄)
∫ ∣∣P (ρ)

∣∣2 J` (cρρ̄) ρ dρ

×
∫
P (ρ′)ψ`,p(ρ′)J`

(
cρρ′

)
ρ′ dρ′,

(2.106)
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which is identical to Eq. (2.102) with

λ`,p =
√
η`,p

c
. (2.107)

Therefore we only need to solve Eq. (2.104) to find the communication modes.

2.6.1 Gaussian apodized apertures

In order to go any further in solving Eq. (2.104), we need to specify the form of the

apertures. As we did in section 2.5.1, we first consider Gaussian apodized apertures

in order to obtain analytic solutions [21] to gain physical insight and intuition to the

problem. Such apertures are specified by the radial pupil functions

PT (r) = exp
(
−r2

2σ2
T

)
and PR(r) = exp

(
−r2

2σ2
R

)
. (2.108)

Such apertures have areas based on Eq. (2.93) of

AR/T = 2π
∫ ∣∣∣PR/T (r)

∣∣∣2 r dr = 2π
∫

exp
 −r2

σ2
R/T

 r dr = πσ2
R/T , (2.109)

and therefore the Fresnel number product of this system is

DF = ARAT
(λz)2 =

(
πσRσT
λz

)2
=
(
kσRσT

2z

)2

. (2.110)
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The Gaussian widths σT and σR provide natural lengths for the transmitter and

pupil receiver, and so we use

LT = σT and LR = σR (2.111)

for our normalized coordinates as defined by Eq. (2.101). In this case our general

pupil function is simply

P (ρ) = exp(−ρ2/2), (2.112)

and Eq. (2.104) becomes

λ`,pψ`,p(ρ) = P ∗(ρ)
∫
P (ρ′)ψ`,p(ρ′)J`(cρ′ρ)ρ′ dρ′

= e−ρ
2/2
∫
e−ρ

′2/2ψ`,p(ρ′)J`(cρ′ρ)ρ′ dρ′.
(2.113)

In addition we have that the scaling parameter c is given by

c = kσTσR
z

= 2
√
DF . (2.114)

Using a substitution of variables we can write

e−
1
2 (ρ2+ρ′2)J`(cρ′ρ) = e−

1
2 (x+y)( 1−t

1+t)J`
(

2
√
xyt

1 + t

)

= (1 + t)t|`|/2
∑
n

tnφ`n(x)φ`n(y),
(2.115)
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where we have used the Hill-Hardy theorem [28] to express the function in terms of

a bilinear expansion using the complete and orthogonal Laguerre functions. These

functions are given by

φ`n(z) =
√

n!
(n+|`|)!e

−z/2z|`|/2L|`|n (z), (2.116)

where L|`|n (z) are the generalized Laguerre polynomials which can be written as

L|`|n (z) = ezz−|`|

n!
dn
dzn

(
e−zzn+|`|

)
. (2.117)

The substitution in Eq. (2.115) is true if we have

ρ2 = 1− t
1 + t

x, ρ′2 = 1− t
1 + t

y,

and 2
√
xyt

1 + t
= cρρ′ = 2

√
DFρρ

′.

(2.118)

Solving for t gives

t = 1 + 2DF −
√

1 + 4DF

2DF

(2.119)

and

x =
√

1 + 4DFρ
2, y =

√
1 + 4DFρ

′2. (2.120)
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With this substitution our eigenequation becomes

λ`,pψ`,p(y) =
∫
e−

1
2 (x+y)( 1−t

1+t)J`
(

2
√
xyt

1 + t

)
ψ`,p(ρ′)

√
t

c(1 + t) dx

= t(|`|+1)/2

c

∑
n

tnφ|`|n (y)
∫
φ|`|n (x)ψ`,p(x) dx

= t(2p+|`|+1)/2

c
φ|`|p (y),

(2.121)

where the integration is performed by assuming that ψ`,p(x) ∝ φ|`|p (x). We have

therefore found the communication modes which are given by the normalized functions

Ψ`,p(r, φ) = ψ`,p(r, φ)ei`φe−i k2z r2

= (1 + 4DF )1/4
√
πσT

φ|`|p

√1 + 4DF

σ2
T

r2

 ei`φe−i k2z r2

= (1 + 4DF )1/4
√
πσT

LG`
p

(1 + 4DF )1/4

σT
r, φ

 e−i k2z r2

(2.122)

at Alice, where LG`
p are the Laguerre-Gaussian functions defined as

LG`
p(ρ, φ) = φ|`|p

(
ρ2
)
ei`φ. (2.123)

By symmetry we know that the communication modes at Bob’s aperture are given by

Φ`,p(r, φ) = (1 + 4DF )1/4
√
πσR

LG`
p

∗
(1 + 4DF )1/4

σR
r, φ

 ei k2z r2
, (2.124)
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Figure 2.11: Plots of nine of the lowest order Laguerre-Gaussian wavefunctions
LG`

p(ρ, φ) given by the expression in Eq. (2.123). The complex phase information is
represented by the hue of the color in the plots, while the amplitude is represented by
the color’s brightness.

The LG`
p communication modes have a power coupling efficiency given by the

eigenvalues

η`,p = c2λ2
`,p = t2p+|`|+1 =

1 + 2DF −
√

1 + 4DF

2DF

2p+|`|+1

. (2.125)

This expression is identical to the expression found in section 2.5.1 for the efficiencies

of the Hermite-Gaussian modes of a square Gaussian apodized aperture given in

Eq. (2.62) if we replace 2p + |`| by m + n. This is not a coincidence, however as a
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square Gaussian function also has cylindrical symmetry, i.e.

exp
(
−x2

2σ2

)
exp

(
−y2

2σ2

)
= exp

(
−x2 − y2

2σ2

)
= exp

(
−r2

2σ2

)
. (2.126)

This additional symmetry is also the reason for the degenerate eigenvalues in either

the HG or LG spectrum. In addition, the LG`
p modes can be expressed as a linear

combination of HGm,n modes (and vice versa) within this degenerate subspace [29]

spanned by

2p+ |`|+ 1 = m+ n+ 1 = constant, (2.127)

i.e.

LG`
p(r, φ) =

∑
m+n=2p+|`|

cm,n HGm,n(x, y). (2.128)

Therefore we know that all the results concerning the channel capacity for a Gaus-

sian apodized channel encoded with LG modes is identical to the results found in

section 2.5.1.

2.6.2 Hard circular apertures

As was done in section 2.5, Gaussian apodized apertures allowed for the analytic

computation of the communication modes but hard apertures provide a more realistic

geometry. For the case of hard apertures, a communication system with cylindrical
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symmetry means we have circular apertures with (radial) pupil functionals given by

PT (r) = circ
(
r

RT

)
and PR(r) = circ

(
r

RR

)
, (2.129)

where circ(ρ) is the circle function defined as

circ(ρ) =
1 for ρ < 1

0 otherwise
. (2.130)

These pupils have the obvious areas of

AR/T = πR2
R/T , (2.131)

and therefore such a channel has a Fresnel number product of

DF = ARAT
(λz)2 =

(
πRRRT

λz

)2

=
(
kRRRT

2z

)2

. (2.132)

The circular widths RT and RR provide natural lengths for the transmitter and

pupil receiver, and so we use

LT = RT and LR = RR (2.133)
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for our normalized coordinates as defined by Eq. (2.101). In this case our general

pupil function is simply

P (ρ) = circ(ρ) (2.134)

and Eq. (2.104) becomes

λ`,pψ`,p(ρ) = P ∗(ρ)
∫
P (ρ′)ψ`,p(ρ′)J`(cρ′ρ)ρ′ dρ′

= circ(ρ)
∫ 1

0
ψ`,p(ρ′)J`(cρ′ρ)ρ′ dρ′,

(2.135)

where our scaling parameter c is given by

c = kRTRR

z
= 2

√
DF . (2.136)

The solutions to Eq. (2.135) are known as the circular prolate spheroidal wavefunc-

tions (CPSW), and are the cylindrical analog of the PSWs found in section 2.5.2 [26].

Writing Eq. (2.135) in standard form [30] gives

γ`,pϕ`,p(ρ) =
∫ 1

0

√
cρρ′ϕ`,p(ρ′)J`(cρ′ρ) dρ′, (2.137)

which is equivalent to Eq. 2.135 with the substitutions

ϕ`,p(ρ) = ψ`,p(ρ)√ρ, and γ`,p =
√
cλ`,p =

√
η`,p
c
. (2.138)
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The functions ϕ(ρ) are known as the generalized prolate spheroidal functions and are

also solutions of the differential eigenequation

(ρ2 − 1)d2ϕ

dρ2 + 2ρdϕ
dρ +

(
c2ρ2 − 1/4− `2

ρ2

)
ϕ = χϕ, (2.139)

which is identical to the differential equation for the prolate spheroidal functions given

in Eq. (2.81) except for the (1/4 − `2)/ρ2 term. Finding numerical expressions for

ϕ(ρ) is computationally intensive, although there exist approximations that make the

problem more tractable [31].

We have therefore found the communication modes which are given by the functions

Ψ`,p(r, φ) = ψ`,p(r, φ)ei`φe−i k2z r2

= ϕ`,p(r/RT , φ)√
r/RT

ei`φe−i
k

2z r
2

= CPSW`,p(r/RT , φ)e−i k2z r2

(2.140)

at Alice and

Φ`,p(r, φ) = CPSW∗
`,p(r/RR, φ)ei k2z r2 (2.141)

at Bob. We have defined the CPSWs as

CPSW`,p(ρ, φ) ≡ ϕ`,p(ρ, φ)
√
ρ

ei`φ. (2.142)
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Figure 2.12: Plots of nine of the lowest order CPSWs given by the expression in
Eq. (2.142) for a system with hard apertures and a Fresnel number product of
DF = 25. The dotted white lines represent the edge of the aperture. The complex
phase information is represented by the hue of the color in the plots, while the
amplitude is represented by the color’s brightness. These modes have the same scaling
as the LG modes plotted in Fig. 2.11 in order to show the close similarities between
the two sets of modes.

Plots of the communication modes for a system with hard circular apertures and

a Fresnel number product of DF = 25 are shown in Fig. 2.12. It was demonstrated

in section 2.5.2 that the PSWs communication modes of a system with hard square

apertures are very similar to the HG modes of the analogous system with Gaussian

apodized apertures. In the same way a comparison of Fig. 2.12 with Fig. 2.11 shows

that the CPSWs can be closely approximated by the LG modes of an analogous

apodized system.
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`
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N−N

N/2

Figure 2.13: A configuration space diagram of CPSW communication modes. The red
area indicates those states for which 2p+ |`| ≤ N .

As was discussed in section 2.5.2, we expect the transmission efficiencies η`,p to

be approximately equal to unity up to some sharp cutoff in the modal indices (`, p)

due to Abbe’s model of diffraction between apertures. We know from section 2.5.1

that the maximum spatial frequencies of mode (`, p) is related to the quantity 2p+ |`|,

therefore we expect

η`,p ≈

1 for 2p+ |`| ≤ N

0 otherwise
, (2.143)

where N is some number related to the total number of modes the communication

system supports.
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Figure 2.14: Plot of the transmission efficiencies η`,p for a free-space channel with hard
apertures encoded using the circular prolate spheroidal communication modes of the
channel. The efficiencies display a sharp cutoff for 2p+ |`| > N which is represented
by the dashed line.

The total number of modes such that Eq. (2.143) holds true is approximately DF

and thus

DF ≈
∑

2p+|`|≤N
1

=
N/2∑
p=0

 N−2p∑
`=−(N−2p)

1


=

N/2∑
p=0

(
2(N − 2p) + 1

)

= 1
2(N + 1)(N + 2),

(2.144)

which is represented diagrammatically as the red region in Fig. 2.13. Inverting this

equation gives

N = 1
2

(√
1 + 8DF − 3

)
≈
√

2DF . (2.145)
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A two dimensional plot of η`,p is shown in Fig. 2.14 showing the accuracy of Eq. (2.143)

(represented by the dashed line) compared with the actual numerically computed

values.

2.7 Orbital angular momentum of light

The communication modes derived in section 2.6 are orbital angular momentum

(OAM) eigenstates of light as will be demonstrated in this section. This is due to

azimuthal dependence of the beam being described by the ei`φ phase term. Such

beams are sometimes known as vortex beams with topological charge equal to ` due

to the fact that the phase is singular at r = 0 with a topological winding number of `

about the optical axis [32].

As the “vortex” name suggests, there is a rotation of the field that is responsible

for the existence of angular momentum in the beam. This can be seen if one considers

the wavefronts of the beam. The phase of a vortex beam has the form

phase ∼ kz + `φ, (2.146)

which for surfaces of constant phase, will rotate about the optical axis with period

λ/`. A plot of the wavefronts of the states ` ∈ [−3, 3] are shown in Fig. 2.15 which

clearly show the rotational nature of the wavefront of these beams.
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Figure 2.15: Plots of the seven lowest order Orbital angular momentum states of light.
The top row shows states with negative topological OAM charge while the bottom
row shows plots of states with negative charge. Two dimensional slices are presented
at z = 0 and z = λ, while only the surface with phase equal to zero is shown between
these two planes. Phase of the beams is represented by the color hue, while amplitude
is represented by the color’s brightness.

2.7.1 Rotational eigenmodes

In section 2.6 we made the ansatz that the azimuthal dependence of the communication

modes of a system with circular apertures was completely described by the term ei`φ.

This is due to the fact that the system has cylindrical symmetry about the optical z
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axis. To prove this, we define a rotation operator R̂(∆φ) such that

R̂(∆φ) |f(φ)〉 = |f(φ+ ∆φ)〉 . (2.147)

By the symmetry of the Green’s function of the system, we know that Ĝ and R̂

commute. Therefore if we apply R̂ to the eigenequations of Eq. (2.7) that define the

communication modes |an〉 and |bn〉, we get

R̂Ĝ†Ĝ |an〉 = Ĝ†ĜR̂ |an〉 = |gn|2 R̂ |an〉

R̂ĜĜ† |bn〉 = ĜĜ†R̂ |an〉 = |gn|2 R̂ |bn〉 .
(2.148)

The states R̂ |an〉 and R̂ |bn〉 are also communication modes with the same eigenvalues

|gn|2. Therefore these states span a degenerate subspace which can be diagonalized by

also requiring that the states |an〉 and |bn〉 be eigenstates of R̂.

The eigenstates of rotations are given by states of the form

〈r|ψ`〉 = f(r)ei`φ. (2.149)

We can show that these states are the eigenstates and also find the eigenvalues by

applying R̂, e.g.

R̂(∆φ) |ψ`〉 =
∫

dr |r〉〈r|R̂(∆φ)|ψ`〉 =
∫

dr |r〉 f(r)ei`(φ+∆φ) = ei`∆φ |ψ`〉 , (2.150)
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which gives eigenvalues of ei`∆φ. The azimuthal angle φ is also periodic with period

2π and thus

R̂(∆φ = 2π) ≡ Î, (2.151)

where Î is the identity operator. We therefore require

R̂(∆φ = 2π) |ψ`〉 = ei`2π |ψ`〉 = |ψ`〉 , (2.152)

which is true only for integer values of `.

It is a well established fact in modern physics that for every symmetry governing

the dynamics of a system there is a corresponding conserved physical quantity [33].

For cylindrically symmetric systems, we thus have a conserved “charge,” `, which will

be shown to be related to eigenstates of orbital angular momentum (OAM). This was

first shown for the case of Laguerre-Gaussian beams [34], and was later demonstrated

to hold in general (for both classical as well as quantum fields) [35].

2.7.2 Angular momentum of an optical field

For an optical field, the angular momentum flux density j is given by

j = r× p, (2.153)
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where p is the momentum flux density given by

p = cε0 〈E×B〉 . (2.154)

Consider a monochromatic optical field given by the vector potential (assuming the

Lorenz gauge)

A = (ax̂ + bŷ)U(x, y, z)eikz, (2.155)

where (ax̂+ bŷ) specifies the polarization and U(x, y, z) is the spatial mode. Assuming

propagation within the paraxial approximation, the momentum flux density for such

a field is given by [36]

p = cε0

2
(
iω(U∇U∗ − U∗∇U) + 2ωk|U |2 ẑ + iω(ab∗ − a∗b)∇|U |2 × ẑ

)
= cε0

2
(
ω(iU∇U∗ + c.c.) + 2ωk|U |2 ẑ + ωσ∇|U |2 × ẑ

)
,

(2.156)

where σ = i(ab∗ − a∗b) is the spin-projection along ẑ (σ = ±1 for circularly polarized

and σ = 0 for linearly polarized light).

If we assume that U(x, y, z) is of the form

U(x, y, z) = u(ρ, z)ei`φ, (2.157)
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where ρ =
√
x2 + y2, then Eq. (2.156) becomes

p = cε0ω

2

(iu(ρ̂ ∂
∂ρ

+ ẑ ∂
∂z

)u∗ + c.c.
)

+ 2k|u|2 ẑ +
2` |u|

2

ρ
− σ ∂ |u|

2

∂ρ

 φ̂

 . (2.158)

Now the angular momentum flux density along the optical axis z is

jz = j · ẑ = (r× p) · ẑ = ρ× (pφφ̂) = cε0ω |u|2 `− ρ
cε0ω

2
∂ |u|2

∂ρ
σ, (2.159)

while the energy flux density (e.g. time averaged Poynting vector) becomes

Sz = p · ẑc = c2ε0ω

2

((
iu ∂

∂z
u∗ + c.c.

)
+ 2k|u|2

)
≈ c2ε0ωk|u|2 = cε0ω

2|u|2 , (2.160)

where we have used the paraxial approximation

k |u|2 �
∣∣∣u∂u∗

∂z

∣∣∣ . (2.161)



CHAPTER 2. THEORY OF SPATIAL MODE COMMUNICATION 71

The total angular momentum in any z plane normalized to the energy of the beam

is given by the ratio of the angular momentum flux Jz and the energy flux Φz,

Jz
Φz

=
∫∫

j · ẑρ dρ dφ∫∫
S · ẑρ dρ dφ

=
cε0ω

∫∫
dρ dφ

(
ρ`− σ ρ2

2
∂
∂ρ

)
|u|2

cε0ω2 ∫∫ |u|2 ρ dρ dφ

= (`+ σ)
∫∫
|u|2 ρ dρ dφ

ω
∫∫
|u|2 ρ dρ dφ

= `+ σ

ω
.

(2.162)

If a single photon is prepared in the state given by Eq. (2.155), then by the Planck-

Einstein relation the energy of the photon will be ~ω. If we write the angular

momentum per unit energy ~ω, we get

Jz
Φz

= ~(`+ σ)
~ω

. (2.163)

Therefore the angular momentum per photon is given by

Jz = L+ S = ~`+ ~σ, (2.164)

where L = ~` is the OAM and S = ~σ is the spin angular momentum.

Most systems in practice use cylindrical apertures, and therefore the communication

modes of most systems will be eigenstates of OAM, i.e. will be states of definite

value of L. For this reason, as well as technical details related to methods of mode
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discrimination that will be discussed in section 3.2, much of the research that will be

presented in the remainder of this thesis is concerned specifically with communication

using beams within the one dimensional azimuthal spatial subspace of the transverse

degree of freedom of an optical beam.
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Chapter 3

Implementing spatial mode

communication

In chapter 2 the fundamental limits due to diffraction of free-space optical communi-

cation systems were analyzed. This was done assuming ideal mode generation and

measurement by Alice and Bob. However these tasks are not trivial. The generation

and discrimination of modes must be accurate to minimize errors and fast if one cares

about the overall communication rates.

This chapter concerns the details of an experimental implementation intended to

demonstrate the possibility of a free-space, high-dimensional quantum key distribution

system encoded using spatial modes of light. Section 3.1 describes methods of spatial

light modulation using computer generated holograms for generation of arbitrary

spatial fields of light, as well as technological methods that allow for rapid generation

of modes. Section 3.2 details the basic problems of state discrimination as well as the
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technological methods utilized for modal discrimination. Section 3.3 demonstrates the

integration of the mode generation and discrimination in an integrated QKD system.

3.1 Spatial mode generation

One of the key technological tools used for controlling the traverse field of an optical

beam is the spatial light modulator (SLM). An SLM can be described by a complex

transmission function of an optical beam T (x, y) that is a function of position on the

device itself. A beam described by some complex field UI(x, y) incident on an SLM

will then be given by

U(x, y) = T (x, y)× UI(x, y) (3.1)

after interacting with the SLM (either after reflection from or transmission through

the SLM). The properties of T (x, y) are controllable experimentally, typically via

individually addressable pixels whose properties can be controlled electronically via

computer control.

If an SLM could generate an arbitrary complex value at each point it would

be trivial to generate arbitrary spatial modes. Generation of any mode could be

accomplished by shining a plane wave on the SLM and setting the SLM’s transmission

to be given by

T (x, y) = A(x, y)
UI

eiφ(x,y), (3.2)
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where A and φ are the desired amplitude and phase of the generated spatial mode.

Although historically there have been methods of generating such complex valued

transmission functions [37], most SLMs do not generally have the ability to generate

any transmission function, but instead are much more limited. Typically SLMs are

either phase or amplitude only devices, and thus require more sophisticated modulation

techniques for generating arbitrary beams.

Instead of trying to modulate the complex value of the desired optical beam

directly, one can instead use the SLM to generate a computer generated hologram

(CGH). If the CGH is periodic then the device will act as a diffraction device creating

multiple orders in which the beam will scatter into. This is represented in the left

panel of Fig. 3.1. If T (x, y) is spatially periodic then we can write T as the Fourier

expansion

T (x, y) =
∑
m

Tme
im(G·r), (3.3)

where

G = (2π/Λ)(cos(θ)x̂ + sin(θ)ŷ) (3.4)

is the grating wavevector representing a periodicity along the θ direction with period

Λ, and Tm is the amplitude of the beam that is diffracted into the mth diffraction

order given by

Tm =
∫∫

Λ T (x, y)e−im(G·r) dr∫∫
Λ dr

= 1
A

∫∫
Λ
T (x, y)e−im(G·r) dr, (3.5)
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where A =
∫∫

Λ dr is the area of a single period of the grating.

Input

U−1

U0

U1

Input

U1e
iφ

Figure 3.1: Left: a periodic structure acts as a diffraction grating that splits the beam
up into multiple diffraction orders. Right: a phase change is induced in the diffracted
order as a result of the detour phase caused by shifting the grating.

No matter what the physical origin of T (x, y) that creates the diffraction grating,

any phase can be induced in a diffracted beam by a simple shift in the grating’s

location along G. This can be seen by applying the transformation r→ r + ∆r to

Eq. (3.3), i.e.

T (x, y) =
∑
m

Tme
im(G·(r+∆r)) =

∑
m

Tme
im(2πδ)eim(G·r) =

∑
m

T ′me
im(G·r), (3.6)

where

2πδ = G ·∆r, (3.7)
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and δ represents the shift relative to Λ of the grating. One generally has full control

over the ability to shift the grating, and therefore the desired mode in the diffracted

order can take on any phase. This type of phase modulation is known as a detour

phase, due to the fact that the phase can be understood as being caused by a change

in the optical path lengths as one shifts the grating which induces a detour in the

beam path leading to the accumulation of additional phase [38].

SLM

Laser
Spatial Filters Detector

Figure 3.2: Basic setup for generating spatial modes with a modulated diffraction
grating CGH on a SLM. A laser beam is spatially filtered before the SLM to create a
simple collimated beam for UI . Filtering is also required after the SLM to select a
single modulated diffraction order.

If one then adds a modulation onto this periodic pattern, it is possible to have

phase and amplitude control in the diffracted order. The basic setup for such a scheme

is shown in Fig. 3.2. A laser is spatially filtered and shown onto an SLM. A CGH

grating is encoded on the SLM device which create multiple diffraction orders which

are filtered out in a Fourier plane after the device with a second spatial filter. In this

schematic a detector is placed at the final output plane, allowing measurement of the

intensity pattern of the generated field. If the beam at the SLM is a unit-amplitude
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plane wave, then the output field in the first diffracted order is given by

U(x, y) = T1(x, y)ei2πδ(x,y), (3.8)

where we have explicitly kept the detour phase term (which is now a function of

position), and T1(x, y) is the local amplitude given by

T1(x, y) = 1
A

∫∫
Λ(x,y)

T (x′, y′)e−iG·r′ dr′ (3.9)

The modulation of the grating must not contain spatial frequencies greater than G or

there will be mixing between the different diffraction orders.

3.1.1 Phase only spatial light modulation

The first type of SLM we consider is one in which only the phase is modulated. Such

a device will have a transmission function

T (x, y) = eiΨ(x,y), (3.10)

where Ψ(x, y) is the phase value at (x, y). Suppose we want to create a beam

U(x, y) = A(x, y)eiφ(x,y), (3.11)
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where A is the mode amplitude and φ is the desired phase. The simplest type of

modulation is to assume a periodic function Φ(φ) that encodes the desired phase

information, and a modulation function f(A) that modulates Φ as a function of the

mode amplitude. In this case the SLM phase is given by

Ψ = f(A)Φ(φ). (3.12)

Input

U

2π
f

( A
)

Input

U
2f

(A
)

Figure 3.3: Two CGH encoding schemes for phase only SLMs. Left: schematic of a
blazed grating encoding. Right: schematic of a sinusoidal grating.

The simplest form of Φ is simply a blazed grating [39], which is shown schematically

in the left panel of Fig. 3.3. Such a grating has a phase function defined as

Φ = (G · r + φ) mod 2π − π, (3.13)
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where Φ ∈ [−π, π] is defined symmetrically about zero to ensure amplitude modulation

does not create additional phase modulation [40]. In this case the expansion into the

mth order given by Eq. (3.5) becomes [41]

Tm = 1
A

∫∫
Λ
T (x, y)e−im(G·r) dr =

∫ π

−π
eif(A)Φe−imΦ dΦ = sinc

(
m− f(A)

)
. (3.14)

Therefore f(A) is computed from the inverse of

T1(A) = sinc
(
1− f(A)

)
= A. (3.15)

A second form of Φ is a sinusoidal grating [41], which is shown schematically in

the right panel of Fig. 3.3. The phase function of a sinusoidal grating is defined as

Φ = sin (G · r + φ) . (3.16)

We can expand T in terms of Bessel functions using the Jacobi-Anger expansion

eif(A) sin(Φ) =
∞∑

m=−∞
eimΦJm(f(A)), (3.17)
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which is derived by the substitution t = exp(iΦ) and z = f(A) into the generating

sequence defining the Bessel functions [27]

e
1
2 (t−1/t)z =

∞∑
m=−∞

tmJm(z). (3.18)

Therefore the amplitude into the mth order is

Tm(A) = Jm(f(A)), (3.19)

and f(A) is found by the finding the inverse of

T1(A) = J1(f(A)) = A. (3.20)

It should be noted that the maximum value of A which allows J−1
1 (A) to be single

valued is A ≈ 0.58, corresponding to the first maximum of J1(x) at x ≈ 1.8. Therefore

A ∈ [0, 0.58] and f(A) ∈ [0, 1.8], which gives a phase range of Φ ∈ [−1.8, 1.8]. This is

in contrast to the blazed grating encoding that gives a phase range of Φ ∈ [−π, π] and

a maximum amplitude of Amax = 1.

Sample holograms using phase only modulation are shown in Fig. 3.4. Sample

modes are shown for a LG2
0 Laguerre-Gaussian mode, as well as a pure ` = 2 vortex

beam. Holograms encoded using both a blazed grating and sinusoidal grating are

shown for each mode. A notable feature in these holograms is a forked pattern in the
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Figure 3.4: Phase only holograms necessary to create a LG2
0 mode (top) and a pure

` = 2 vortex beam (bottom). Left: complex plots of the desired mode U(x, y).
Middle: hologram generated using a blazed grating. Right: hologram generated using
a sinusoidal grating.

center of the hologram. This is due to the topological charge of the OAM in these

beams, i.e. if one draws a closed loop around the fork and counts the number of

periods, one will find it adds up to exactly `.

3.1.2 Binary spatial light modulation

The second type of grating we consider is a binary grating. The grating shown in

Fig. 3.1 was a binary grating. A close up of this type of encoding showing a single

period is given in Fig. 3.5. There are two regions with distinct values for the SLM

transmission T . The background or zero region denoted by a transmission t0 and a
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binary square pulse of width qΛ given by a transmission of t1. Therefore within a

single grating period, x ∈ [−Λ/2,Λ/2], the transmission is given by

T (x) = t0

1− rect
(
x

qΛ

)+ t1 rect
(
x

qΛ

)
. (3.21)

qΛ

Λ

t1 t0t0

Figure 3.5: Plot of a binary diffraction grating with period Λ and square pulses of
width qΛ. The transmission function of the pulses is given by t1, while the background
is t0.

The transmission amplitude of the mth diffraction order from a binary equation

as given by Eq. (3.5) is

Tm = t1 − t0
Λ

∫
rect

(
x

qΛ

)
e−im2πx/Λ dx+ t0

Λ

∫
rect

(
x

Λ

)
e−im2πx/Λ dx

= (t1 − t0) q sinc(mq) + t0 sinc(m).
(3.22)

Therefore the first diffraction order is given by

T1 = (t1 − t0)q sinc(q) = t1 − t0
π

sin(πq). (3.23)
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The phase of (t1 − t0) creates a global phase factor that we can ignore and thus the

field U in the first diffracted order can be written as

U = Uin
|t1 − t0| sin(πq)

π
ei2πδ, (3.24)

where δ is the shift in the grating responsible for the detour phase and δ = 0 is chosen

to cancel the phase of t1 − t0.

We can allow q and δ to vary with position r, and the previous results still hold as

long as δ(r) ∈ [−1/2, 1/2] and q(r) vary slower than the grating period Λ. Therefore

we can create any field

U = A(r)eiφ(r), (3.25)

using the formula

q(r) = 1
π

arcsin
(

πA(r)
|t1 − t0|Uin

)
, δ(r) = φ(r)

2π . (3.26)

Thus, a shift in the location of the binary pulses changes the overall phases into the

diffracted order, while changing the widths or duty cycles of the pulses changes the

diffracted efficiency. These two methods are known as pulse position and pulse width

modulation respectively [42, 43]. It should be noted that the maximum amplitude is

given by

Amax = |t1 − t0|
π

Uin, (3.27)
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which can always be compensated for by an increase of the amplitude of the input

beam Uin.

Figure 3.6: Binary holograms necessary to create a LG2
0 mode (top) and a pure ` = 2

vortex beam (bottom).

This full procedure can be represented in the following fashion. First one chooses

the field U = A(r)eiφ(r) that one wishes to create. Then q(r) and δ(r) are computed

from Eq. (3.26) and a periodic sinusoidal function is computed to give

cos
(
G · r + 2πδ(r)

)
. (3.28)

To convert this into a binary hologram, this function is thresholded by cos(πq(r)) to

create a binary pulse train with local pulse width q(r). This can be written in the
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compact form

f(r) = H
[
cos

(
G · r + 2πδ(r)

)
− cos(πq(r))

]
, (3.29)

where H(z) is the Heaviside step function defined as

H(z) ≡
0 if z < 0

1 if z ≥ 0
. (3.30)

Plots of two binary CGHs generated using this technique are shown in Fig. 3.6 for a

Laguerre-Gaussian and a pure vortex beam. Again we see a forked pattern just as we

did in Fig. 3.4 indicating the presence of the topological charge of the OAM.

3.1.3 Rapid generation of spatial modes

Most SLMs are relatively slow and operate at frequencies of at most around a few tens

of Hertz. One exception is the digital micromirror device (DMD) which can operate

at up to a few tens of kilohertz. The DMD is a type of micro-electronic mechanical

system, commonly known as a MEMS, that can function as a binary amplitude only

SLM [44]. The device consists of a two dimensional pixelated array of micromirrors

each mounted on an individually addressed MEMS that can be in one of two positions.

In order to use the device as a SLM, the device is aligned such that the light is

reflected and collected by the optics after the DMD if the micromirrors are in the on

position, but scattered out of the system if the mirrors are in the off position. Thus

the transmissions of the pulse and background are t1 = 1 and t0 = 0 respectively.
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He-Ne Laser

1st order

Mirror
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BS

DMD
Aperture BS

Computer

Figure 3.7: Schematic of setup to measure the quality of modes generated by a binary
amplitude CGH on a DMD.

We demonstrated that DMDs are able to rapidly generate high quality spatial

modes experimentally [1]. This was done in two steps, the first of which is to show that

the binary CGHs on the DMD can generate quality spatial modes. The second step

was to demonstrate fast switching is possible between coherent modes. The device

used in our experiments was a Texas Instrument DLP3000. This device has a display

resolution of 608 × 684 pixels, a micromirror size of 7.5 µm, and the pixels can be

switched at rates up to 4 KHz (i.e. the maximum refresh rate of the DLP3000).

In order to test the quality of the modal generation, the beams were imaged to

verify the quality of the amplitude modulation. In addition images were taken of

interferograms of the modes interfered with a collimated beam to observe the quality

of the phase structure of the generated modes. A schematic of the experimental setup

for this test is shown in Fig. 3.7. A laser beam is spatially filtered and collimated and

split by a beam splitter into two beams. One of the two beams is is modulated to
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` = 20 ` = 3 ` = −4 LG2
1 LG3

1 LG3
2

Figure 3.8: Intensity images (top) and interferograms (bottom) of a set of generated
modes. The left three columns are vortex beams with OAM charge ` and the right
three columns are LG`

p modes.

create a spatial mode as described in section 3.1.2. This beam is then recombined

with the second beam at a CCD to generate the interferograms. The procedure to

directly image the generated mode was identical as for the interferogram except with

the reference arm blocked.

The images and interferograms of the generated modes are shown in Fig. 3.8.

Included are three LG and 3 pure vortex beams. The images of the LG modes

emphasize the quality of the amplitude modulation. The vortex beams are beams

that include only phase modulation, and even with the relatively low resolution of our

device shows quality modulation up to a topological charge of ` = 20.

The second part of the experiment was to demonstrate that the generation and

switching between modes could be done rapidly. This was done by cycling through

the generation of three vortex modes with charge ` = ±5 and ` = 0 at the full 4 KHz

rate of the DMD device and measuring the power in each mode as a function of
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He-Ne Laser

DMD

1st order

OAM Sorter

Mirror

` = −5

` = 5
` = 0

Aperture

Figure 3.9: Schematic of the setup used to temporally resolve the power in three
distinct OAM modes which are switched at 4 KHz. The modes used had OAM charge
` = −5, ` = 5, and ` = 0.

time. A schematic of the setup used is shown in Fig. 3.9. The generated modes were

separated into three output spots using the OAM mode sorter that will be described

in section 3.2. At the location of each OAM output was placed a PIN photodiode

connected to an oscilloscope.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (milliseconds)

` = −5

` = 5

` = 0

Po
we

r

Figure 3.10: Oscilloscope time traces of three distinct OAM modes switched at 4 KHz.
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The results of this experiment are shown in Fig. 3.10. Plotted are the three output

channels showing the power in each spatial mode as a function of time. The switching

can be seen to be both fast and stable. These results present a clear demonstration of

the ability to generate and rapidly switch between spatial modes using this method.

3.1.4 Generation of modes with arbitrary spatial coherence

We showed that rapid switching of coherent modes demonstrated in section 3.1.3 can

also be used to generate any arbitrary quasi-monochromatic partially coherent field

that can be specified by a cross-spectral density function W (r1, r2), i.e. for fields fully

specified by their two point spatial correlations [2]. This is done by first computing

the coherent mode decomposition of W (r1, r2), which is an incoherent mixture of

orthogonal coherent modes. For each of these coherent modes a CGH is computed

and rapidly generated with a DMD. If the DMD switches between coherent modes on

a timescale slower than the coherence time of the source laser, but long relative to

the detection time of the CCD then the resultant field will create the coherent mode

decomposition of the desired field.

Coherent mode decomposition

The transverse wavefront of a deterministic and coherent scalar beam is described

by a complex field, U(r). For a stochastic beam, U(r) is a random variable and it

becomes necessary to represent the field in a more sophisticated way. The standard
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way of doing this is with the cross-spectral density function. At a single frequency the

cross-spectral density function is defined as

W (r1, r2) =
〈
U∗(r1)U(r2)

〉
, (3.31)

and represents the average intensity

〈I(r)〉 ≡ W (r, r), (3.32)

as well as the correlations (up to second order) of such a partially coherent field [45].

W (r1, r2) can be decomposed into an incoherent sum of orthogonal spatial modes

ψn(r), written as

W (r1, r2) =
∑
n

λnψ
∗
n(r1)ψn(r2), (3.33)

where λn are real and nonnegative, and

pn = λn∑
n λn

(3.34)

is the relative weight of the field in mode ψn(r) [46]. The modes ψn(r) can be computed

as the eigenfunctions with corresponding eigenvalues λn from the Fredholm integral

equation ∫
W (r1, r2)ψn(r1) d2r1 = λnψn(r2). (3.35)
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This representation is often referred to as a coherent mode decomposition of

W (r1, r2). Mathematically Eq. (3.33) is a sum over an infinite number of modes, but

in practice n is bounded by the maximum spatial frequency content of W (r1, r2), i.e.

there is some maximum

nmax = N (3.36)

such that

pn ≈ 0, for n > N. (3.37)

For example, Gaussian Schell-model beams are a common example of a partially

coherent beam. Such a beam is defined by having a Gaussian intensity

I(r) = exp (−r2/2σ2
I ), (3.38)

as well as a Gaussian degree of coherence

µ(r1, r2) = exp (−|r1 − r2|2/2σ2
µ), (3.39)

which gives a cross-spectral density function

W (r1, r2) =
√
I(r1)I(r2)µ(r1, r2). (3.40)



CHAPTER 3. IMPLEMENTING SPATIAL MODE COMMUNICATION 93

A coherent mode decomposition of such a Gaussian Schell-model beam shows that the

number of coherent modes necessary to describe Eq. (3.40) is given by the number of

independent coherent regions within the beam which is quantified by [47]

N ≈ (σµ/σI)2. (3.41)

Physically Eq. (3.33) can be realized if one can create a beam that alternates

between the coherent modes ψn(r) in time with relative frequency weighted by pn.

For measurement to yield the intended field, the switching time τs must be much

faster than any detector integration time τdet in order to create the intended averaging

over the inputs. In addition, for the mixture to be an incoherent mixture, the various

modes must not have any correlations in time. Thus the switching time must be

slower than the coherence time τcoh of the source. Together these form the condition

τdet > τs > τcoh. (3.42)

If Eq. (3.42) is met, then one has a physically realized implementation of W (r1, r2).

Experiment

A schematic of the experimental setup used to demonstrate the generation of arbitrary

W (r1, r2) is shown in Fig. 3.2. A HeNe laser is spatially filtered using a 4f system to

provide an initial coherent plane wave incident on the DMD. The various coherent
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modes, ψn, are created in rapid succession using the methods described in the previous

sections and are imaged onto a CCD. The CCD operates at 60 Hz, thus the detector

integration time is

τdet = 1/60 Hz ≈ 17 ms. (3.43)

The DLP3000 DMD used in this experiment has a switching rate of 4 KHz, thus

τs = 1/4 kHz = 250 µs� τdet, (3.44)

which fulfills the first inequality in Eq. (3.42). The bandwidth of the HeNe is 1.5 GHz

which gives

τcoh = 1/1.5 GHz ≈ 0.7 ns� τs (3.45)

which meets the second part of the inequality in Eq. (3.42).

ky 0
1
2

−1
−2

kx kx kx
−1 0 1 2−2−1 0 1 2−2−1 0 1 2−2

Figure 3.11: Interference fringes formed from the coherent superposition of two plane
waves. Left figure shows the CGH used to generate the desired mode. Middle figure
represents the target image while the right figure is an experimental image of the
generated mode.
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As a demonstration of the ability to generate a single coherent state, the field

U(r) ∝ eikx + e−ikx (3.46)

was generated. This represents a coherent superposition of two plane wave states,

which form a sinusoidal interference pattern as shown in Fig 3.11.

For this experiment the mode was generated using a grating with wavevector

G = 2π
25 px(x̂ + ŷ), (3.47)

which represents a period of

T = 25
√

2 pixels ≈ 275 µm (3.48)

oriented at θ = 45◦. This value of G was chosen to be large enough to allow enough

separation in the Fourier plane to allow for filtering of the 1st diffracted order with an

iris. In addition a nonzero value was chosen for both the x and y components of G in

order to minimize the noise by ensuring that the diffracted order did not overlap with

any specular reflection due to the DMD’s imperfect pixel fill-fraction. The underlying

grating can be seen in the left image in Fig. 3.11 which have the appearance of the

small diagonally oriented slivers. The plane wave transverse wavenumber was chosen
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to be

k = 2π
100 px ≈

2π
780 µm . (3.49)

Now the spatial wavenumber k meets the condition

k � |G| (3.50)

and thus is slowly varying enough to allow us to use the procedure in section 3.1.2

to construct the CGH to create this state. Since we are perfectly interfering 2 plane

waves, the intensity varies as

I ∝ cos2(kx). (3.51)

Therefore the grating parameters q and δ are given by

q(r) = 1
π

arcsin(cos(kx)) and δ(r) = 0. (3.52)

Next we created a superposition of the plane waves UA = eikx and UB = e−ikx as

before, but this time the degree of coherence between the two beams was spatially

varied, creating a partially coherent mix of modes. The coherent modes used to

represent this is given by

ψ1(r) ∝ (UA + f(r)UB)

ψ2(r) ∝ (f(r)UA + UB),
(3.53)
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where the relative probability weightings are given as

p1 = p2 = 1/2, (3.54)

and where f(r) is related to the fringe visibility V (r) by

f(r) = V (r)/(1 +
√

1− V (r)2) = (1−
√

1− V (r)2)/V (r). (3.55)

The intensity for this beam is

I(r) ∝ (1− f)2 + 4f cos2(kx), (3.56)

which is the sum of an incoherent and a coherent term which can be continuously

tuned from fully coherent (f = 1) to incoherent (f = 0).

The visibility function chosen for the experiment is given by

V (r) = | sin(κr)|, (3.57)

where

2πκ = 4k
3 = 2π

75 px ≈
2π

580 µm . (3.58)

Since f(r) was chosen to be real, Eq. (3.57) also represents our spectral degree of

coherence at r. The CGHs necessary to create the modes ψ1 and ψ2 (Eq. (3.53)) for
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Figure 3.12: Interference fringes formed from superposition of two plane waves that
are partially coherent with respect to each other. Top figures show the CGHs used
to generate the desired modes given by Eq. 3.55. Bottom left figure represents the
target intensity pattern, while the bottom right figure is an experimental image of the
generated field.

this spatially varying fringe visibility are shown in the top row of Fig. 3.12. The CGH

parameters are

q(r) = 1
π

arcsin


√

4f cos2(kx) + (1− f)2

Imax

 , (3.59)
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where Imax is the maximum value of I(r) and

δ1,2(r) = arg(<(ψ1,2) + i=(ψ1,2))

= arg((2 cos(kx)− (1− f) cos(kx))

∓ i((f − 1) sin(kx))).

(3.60)
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Figure 3.13: Plot of the intensity of the image in Fig. 3.12 along the 1D slice of r for
θ = 0, i.e. along the x-axis (solid blue line). Also shown as the black dotted line is the
theoretical envelope of the maximum and minimum intensities based on the intended
visibility function V (r).

In order to compare the intended visibility given by Eq. (3.57) with the image

shown in Fig. 3.12, a one dimensional slice of the intensity is plotted in Fig. 3.13. This

slice is a radial slice r along the x axis (i.e. at an orientation of θ = 0), and is plotted

over an entire period of sin(κr) of the visibility. In addition the theoretical envelope
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of the visibility equal to
1± V (r)

2 = 1± | sin(κr)|
2 (3.61)

is plotted for comparison. As can be seen in both the original coherent and partially

coherent cases, the intended and measured patterns are in excellent agreement with

one another.

3.2 Spatial mode detection and discrimination

It is necessary to be able to measure and discriminate between spatial modes in order

to successfully be able to use these modes, such as in a communication scheme. The

most straightforward method for measuring a state is by a projection measurement as

describe in chapter 1. The standard scheme used to implement such measurements for

spatial modes will be discussed in this section, along with the problems with such an

approach as a tool for communication. In addition a measurement technology more

appropriate for communication, based on the efficient separation or sorting of OAM

modes will be discussed.
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3.2.1 Projection measurements of spatial modes

Suppose one has an input state given by U0 and one wants to know if the state is in

mode ψn, or similarly one wants to find the overlap of the two modes,

∣∣〈ψn|U0〉
∣∣2 = |an|2 . (3.62)

Such a measurement is known as a projection measurement. The standard method

for projection measurements of spatial modes is based on a Fourier filtering approach

which is shown diagrammatically in Fig. 3.14 [48], which is a complex generalization

of the traditional matched filtering schemes [20].

U0

Projection Filter

APDSpatial Filter

Figure 3.14: Setup for the projection measurement of spatial modes. A beam is
transmitted through a filter with complex transmission given by ψ∗n and then spatially
filtered in the Fourier plane of the filter. The probability of detection is proportional
to the mode overlap between the input state and projected mode ψn.

An input field U0 is incident on a complex filter with transmission function T (r).

A lens takes the filtered field U0T to the Fourier plane located at the fiber, where the

fiber spatially filters the field with filter function f(ρ). If we write the field in the
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Fourier plane as

Ũ(ρ) = 1
iλf
F
[
U0(r)T (r)

]
= 1
iλf

∫∫
U0(r)T (r)e−i

2π
λf

r·ρ dr. (3.63)

The overall efficiency of the coupling η is then given by

η =
∣∣∣∣∫∫ Ũ(ρ)f(ρ) dρ

∣∣∣∣2 ≈ ∣∣∣∣Ũ(0)
∫∫

f̃(ρ) dρ
∣∣∣∣2 ∝ ∣∣∣Ũ(0)

∣∣∣2 , (3.64)

where we assume that the filter function is narrow enough that Ũ(ρ) doesn’t change

appreciably within the filter. Now if we assume that the complex filter is given by

T (r) = ψ∗n(r), (3.65)

then the efficiency is given by

η ∝
∣∣∣Ũ(0)

∣∣∣2 ∝ ∣∣∣∣∫∫ U0(r)ψ∗n(r) dr
∣∣∣∣2 = |an|2 , (3.66)

and thus we have a projection measurement of state ψn.

3.2.2 Mode sorting of spatial modes

Projection measurements are good for deciding if an unknown field |U0〉 is orthogonal

to some particular state |ψn〉, but it does not tell you what particular state |U0〉 was
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|a1|2/N |a2|2/N |a3|2/N |a4|2/N |aN |2/N

U0

Figure 3.15: A scheme for determining which of N possible states the field was prepared
in by splitting the field into N parts and performing N projection measurements in
parallel to determine the state.

actually prepared in. If |U0〉 was prepared in some state |ψn〉 such that n ∈ [1, N ],

then one would have to make N different projection measurements. This can be done

sequentially, or in parallel as shown in Fig. 3.15. This is detrimental if one is trying

to maximize the information capacity via these modes. In the first case this would

result in Alice having to send each symbol N times, resulting in a 1/N drop in channel

capacity. If Bob tried to split the signal to make N parallel projection measurements,

then this would result in an additional factor of N loss which would also substantially

diminish the channel capacity by either decreasing the probability of detection for
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single photon communication, or by decreasing the signal by a factor of 1/N (and

thus also decreasing the total signal to noise ratio as well).

|a1|2 = 0 |a2|2 = 0 |a3|2 = 1 |a4|2 = 0 |aN |2 = 0

|ψ3〉
Mode sorter

Figure 3.16: Ideal sorter deterministically separating the input mode into the correct
port.

An alternative method of measurement is to find a way to split the field into N

channels that depends on each mode itself rather than indiscriminately splitting the

field. An ideal scheme is shown in Fig. 3.16 where an input mode |ψ3〉 is selected by

the third port and sorted into the n = 3 detector. Ideal sorting can be written as the

unitary transformation

T̂ |U0〉 =
∑
n

|φn〉〈ψn|U0〉 , (3.67)

where |φn〉 is a set of modes that do not spatially overlap, i.e. for which

〈φm|r〉〈r|φn〉 = 0,∀n 6= m. (3.68)
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It is a known fact that any discrete operator such as T̂ can be decomposed into a discrete

number of interferometric operations [49], and this has been demonstrated for the

case of separating OAM modes [50]. However, such a method requires N − 1 cascaded

interferometers to sort N modes, which is experimentally difficult to implement even

when trying to sort just a few modes.

An alternative method is to try to find a transformation T̂ that will directly

transform an entire set of modes at once. An example set of modes for which such a

transformation is well known are plane wave states, which can be transformed into a

set of spatially separated spots by a Fourier transforming lens. Therefore if one can

transform a set of modes into plane wave states, sorting can be done with a simple

lens.

Figure 3.17: Image of the transformation optics necessary to create an optical log-polar
mapping. Images of an OAM beam at multiple planes were captured to show the
transformation of a circular OAM mode to a linear plane wave state. Image from [51].
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It has been shown that there exists a map that takes OAM states to plane wave

states [51–53] using an optical log-polar map [54, 55] which makes the geometric

transformation

(x, y) 7→ (u, v) = (−a ln(r/b), aφ), (3.69)

where a and b are scaling parameters, r2 = x2 + y2, and φ = arctan(y, x). This is done

via transmission of the beam U0 through a phase element with phase

φ1(x, y) = 2πa
λf

(
yφ− x ln(r/b) + x

)
. (3.70)

The field is then taken to a Fourier plane of a lens with focal length f which gives a

transformed field [52]

F
(
U0(x, y)eiφ1(x,y)

)
≈ U0(u, v)eiφ2(u,v) (3.71)

where

φ2(u, v) = 2πab
λf

exp(−u/a) cos(v/a). (3.72)

A second phase element is then used to correct the additional phase φ2 in the final

beam. Therefore if one has an OAM mode U0 ∼ ei`φ, then this will be transformed to

U0 ∼ ei`φ → ei`v/a, (3.73)
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which is a truncated plane wave with ` waves of tilt across the beam. An image

of the transformation optics used in many of our experiments is shown in Fig. 3.17

transforming an OAM beam into a plane wave state.

3.3 OAM QKD

In order to demonstrate the use of the methods developed in sections 3.1 – 3.2

we implemented a high-dimensional quantum key distribution system based on the

azimuthal degree of freedom spanned by the seven lowest order OAM spatial modes

for the encoding [3]. A schematic of the setup used is shown in Fig. 3.18. A collimated

Helium-Neon laser beam illuminates a DMD to generate spatial modes at up to

4 KHz using the method described in section 3.1.3. We use a scheme that is a high

dimensional generalization of the BB84 protocol described in chapter 1 in which Alice

picks a random sequence of desired symbols from multiple MUBs and transmits them

to Bob. For each symbol, Alice triggers the DMD and modulates the beam using

an acousto-optic modulator to create rectangular pulses of 125 ns width. The beam

is attenuated such that each pulse contains an average photon number of n̄ = 0.1,

ensuring that the probability of a pulse containing multiple photons is negligible.

The prepared states are than imaged to Bob’s receiving aperture via a 4f telescope,

forming a two meter long communication link.
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Figure 3.18: Setup used for demonstration of a free-space, spatially encoded quantum
key distribution system.

As was discussed in section 1.2, a QKD system based on the BB84 protocol needs

encoding in at least two sets of MUBs for security. Our first basis was a pure vortex

OAM basis given by

Ψ`(φ) = 1
2πe

i`φ, (3.74)

where ` ∈ [−3, 3]. Our second MUB was constructed from the OAM modes via a

discrete Fourier transform of the state space to ensure the states are unbiased. These

states are localized in the azimuthal angle and we thus call such states angular (ANG)

states, which can be expressed as

Θn = 1√
d

N∑
`=−N

Ψ` exp
(
i2πn`
d

)
, (3.75)
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where

d = 2N + 1 = 7 (3.76)

is the dimension of the space. It is immediately obvious that these states are mutually

unbiased with respect to the OAM states as

〈Ψ`|Θn〉 = 1√
d

N∑
`′=−N

〈Ψ`|Ψ`′〉 exp
(
i2πn`′
d

)

= 1√
d

N∑
`′=−N

δ`,`′ exp
(
i2πn`′
d

)

= 1√
d

exp
(
i2πn`
d

)
,

(3.77)

and therefore
∣∣〈Ψ`|Θn〉

∣∣2 = 1/d ∀ n and `. (3.78)

Images of both the OAM and ANG set of modes is shown in Fig. 3.19 as well as

sample CGHs used to generate each basis.

` = −3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3n =

OAM

ANG

Figure 3.19: CCD images of the spatial light fields of the OAM (top) and ANG
(bottom) basis. Example binary holograms used for the generation of these modes are
also shown on the left.
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Bob’s system consists of two refractive elements that perform the log-polar trans-

formation that was described in section 3.2. After this transformation the OAM modes

are converted to plane-wave states, while the ANG modes are mapped to localized

spots. The OAM modes are Fourier transformed to spots focused onto an array of

fibers coupled to APDs, while the ANG spots are imaged to a similar array of fibers.

The additional two SLMs (labeled “SLM 1” and “SLM 2” in the figure setup) are used

to create coherent copies of the spots and recombine them in such a way that the

overlap between the modes is suppressed, thus eliminating most of the cross-talk in

detection [56, 57].

As was described in section 1.1 we can characterize the capacity of the channel by

the mutual information (Eq. (1.11)) between Alice and Bob given by

I(A;B) = H(B)−H(B|A) = log(d) +
∑
a,b

p(b|a)
d

log
(
p(b|a)

)
, (3.79)

where p(b|a) is the conditional probability of Bob detecting mode B = b given that

Alice sent mode A = a. A plot of the measured values for p(b|a) is shown in Fig. 3.20. If

we assume that only Bob detects each mode with the same fidelity F that characterizes

the probability of measurement of the “correct” mode and the probability of measuring

the wrong state is equally likely in any of the remaining d− 1 modes, then Eq. (3.79)
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Figure 3.20: Measured conditional probabilities p(b|a) that Bob measured state b
given that Alice sent mode a. Top left shows the plot of an ideal system, while the
right and bottom show the plot and histograms for the measured data.

takes on the form

I(A;B) = log(d) +
∑
a,b

p(b|a)
d

log
(
p(b|a)

)

= log(d) +
∑
b

p(b|a) log
(
p(b|a)

)
= log(d) + F log(F ) + (1− F ) log

(
1− F
d− 1

)
.

(3.80)
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For our experiment the average fidelity was given by F = 0.895, and thus Bob’s

symbol error probability is

eB = 1− F = 0.105, (3.81)

or 10.5%. About 4% of the error is measured to be from the APD dark counts,

while the remaining 6.5% is due to cross-talk among different modes within the same

measured basis. From this information the measured mutual information is

I(A;B) = 2.05 bits/sifted photon. (3.82)

Hilbert Space Dimension (d)
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Figure 3.21: Error-bounds for unconditional security using a alphabet size of dimension
d. Shown are the bounds for an intercept-resend strategy (assuming only two MUBs),
as well as a full coherent attack. In addition, the measured error rate of our system is
shown demonstrating we are well below both security bounds.

As was discussed in section 1.2 the measurement of the error will determine if

there was an evesdropper in the channel and if one can still extract a secure key. A
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plot of the security error bounds on eB as a function of the size of the Hibert space

dimension d is shown in Fig. 3.21. Plotted are the error bounds for an intercept-resend

attack as well as the more optimal coherent based attack [14]. Our measured error

rate demonstrates our system was unconditionally secure against both such attacks.

Our raw key generation rate was found to be 16.4 bits/s. Ater performing basis

reconciliation between Alice and Bob, as well as error correction and privacy amplifi-

cation to reduce Eve’s information to zero, our final secure key rate was estimated to

be 6.5 bits/s. This is more than three orders of magnitude larger than any previously

demonstrated spatial mode encoded QKD scheme [17].
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Chapter 4

Communication with a noisy channel

Understanding how light propagates is one of the most fundamental topics in the field

of optics. For deterministic systems, such as the treatment presented in chapter 2,

this problem is well understood. However, the problem of understanding how light

behaves in random or fluctuating media is still a very active area of research [58–60].

Even propagation through the air, which at first glance might be thought of as being

equivalent to vacuum or free-space propagation, will show stochastic behavior when

observed over sufficiently long distances due to the atmospheric turbulence, which

induces small random fluctuations in the refractive index along the path.

4.1 Atmospheric turbulence

Turbulence is a phenomenon that occurs in any fluid that is characterized by a large

Reynolds number

R = v̄L/ν, (4.1)
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where v̄ is the fluid’s mean velocity, L is the length scale of the fluid, and ν is the

viscosity. The fluid will then break up into a cascade of turbulent eddies of decreasing

size until the length scale, L = l0 is such that R ≤ 1 and the kinetic energy can be

dissipated as heat [61]. The length l0 is known as the inner scale and is typically

on the order of millimeters near the ground, and is often considered negligibly small

relative to the length scales in a free-space communication channel [58]. The viscosity

of air is of order 10−5 m2/s, near the ground, L is on the scale of meters, and wind

speeds are typically many tens of meters per second. Therefore the atmosphere has a

typical Reynolds number

R ∼ 106 � 1, (4.2)

and thus it is safe to assume the atmosphere is always turbulent.

The fluid velocity v(r) at any point r in a turbulent fluid is a random process

whose spatial structure can be described by the structure function, defined as

Dv(r1, r2) ≡
〈
|v(r1)− v(r2)|2

〉
. (4.3)

For ‖r1 − r2‖ > l0 the structure function is governed by “Kolmogorov statistics,” given

by

Dv = C2
vδr

2/3, (4.4)

where δr ≡ ‖r1 − r2‖, and where C2
v is known as the velocity structure parameter

which characterizes the strength of the fluctuations [61]. The turbulent eddies will
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mix the air, creating pockets of slightly different temperatures and thus pressures. As

a consequence of this variation in air pressure, the index of refraction will also vary

statistically in the same way, leading to the refractive index structure function [62]

Dn = C2
nδr

2/3. (4.5)

The random fluctuations in the index of refraction is characterized by Dn and

lead to a random phase, φ(r) at the receiver. It was shown by Fried [63] that for

Kolmogorov turbulence the phase structure function can be given by

Dφ = 6.88
(
δr

r0

)5/3

, (4.6)

where r0 is an effective coherence length known as Fried’s parameter and can be

calculated from C2
n by the formula

r0 =
[

2.91
6.88k

2
∫ L

0
C2
n(z) dz

]−3/5

=
[

2.91
6.88k

2C2
nL

]−3/5

, (4.7)

where we have assumed for simplicity a constant value for C2
n along the path.

A random phase imprinted on an optical beam will, upon propagation lead to

variations in the amplitude as well. Thus the field is modified at the receiver in both
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the phase and the amplitude. We can write the field as

U(r) = U0(r) exp
(
iφ(r) + χ(r)

)
, (4.8)

where U0 is the field in the absence of turbulence, φ is the random phase, and χ is the

random log-amplitude. These amplitude fluctuations, or “scintillations” can then be

characterized by the variance in χ which is calculated from C2
n as [62]

σ2
χ = 0.563k7/6

∫ L

0
C2
n(z)z5/6 dz = 0.563 ∗ 6

11 k7/6C2
nL

11/6. (4.9)

Not only does χ cause scintillation within the beam, but this also leads to fluctu-

ations in the total power of the beam, even if there are no losses in the path itself.

These power fluctuations are due to beam wander and clipping by the finite aperture

at the receiver. The normalized power over the aperture Σ of area AΣ, defined by

P ≡ 1
AΣ

∫
Σ

dr exp (2χ(r)), (4.10)

is used to numerically find the normalized power variance in the aperture,

σ2
P ≡ 〈P 2〉 − 〈P 〉2 = 〈P 2〉 − 1 = 1

A2
Σ

∫∫
ΣΣ′

(
e4Cχ(r,r′) − 1

)
dr dr′ − 1, (4.11)



CHAPTER 4. COMMUNICATION WITH A NOISY CHANNEL 118

where

Cχ(r, r′) =
〈(
χ(r)− 〈χ〉

)(
χ(r′)− 〈χ〉

)〉
(4.12)

is the log-amplitude covariance function [58].

For thick turbulence it is known that some of the degradations caused by turbulence

can still be compensated for by phase-only adaptive optics (AO), correcting for low-

spatial-frequency aberrations for a horizontal path of a few kilometers or more [64]. For

stronger scintillation one will begin to see intensity nulls that are associated with phase

vortices [65, 66]. These phase vortices, or branch points, are known to degrade the

performance of AO systems [67], and there is a complete breakdown in the performance

for horizontal paths greater than approximately 5 km due to this effect [68]. For

communication systems that communicate using OAM, this phenomenon presents an

additional problem as phase vortices are precisely the means of the encoding, and

randomly generated vortices introduce errors into such a scheme.

4.2 Thin-phase turbulence

Early research studying optical propagation along random paths arose in the context

of imaging of astronomical objects through the turbulence in atmosphere [69]. The

most important effect on image quality in such systems is the random phase imprinted

onto the beam by the turbulence. This phase aberration can be described by Fried’s

parameter r0 defined in the previous chapter. Fried’s parameter defines a coherence
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length scale of the turbulence defined in the receiver aperture [63, 70]. If all other

effects of turbulence can be ignored (e.g. amplitude fluctuations), then the turbulence

can be approximated by a random phase screen in the aperture of the receiver. This

approximation, known as the “thin phase screen approximation,” simplifies the problem

and allows the turbulence strength to be fully characterized by the dimensionless

parameter D/r0 where D is the diameter of the aperture or beam. Thus the effects of

turbulence depend not only on the intrinsic fluctuations in the air, but also on details

of the system. This thin screen approximation is often appropriate in astronomical

systems as turbulence effects on beam propagation are greatest where the atmosphere

is thickest, which is typically located directly in front of the telescope. Although this

approximation is less appropriate for communication through a continuous turbulent

channel, it nevertheless provides a simple model that makes studying the basic effects

of turbulence a more tractable problem.

A representation of the thin-phase turbulence model is shown in Fig 4.1. All phase

fluctuations due to the turbulence in the channel are summed up and represented

as a single thin phase screen in the receiver’s aperture. This random phase screen

obeys Kolmogorov statistics specified by Eq. (4.6) and characterized by the single

dimensionless parameter D/r0. A few realizations of Kolmogorov screens of different

strengths are also shown in the figure.
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D/r0 = 5.12 D/r0 = 10.25 D/r0 = 1024

Figure 4.1: Top: channel with turbulence represented by a phase screen at the
receiver. Bottom: three different instantaneous realizations of turbulence induced
phase variation for different turbulence strengths D/r0.

4.2.1 OAM encoding with thin-phase turbulence

A turbulent channel, represented by a single thin random phase screen can be simulated

using the methods developed in chapter 3. We used this method to first examine

the effects of thin-phase turbulence on OAM encoding [5, 6]. If in the absence of

turbulence Bob would have received mode

〈r|Ψ`〉 = ψ`(r)ei`θ, (4.13)
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then with turbulence Bob will actually receive the (instantaneous) mode

〈r| exp(iφ̂)|Ψ`〉 = ψ`(r)ei`θeiφ(r), (4.14)

where φ(r) is a random screen with Kolmogorov statistics.

Since the thin-phase turbulence operator exp(iφ̂) is unitary, there is no loss in this

model. Therefore the effect of exp(iφ̂) on the channel will be to diminish the mutual

information between Alice and Bob. This is quantified by the modification of the

conditional probabilities in the expression for the mutual information (Eq. (1.11)).

The conditional probability of measuring a field with OAM value `+ ∆, given that

Alice sent mode Ψ` is given by

p(`+ ∆|Ψ`) =
∑
m

∣∣∣〈m, `+ ∆| exp(iφ̂)|Ψ`〉
∣∣∣2

=
∑
m

∣∣∣∣∫ dr 〈m, `+ ∆|r〉ψ`(r)ei`θeiφ(r)
∣∣∣∣2

=
∑
m

∣∣∣∣∫ drR∗m,`+∆`(r)e−i(`+∆)θψ`(r)ei`θeiφ(r)
∣∣∣∣2

=
∑
m

∣∣∣∣∫ drR∗m,`+∆`(r)e−i∆θψ`(r)eiφ(r)
∣∣∣∣2 ,

(4.15)

where

〈r|m, `〉 = Rm,`(r)ei`θ (4.16)

is a complete, orthonormal set of spatial modes.
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Now φ(r) is a random variable and so we also need to perform an ensemble average

to compute the average or scattered mode s∆. This is given by

s∆ ≡ 〈p(`+ ∆|Ψ`)〉

=
∫∫

dr dr′
(∑

m

R∗m(r)Rm(r′)
)
ei∆(θ−θ′)ψ∗` (r′)ψ`(r)

〈
e−i[φ(r)−φ(r′)]

〉

=
∫∫

dr dr′
(
δ(r − r′)

r′

)
ei∆(θ−θ′)ψ∗` (r′)ψ`(r)

〈
e−i[φ(r)−φ(r′)]

〉

=
∫
r dr

∫∫
dθ dθ′ei∆(θ−θ′)∣∣ψ`(r)∣∣2 〈e−i[φ(r,θ)−φ(r,θ′)]

〉
=
∫
r dr

∫∫
dθ dθ′ei∆δθ

∣∣ψ`(r)∣∣2C (r, δθ) ,

(4.17)

where δθ = θ− θ′ and C(r, δθ) is the rotational coherence function [71]. The coherence

function can be written as

C(r, δθ) =
〈
e−i[φ(r,δθ)−φ(r,0)]

〉
= e−1/2〈[φ(r,δθ)−φ(r,0)]2〉

= e−3.44(D/r0)5/3(ρ sin(δθ/2)),

(4.18)

where D is the diameter of the mode, ρ is a unitless radius, and we have used the

fact that φ obeys Kolmogorov statistics. If we can ignore the radial variation in mode

intensity (i.e. assume that the radial intensity is equal to a top-hat beam of width D)
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HeNe

SLM

Sorter CCD

Figure 4.2: Left: an experimental setup used to simulate a channel with thin-phase
turbulence. Right: typical blazed grating holograms used to generate an OAM mode
with (top) and without (bottom) turbulence.

then Eq. (4.17) becomes [72],

s∆ = 1
π

∫ ∣∣ψ`(ρD/2)
∣∣2 ρ dρ

∫
e−3.44(D/r0)5/3(ρ sin(θ/2))5/3 cos(∆θ) dθ

≈ 1
π

∫ 1

0
ρ dρ

∫
e−3.44(D/r0)5/3(ρ sin(θ/2))5/3 cos(∆θ) dθ.

(4.19)

Since the instantaneous effect of turbulence is simply a constant random phase

φ(r), we can simulate a turbulent channel by adding this phase to the prepared mode.

A schematic for this setup is shown in Fig. 4.2 along with typical holograms used

to generate an OAM mode both with and without turbulence. The generated mode

(including the turbulent phase) is then imaged onto the OAM mode transformer that

was described in section 3.2 and the Fourier transforming lens focuses the spatially

separated OAM spectrum onto a CCD.

Adjacent, equally sized regions are selected on the CCD image, with each region

corresponding to a specific OAM mode. The horizontal sum of the measured pixel
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Figure 4.3: Incoherent image of the odd OAM modes with indices ` ∈ [−5, 5]. The red
boxes indicate the binned area representing each of the eleven OAM modes measured
in the spectrum.

values in each of these regions is proportional to the power of the beam in each OAM

mode at a particular radial location. By also summing over the pixels vertically, we

also get a sum over radial modes. For each input mode, this power is measured across

eleven regions corresponding to the range ` ∈ [−5, 5] and normalized with respect

to the signal for input ` = 0 with no turbulence applied. An image comprised of an

incoherent superpositions of OAM modes at the location of the CCD are shown in

Fig. 4.3 along with the outlines of the spatial bins used.

A range of turbulence levels characterized by D/r0 ∈ [10−2, 102] were tested, with

each data point averaged over one hundred realizations. Care was taken to stay

within the spatial frequency bandwidth of the SLM, as features smaller than the pixel
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Figure 4.4: The average OAM power spectrum s∆ detected in OAM mode ` + ∆
is plotted as a function of turbulence strength D/r0 for an input mode with ` = 0.
Experimental data (crosses) is co-plotted with the theoretical prediction given by
Eq. (4.19) both with the inherent mode sorter crosstalk (solid line) and without
(dashed line).

spacing cannot be represented, setting an upper limit on the D/r0 values that can be

represented. The results are plotted in Fig. 4.4 for the case of ` = 0 input. Crosses

represent experimental date while dashed lines represent the predictions of Eq. (4.19)

while ignoring any inherent crosstalk inherent in the mode sorting itself (i.e. inherent
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crosstalk with no turbulence). This crosstalk can be included as

s∆(D/r0) =
∑
∆′
s∆,∆′(D/r0 = 0)stheory

∆ (D/r0), (4.20)

where s∆,∆′(D/r0 = 0) is the experimentally measured scattering matrix from mode

∆′ to ∆ for no turbulence and stheory
∆ is the theoretical prediction of Eq. (4.19). For the

ideal case of ideal mode sorting, this scattering matrix would be represented simply as

the identity matrix. This result is shown in the figure as the solid line. As predicted,

the crosstalk increases with turbulence. In the mid/high turbulence regime shown, we

see good agreement between our measurements and the theory proposed in [72]. In

the low turbulence regime, the crosstalk between modes arises from residual crosstalk

in our mode sorter, which can be attributed to the diffraction limit [51, 52].

1

10−2

10−4

1

10−2

10−4

` = −4

` = 3

10−2 1 102

` = −3

` = 4

10−2 1 102

` = −1

` = 5

10−2 1 102

s ∆

D/r0

Figure 4.5: The average OAM power spectrum s∆ detected in OAM mode `+ ∆ for
a range of input modes ` demonstrating the invariance of the effects of thin-phase
turbulence on input mode index.
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The theory presented above indicates that the probability of modal crosstalk

resulting from atmospheric turbulence is essentially independent of the input mode

number, only depending on the mode difference ∆. To examine this theory, we studied

the effects of turbulence on different OAM modes ranging from ` = −5 to ` = +5.

For each of these modes, the same set of turbulent phase screens was applied. The

measured crosstalk is shown in Fig. 4.5. We note that the observed crosstalk is indeed

very similar for the entire range of OAM modes that we examined.
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Figure 4.6: Left: plot of the channel capacities per symbol for OAM communication
as a function of the turbulence strength D/r0 for N total states. Right: effects
of changing the spacing between detected modes (MS) on the channel capacity of
an OAM communication system with N = 3 in the presence of turbulence. For a
mode-spacing of 4, the maximum channel capacity for a three-dimensional system
approaches the theoretical maximum of log2(3) = 1.585. Also contained in both plots
is a dotted line representing the channel capacity for a system employing a two symbol
alphabet using polarization for encoding (which is immune to a phase only aberration).

The non-zero crosstalk due to the fact that s∆ 6= δ∆ will obviously reduce the

channel capacity. Shown in Fig 4.6 is the channel capacity per detected symbol of an

OAM encoded communication system as a function of the turbulence strength D/r0.
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The capacity will always approach 0 for D/r0 � 1, however one can see in the left

figure that the capacity is a monotonically increasing function of the total number of

symbols used N . In addition, effects of turbulence can be mitigated by increasing the

mode spacing MS of the modes used (e.g. ` ∈ [1, 2, 3 . . . ]→ [1, 3, 5 . . . ]) due to the

fact that turbulence causes a preferential scattering into neighboring modes.

4.2.2 Plane-wave encoding with thin-phase turbulence

As was demonstrated in chapter 2, if one wants to encode a large amount of information

per spatial symbol, then one needs a system with a large Fresnel number product

DF . It was also shown that if the spatial frequencies of the encoded modes used

is sufficiently small, i.e. in the limit that the size of the alphabet N � DF , then

the eigenmodes become degenerate and there is no preferred basis. In this limit the

system is not limited by diffraction within the channel. Additionally, there is no a

priori reason to believe that the communication modes are the most robust against

the effects of turbulence, and in fact we’ve shown that even plane-wave states can be

better than OAM states when limited by turbulence [4, 7].

We define an orthogonal set of (one dimensional) plane-wave states by

〈r|Ψm〉 = 1
L2 rect(y/L) rect(x/L)ei2πmx/L, (4.21)
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where L is the size of the square aperture. In the presence of turbulence this becomes

〈r| exp(iφ̂)|Ψm〉 = rect(y/L) rect(x/L)ei2πmx/Leiφ(r), (4.22)

where φ(r) is a random screen with Kolmogorov statistics. Computing the conditional

probability of measuring mode m+ ∆, given that Alice sent mode m gives

p(m+ ∆|m) =
∣∣∣〈m+ ∆| exp(iφ̂|m〉

∣∣∣2
=
∣∣∣∣∫∫ dr 〈m+ ∆|r〉 〈r|Ψm〉 eiφ(r)

∣∣∣∣2
=
∣∣∣∣∣ 1
L2

∫∫ L/2

−L/2
e−i2π∆x/Leiφ(r) dx dy

∣∣∣∣∣
2

.

(4.23)

Taking an ensemble average over turbulence realizations gives the scattering matrix [4]

s∆ ≡ 〈p(m+ ∆|m)〉

= 1
L3

∫ L/2

−L/2
dy
∫∫ L/2

−L/2
dx dx′ei2π∆(x−x′)/L 〈e−i(φ(x,y)−φ(x′,y))〉

= 1
L2

∫∫ L/2

−L/2
exp

(
−3.44

(
|x− x′| /r0

)5/3
)
ei2π∆(x−x′)/L dx dx′.

(4.24)

Making the substitution z = (x− x′)/L, and z′ = (x+ x′)/L allows us to simplify this

expression to

s∆ = 8
∫ 1/2

0
dz
(
1/2− z

)
e−3.44(zL/r0)5/3 cos(4π∆z). (4.25)
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HeNe
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CCD

Figure 4.7: Left: an experimental setup used to simulate a channel with thin-phase
turbulence. Right: typical blazed grating holograms used to generate a plane-wave
mode with (top) and without (bottom) turbulence.

We can simulate a turbulence channel in the same way that was done in the

previous section. A schematic of the setup is shown in Fig. 4.7. This setup is identical

to the setup used before except there is no mode transformer, as the plane wave states

can be sorted directly with a Fourier transforming lens and spatially binned with a

CCD. A typical hologram used to generate the mode is also shown both with and

without the addition of a random turbulence screen. As before, the inherent crosstalk

primarily due to diffraction overlap of the modes at the CCD are measured and taken

into account theoretically via Eq. (4.20).

The results for the plane-wave case are also plotted in Fig. 4.8 and are qualitatively

very similar to the effects on OAM encoding. An interesting point concerning the

studies using alternative encoding is that the optimal modes for communication

considering diffraction (i.e. communication modes), are not in general the modes that

are most robust against the effects of turbulence. Also shown in Fig. 4.8 is a plot of
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Figure 4.8: Left: the average plane-wave power spectrum s∆ detected in plane-wave
mode m+ ∆ is plotted as a function of turbulence strength L/r0 for an input mode
with m = 0. Experimental data (crosses) is co-plotted with the theoretical prediction
given by Eq. (4.25) (line). Right: s0 for OAM (dashed line) and plane-wave (solid
line) encodings demonstrating the additional robustness of plane-wave modes against
the effects of turbulence.

〈s0〉 for both the OAM and plane-wave schemes to emphasize the fact that plane-wave

crosstalk will be equal to the case using OAM for a turbulence strength more than 3

times that of OAM i.e. plane-wave encoding can withstand turbulence that is 3 times

stronger than OAM for the same acceptable error rate. We believe physically this is

due to the fact that turbulence is dominated by low order aberrations, specifically by

tip-tilt [63]. A one dimensional plane-wave encoding in x will be affected by x tilt but

not y, whereas an OAM beam is equally effected by x or y tilts.

As before, knowing s∆ for all the input modes allows us to compute the channel

capacity as a function of the turbulence strength L/r0. A plot of the results for a

number of different alphabet sizes N are shown in Fig. 4.9. Also shown is the equivalent

channel capacities using OAM rather than plane-wave encoding demonstrating the
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Figure 4.9: Plots of the channel capacities per symbol for both plane-wave (solid lines)
and OAM (dashed lines) encoding as a function of the turbulence strength L/r0 or
D/r0 for N total states.

increased robustness of the plane-wave encoding to the deleterious effects of turbulence

as compared with OAM.

4.3 Thick turbulence

The thin-phase model presented in the previous chapter allows for a simple representa-

tion of turbulence that makes the analysis of systems with turbulence more tractable.

However this simplicity comes at the cost of ignoring many additional physical effects

caused by turbulence. In more realistic situations, such as communication along a

long horizontal path through which the turbulence is continuously distributed, one

will see additional effects such as those described in section 4.1 in addition to the
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problems caused by pure phase fluctuations. Additionally, the thin-phase model is not

very useful in analyzing systems with active compensations, such as by a phase-only

AO. Such a compensation trivially counters the effects of thin-phase turbulence by

the application of an equal and opposite phase to cancel φ(r).

The propagation of an optical beam through thick turbulence is not in general

analytically solvable and thus requires either simulation or testing in a real world setup.

The cost and lack of control of testing in a real-world setup makes finding suitable

methods of simulating turbulence highly desirable for understanding this problem.

In this section we describe a method we developed for simulating a thick turbulence

channel and show how this can be implemented in a laboratory setup (section 4.3.1) [8].

To demonstrate the power of this method we simulate a one kilometer long free-space

OAM-based communication link; these results are presented in section 4.3.2.

4.3.1 Simulating thick turbulence

To examine the effects that a thick horizontal turbulent path might have on OAM-based

communication channel while still allowing information transfer and AO correction,

we chose to consider a one kilometer path L with aperture sizes of the sender and

receiver of D = 18.2 cm, at a wavelength of λ = 785 nm corresponding to a Fresnel

number product of

Df =
(
πD2

4λL

)2

≈ 1100, (4.26)
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which supports OAM modes up to (via Eq. (2.145))

N ≈
√

2DF ≈ 50 (4.27)

To allow for such a system to be realized in a laboratory setting, one must find a

way to incorporate turbulence into the channel, as well as properly scale the system

down to more manageable length scales. This section describes a method of emulating

a thick turbulence path with 2 thin phase screens that can be represented in the lab

with spatial light modulators (SLMs). Scaling rules that are invariant under Fresnel

propagation are also detailed below.

Two phase-screen model

We have found that through use of two phase screens we can accurately model

the horizontal turbulent channel, faithfully reproducing all of its relevant statistical

properties. Specifically we require this path to have the same values for r0, σ2
χ, and

σ2
P as described in section 4.1.

We can represent these 3 parameters by using thin Kolmogorov phase screens each

with its own value of r0. The values of r0 for each screen, as well as each screen’s

position along the path, give us 4 independent parameters that can be tuned until the

two-screen path reproduces the same 3 parameters of the full horizontal channel. This

still gives us an additional degree of freedom, and since phase vortices in φ(r) create
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significant problems for AO correction as well as for OAM based encoding [65–68], we

choose the density of branch points, ρBP, as our fourth parameter to constrain the

problem.

For a horizontal path with a constant value of the refractive index structure

parameter

C2
n = 1.8× 10−14 m−2/3, (4.28)

which represents a typical horizontal path near ground level, we compute the parame-

ters given in Eqs. (4.7) – (4.11). The computed values are

r0 = 24.4 mm, σ2
χ = 0.197, and σ2

P = 7.04× 10−3. (4.29)

By Monte-Carlo simulation the density of branch points in φ(r) is found to be

ρBP = 500 m−2. (4.30)

Physically this means that a typical realization of turbulence will create thirteen

phase vortices within the receiver’s aperture, which one could imagine being a serious

impediment to one’s ability to measure the intended phase vortex of the original

transmitted OAM state.

The second step in designing the two-phase-screen model is to find the values for

the position and r0 for each screen that will give the same values of r0, σχ, σp, and
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Figure 4.10: Procedure used to compute Fried’s parameters and positions of the two
thin phase screens needed to reproduce r0, σχ, σp, and ρBP of the equivalent thick
channel.

ρBP of the thick path. The procedure is diagrammed in Fig. 4.10. One starts with an

initial guess for r01 (i.e. r0 for screen one), and then solves for the value of r02 that

will give the correct value for D/r0. Next, one randomly picks a value for the position

of the second screen, z2, and finds z1 such that one gets the correct value for σχ. z2

is then varied (along with z1 to maintain σχ) to set the correct value for σP . Given

this solution, ρBP is computed by Monte-Carlo simulation. If at this point we get the

correct ρBP, a solution has been found; otherwise one starts over with a new choice

for r01. Using this procedure we found we could simulate our one kilometer path with
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the parameters (measured from the sender’s aperture)

r01 = 3.926 cm, r02 = 3.503 cm, z1 = 171.7 m, and z1 = 769 m. (4.31)
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Figure 4.11: Cumulative distribution function of the Strehl ratio for a thick turbulent
path represented by ten Kolmogorov phase screens (solid red line) and its equivalent
two phase screen solution (dashed blue line).

As an independent test of this solution, a beam propagation simulation was

performed to compare a thick turbulent path with the analogous two-screen solution.

The continuous path was simulated using a standard split-step method in which

the path L is broken up into N discrete steps. Each of the N sections of turbulent

atmosphere is replaced by non-turbulent propagation followed by an effective thin

random phase screen that represents the effects of refractive index fluctuations within
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the slab. The propagation through a slab can be approximated by a thin screen so long

as the scintillation due to propagation after encountering a random phase is negligible.

As a rule of thumb one must require that the scintillation due to propagation through

the slab must be less than ten percent of the total amount [73] in order to be able to

represent the slab by a single screen, which is quantified as

σ2
χ(L/N) < 0.1σ2

χ(L). (4.32)

We choose N = 10, which for the horizontal path considered here becomes by Eq. (4.9)

σ2
χ(L/N)/σ2

χ = N−11/6 ≈ 0.01� 0.1. (4.33)

In each simulation a different random realization of turbulence was made and the

Strehl ratio, defined as the ratio of the peak intensity to ideal peak intensity of a

spot at a focal plane of the receiver, was computed. By repeating this many times,

a probability distribution for the Strehl ratio was found and the results are shown

in Fig. 4.11. As can be seen in the plot, the Strehl ratios of the two-screen and the

‘continuous,’ ten-screen paths show very good agreement with each other. This result

demonstrates that the two-screen model not only reproduces the correct mean values

for the statistical parameters of interest (by construction), but can also be expected

to give similar distributions of possible measurement outcomes.
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Fresnel scaling

The second thing that must be done to effectively simulate a turbulent path in a

laboratory setting is to scale the optical paths down to more manageable lengths. In

order to ensure that the scaled path still represents the desired physical path, the

propagation must remain invariant under the scaling.

r = (x, y)

ρ
= (u,

v)

A

B

z

Figure 4.12: Propagation from plane A, described by coordinates r = (x, y), to plane
B with coordinates ρ = (u, v)

Fresnel propagation from one plane to another a distance z away as shown in

Fig. 4.12 is given by:

UB(ρ) = ieikz

λz

∫
UA(r)e iπλz (r−ρ)2

dr (4.34)

Now if we scale the coordinates using

r′ = αrr, ρ′ = αρρ, and z′ = αzz, (4.35)
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then the above propagation equation becomes

UB

(
ρ′

αρ

)
= ieikz

′/αz

αrλz′/αz

∫
UA

(
r′

αr

)
e
iπαz
λz′

(
r′
αr
− ρ′
αρ

)2

dr′ (4.36)

Since we require the Fresnel number to remain constant then

αz = αραr. (4.37)

Now we can rewrite equation 4.36 as

eikz
′(1−1/αz)
αρ

UB

(
ρ′

αρ

)
= e

−iπρ′2
λfρ

ieikz′
λz′

∫
UA

(
r′

αr

)
e−i

πr′2
λfr e

iπ
λz′ (r′−ρ′)2

dr′
 (4.38)

where

fρ = z′

1− αr
αρ

and fr = z′

1− αρ
αr

. (4.39)

From Eq. 4.38 we see that the horizontal path between planes A and B can be scaled

down (to within a scaling and phase constant) simply by adding a lens with focal

length fr at A, propagating a distance z′, and then adding another lens with focal

length fρ at B to cancel out the residual quadratic phase.

4.3.2 OAM encoding with thick-phase turbulence

A diagram of our experimental setup is presented in Fig. 4.13. Alice prepares the beam

in a specific OAM mode using a blazed hologram as described in chapter 3 to send to
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Bob. The prepared state is then sent through the simulated one kilometer path scaled

down as described in section 4.3.1 to a total length of 1.3 m. The two thin-phase

screens used to simulate thick turbulence in our setup were implemented using an

SLM in a double-pass configuration. In addition, the quadratic phases required for

proper scaling of the propagation path were added to the phases on the SLMs.

SLM SLM

Deformable Mirror
Shack-Hartmann

EMCCD

HeNe

Figure 4.13: Alice sends a beam prepared in a specific OAM state ` to Bob. Bob
receives the beam after propagation through a channel representing a 1,km turbulence
path. The beam is (optionally) corrected using a deformable mirror and sent to a
sorter to make a measurement of the of the OAM spectrum of the beam.

After propagation through the turbulent channel, the beam at Bob’s aperture is

imaged with a 4f system onto a Thorlabs adaptive optics kit consisting of a 12× 12

actuator deformable mirror and a Shack-Hartmann wavefront sensor. After the AO

system, the beam is similarly imaged onto the first element OAM sorter and the we

followed the same procedure for measuring the OAM power spectrum as was described

in section 4.2.
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In order to examine the effects of the turbulent channel on OAM communication,

we experimentally measured the OAM spectrum that Bob detects conditioned on what

Alice sent. In a perfect channel, if Alice sends OAM mode s, then Bob will measure an

OAM spectrum that is simply a Kronecker delta centered at the same mode. However,

in an imperfect or turbulent channel, there will be some spreading into neighboring

OAM modes to the prepared state. The conditional probability matrix, p(d|s) where

d is the detected OAM mode and s is the sent mode, provides a natural expression

for this crosstalk induced by the imperfections or turbulence in the channel.
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Figure 4.14: Measurement of the crosstalk in the channel represented by the conditional
probability matrix, p(d|s) for three cases: Left: no turbulence, Middle: with turbulence,
and Right: with turbulence and adaptive correction.

The conditional probability matrix p(d|s) is plotted for 3 different scenarios in

Fig. 4.14. The left plot shows p(d|s) when there is no turbulence in the channel,

showing only crosstalk due to any misalignment in the system and inherent crosstalk

of the sorter. The middle plot shows the effects of thick turbulence ensemble averaged

over 100 realizations, which act to greatly spread the signal over many neighboring
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channels. This selective spreading of OAM into neighboring modes rather than

randomly into any OAM state is qualitatively similar to what is seen in the thin

turbulence regime demonstrated in section 4.2. For the third case shown in the

right plot, adaptive correction was applied to the turbulence with the AO system,

allowing much of the signal to be recovered. The phase aberrations induced from each

realization of turbulence was sensed and corrected by the AO using the OAM ` = 0

mode. Each mode was then sent through the channel and AO system, and the OAM

spectrum was measured by Bob. This procedure was repeated and averaged over fifty

realizations of turbulence.

From Fig. 4.14 we can qualitatively see that thick turbulence greatly degrades the

quality of the channel. In order to quantify the crosstalk induced by the turbulence as

well as the quality of the AO correction, we compute the mutual information between

Alice and Bob for all three cases above. We quantify these results by calculating

the mutual information as a function of the encoding dimension N . The mutual

information for the three cases of no turbulence, thick turbulence, and turbulence

with AO correction, is plotted in the left plot of Fig. 4.15 as a function of N . One can

see that the AO system allows us to cancel roughly half of the loss of channel capacity

due to turbulence.

Further, since turbulence preferentially scatters power into neighboring OAM

modes as was found to be the case in the thin turbulence model of section 4.2 one

can also increase the channel capacity by choosing to use a less dense set of OAM
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Figure 4.15: Left: measured channel capacity as a function of the number of OAM
modes N used for the spatial encoding. Right: measured channel capacity as a
function of the spacing between OAM modes used for communication for alphabet
size N . Channel capacities without AO correction is shown as the red dotted line,
while with AO is shown as the solid blue line. Also for reference is an ideal channel
capacity using a binary alphabet.

modes for thick turbulence as well. Changing the encoding is also independent of

any AO system one may use, and thus a modified encoding can be used along with

AO correction to further enhance the channel capacity. The plot in the right panel

of Fig. 4.15 shows the increase in the mutual information one can obtain for a given

number of encoded modes, N . The channel capacity of an ideal binary encoded system

is shown for reference. It is worth noting that the use of spatial mode encoding shows

an improvement over such a system with very moderate resources (i.e. three modes

with a channel spacing of four or more).
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Chapter 5

Conclusions and Future Work

In this thesis I’ve tried to demonstrate that Shannon’s theory of information provides

a toolbox with which to understand, analyze, and motivate research within the field

of optics in a general and powerful way. As a framework, this work is naturally

open-ended with possible future work in any number of different possible directions.

The most obvious future application of this work is to try to apply the reasoning to

other degrees of freedom of an electromagnetic field. This thesis focused specifically on

the transverse degree of freedom of a paraxial propagating beam, but one could equally

well consider non-paraxial three dimensional fields as well. In addition, within any

single spatial mode there exists a continuum of amplitude values as well as temporal

states that could be analyzed. One could also consider fields that are not propagating

in free-space, but rather propagate in material or metamaterials (either freely or in

bound modes). Finally, multiple degrees of freedom could be analyzed together both

in terms of simply treating the problem as existing in a higher dimensional state space
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comprised of multiple degrees of freedom, as well as considering one degree of freedom

as a tool for simply multiplexing multiple similar channels together in the other degree

of freedom.

Chapter 2 gave a theoretical analysis of the fundamental information limits of

a paraxial free-space channel by introducing the concept of communication modes

which are the normal modes of the Green’s function description of the channel. The

communication modes and corresponding information capacities were computed for

both Gaussian apodized, as well as hard aperture channels containing both cylindrical

and Cartesian geometries. Future work could of course be extended to any system

that can be described using a deterministic Green’s function or operator.

In this thesis only system Green’s functions that were stationary in time were

considered in computing the communication modes. Future work could look at

situations in which this is not true, which would physically represent a system that

changes in time. The corresponding communication modes would then also be expected

to change in time as well. Alternatively one could consider a non-stationary systems

in which Alice and Bob only have average or statistical information about the system,

such as the case for a system with turbulence, and ask if there exist average (or

perhaps partially coherent) modes that represent the best average modes with which

to communicate.

Chapter 3 described the implementation of a free-space quantum key distribution

system. First, I reviewed methods of mode generation using spatial diffracting gratings
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via spatial light modulators. This concluded with a demonstration of how one could use

digital micromirror devices to enable rapid generation of spatial modes or generation

of spatial modes with arbitrary spatial coherence properties. Future directions could

focus on alternative or faster methods of spatial light modulation, such as with static

elements and faster modulations methods (such as electro-optic modulators) in order

to increase the channel information rate.

Chapter 3 also introduced the problem of efficiently sorting and discrimination of

spatial modes. This problem has practical solutions for only a handful of known sets

of spatial modes, most notably the orbital angular momentum states that were the

focus of much of this work. Algorithms for finding practical solutions for any general

basis set of orthogonal modes, or even solutions for other specific bases, is an still an

open problem.

The final part of this thesis (chapter 4) looked at the effects a stochastic or turbulent

channel has on the information capacity of spatial mode encoding. Theoretically, this

is a difficult problem that requires many approximations if one does not want to resort

to direct simulation or prototyping. For instance, thin phase models allow for analytic

computation of some of the statistical effects, but modeling general propagation

through a random medium is still considered an open problem.

This chapter also looked at passive methods of compensation by choosing alter-

native encoding schemes, such as using fewer modes or using a set of modes other

than communication modes. Future work could explore finding an optimal or ideal
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set of modes to use for a given turbulent channel (either via a generalization to

the communication modes or some other method). Active methods of turbulence

compensation using a simple adaptive optics setup to compensate phase fluctuations

was also looked at. More sophisticated schemes, such as multi-conjugate adaptive

optics would be an appropriate area of further research.
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