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Abstract

With the recent rediscovery of slow- and fast-light effects, there has been much

interest in pulse propagation phenomena that lead to apparently superluminal pulse

transmission. This raises immediate questions about causality and special relativity

violations and elicits curiosity about the physical mechanisms responsible for these

effects. This thesis will address these issues theoretically and experimentally by in-

vestigating two such effects.

The first effect we consider is pulse propagation under conditions of negative group

velocity in erbium-doped fiber. Predictions suggest that upon propagation through

a region of negative group velocity the transmitted pulse exits the region before the

peak of the incident pulse enters. In addition, theory predicts the presence of a peak

within the region that propagates backwards, linking the incident and transmitted

peaks. We determine the accuracy of these predictions experimentally and uncover

the physical mechanism that leads to the effect.

We also examine the saturation of photonic tunneling delays with barrier opac-

ity, which is known as the Hartman effect. In particular we address the case of

frustrated-total-internal-reflection, which is a two-dimensional tunneling effect. The-

oretical treatments of this phenomenon have been limited to special cases in the past.

We demonstrate a new method of decomposition that gives a continuous expression

for the predicted delay, and present experimental measurements of that delay in a

barrier structure constructed from glass prisms and a liquid crystal cell.
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Chapter 1

Introduction

The topic of superluminal transit has been hotly debated since Einstein’s original

suggestion of a cosmic speed limit. It is a common misconception that the special

theory of relativity prohibits velocities in excess of the speed of light. In fact, the

special theory of relativity only prohibits the transfer of information faster than c,

though a formal definition of what constitutes information has never been determined

[1]. However, most reasonable definitions include matter, energy, and any signal that

can be used deterministically, such as the presence or absence of a light pulse in a

time or bit slot.

The common consensus among modern scientists is that superluminal information

transit is unphysical, but there are many physical phenomena that allow the peak of

a pulse to propagate faster than the speed of light. With the resurgence of interest in

slow- and fast-light propagation in recent years, there is a large body of experimental

data verifying that under certain conditions pulses can indeed appear to travel in ways

that seem acausal to an external viewer. These experiments are often poorly reported

in the mainstream media, giving the impression that superluminal transmission of

information is possible.

However, superluminal information transfer has never been demonstrated. The

“superluminal” velocities reported are always inferred based on the peak of a spec-

3
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trally and temporally broad waveform, and under those conditions the peak cannot

be said to carry any information. Despite this fact, it is commonplace for researchers

to report experimental results describing the advancement of a pulse peak in terms

of “superluminal” velocities.

In most cases, academic researchers are careful to note that their measurements

of pulse velocity, group velocity, or transit time are not subject to the same causality

constraints that a true signal velocity would be. Other authors have addressed the

issue head-on by performing experiments to demonstrate that such velocities do not

lead to superluminal signal transit [2]. However, there have been a number of recent

publications where results have been misinterpreted by the authors, leading to erro-

neous claims that they have observed superluminal pulse propagation effects which

violate special relativity [3–7].

It is our goal to investigate these apparently superluminal effects by examining

their underlying propagation dynamics. By studying the details of the pulse propaga-

tion within the material, we feel it is possible to discern and understand the physical

mechanism that leads to the effect. In this fashion, the cause of the apparent su-

perluminality can be uncovered and the ambiguity leading to misinterpretation can

be removed. In short, we seek to identify the causal mechanisms that lead to the

appearance of acausal pulse behavior. In the remainder of this thesis, we will per-

form this investigation for two of the most common physical phenomena that lead to

“superluminal” pulse propagation.

The next two chapters will discuss slow- and fast-light propagation, with a focus

on negative group velocities and the “backwards propagation” effect that is predicted

under those conditions. When propagating through a negative-group-velocity mate-

rial, theoretical models suggest that the peak of the transmitted pulse actually exits

the negative-group-velocity material before the peak of the incident pulse enters it.

This also suggests that the optical field within the material exhibits a peak which

travels backwards from the exit to the entrance, linking the incident and transmit-
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ted pulses. These strange predictions lead to questions about causality and energy

conservation which can be addressed experimentally.

Chapters 4-6 will address time delays in quantum-mechanical barrier tunneling

and the Hartman effect. When a particle tunnels through a potential barrier, the

peak of the transmitted particle’s wavefunction may appear earlier than a causally-

propagated copy of the incident particle’s wavefunction would. This leads to the

interpretation that the time delay in tunneling is superluminal in nature and demon-

strates a violation of special relativity. There are electromagnetic analogs of this

effect in which photons exhibit similar behavior. We will demonstrate theoretically

that it is incorrect to interpret these delays as propagation times, and instead propose

a cavity interpretation of tunneling that eliminates the paradox. We will also provide

theoretical predictions and experimental measurements of the expected propagation

delay in a two-dimensional electromagnetic tunneling setup.



Chapter 2

Slow and fast light

The study of light, particularly its velocity and propagation behavior, goes back

hundreds of years. However, the terms “slow and fast light” are recent concoctions

that refer to a very specific pulse propagation phenomenon. In this chapter, we will

briefly overview the theory of slow- and fast-light propagation and discuss some of

the important points that will be relevant to our experimental analysis of “backwards

propagation” in chapter 3.

2.1 Phase velocity and group velocity

The simplest form of an electromagnetic wave is a “plane wave” in which the phase

fronts are planes that propagate in a direction normal to the plane. A plane wave

can be expressed mathematically in space and time (r, t) as

E(r, t) = eE0e
ik·r−iωt (2.1)

where e is a vector describing the direction of the electric field (or equivalently, the

polarization), E0 is the amplitude of the wave, k is the wavevector or propagation

vector, and ω is the frequency of the light. In free space, e · k = 0, indicating that

6
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the light is always polarized perpendicularly to the direction of propagation. Thus we

can arbitrarily define the direction of propagation to be the z-direction, and simplify

equation (2.1):

E(z, t) = eE0e
ikz−iωt. (2.2)

In this form, k is the wave number or magnitude of the wavevector (k = kẑ), and e is

constrained to be in the x-y plane. For the moment, we will assume an ideal lossless

material and thus consider only the real part of k. We will address the implications

of loss in the next section.

If we wanted to describe the speed at which a phase front of this wave propagates

through space, we need only consider the phase ϕ(z, t) = kz − ωt. k and ω are

constant, so if we want to determine the motion of a phase front, we can simply

differentiate ϕ with respect to t and set the result equal to zero,

dϕ(z, t)

dt
= k

dz

dt
− ω = 0

dz

dt
=
ω

k
. (2.3)

In free space, k = k0 = ω/c, and the phase front moves at the speed of light c as

expected. However, in linear media the wave number has an additional factor n,

the index of refraction of the material. In the general case, n is also a frequency-

dependent quantity, such that k = n(ω)ω/c. Substituting this into equation (2.3)

gives us a general expression for the velocity of the phase front or phase velocity

vp = dz/dt,

vp =
dz

dt
=

ω

n(ω)ω/c
=

c

n(ω)
. (2.4)

The phase velocity is the appropriate representation of the velocity of a monochro-

matic wave of light traveling through a medium of refractive index n(ω).

However, in the laboratory we are frequently more interested in optical pulses of

light and time-of-flight measurements. While an optical pulse is made up of a nar-
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rowband collection of monochromatic beams, the velocity of the pulse is not generally

the phase velocity, because each of the constituent monochromatic beams experiences

a slightly different refractive index n(ω) and thus propagates at a slightly different

speed. We can formally develop this thought by applying a time-varying envelope

A(t) to our monochromatic wave in equation (2.2),

E(z, t) = A(t)eikz−iω0t, (2.5)

where we have omitted polarization for the time being. The modulation A(t) describes

the slowly-varying pulse envelope, while the exponential describes the high-frequency

carrier wave at ω0. In the frequency domain, A(t) is responsible for new frequency

components of the pulse on either side of ω0. Using standard Fourier theory, we can

express E(z, t) in the frequency domain explicitly,

E(z, t) =
e−iω0t

2π

∫ ∞

−∞
A(ω)eikz−iωt, (2.6)

in which the factor A(ω) is the Fourier transform of A(t). Written in this form it is

clear that the peak of the pulse, or the maximum value of A(t), should occur where

all of the constituent frequency components interfere constructively. This will occur

where the phase of exponential in the integrand ϕ = kz − ωt does not vary with

frequency, or dϕ/dω = 0. This is also known as a “stationary phase” approximation,

a common technique for evaluating oscillatory integrals [8]. If we explicitly carry out

this derivative, we can determine the distance z that the peak of the pulse travels in

a time t, commonly known as the group velocity vg:

dϕ

dω
=
dk

dω
z − t = 0

vg =
z

t
=
dω

dk
. (2.7)
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We can write this in a more explicit form by evaluating the derivative dk/dω,

dk

dω
=

d

dω

(
n(ω)ω

c

)
=
n(ω) + ω dn(ω)

dω

c
, (2.8)

and substitution into (2.7) gives

vg =
dω

dk
=

1
dk
dω

=
c

n+ ω dn
dω

=
c

ng

(2.9)

where we have defined the group index ng = n + ω dn
dω

and suppressed the frequency

dependence of n for clarity. The second term of ng is the feature that leads to slow-

and fast-light phenomena. In a dispersionless material, n is constant and dn
dω

= 0, and

the phase and group velocities take on the same value. This is the case in vacuum,

for example, where n is identically 1. Air is very nearly dispersionless at standard

temperature and pressure, leading to similar behavior.

However, in a region where the dispersion dn
dω

becomes large, the second term of

ng can become significant and play an important role in pulse propagation dynamics.

“Slow light” occurs in regions of large normal dispersion, where dn
dω
> 0 and ω dn

dω
> 1.

In many cases, this dispersive contribution dominates, leading to group indices in

the hundreds, thousands, or higher. Slow light has been observed in a large variety

of systems, including atomic vapors [9–11], Bose-Einstein condensates [12,13], room-

temperature solids [14, 15], and microscale photonic structures [16–20].

Regions of anomalous dispersion cause dn
dω

to become negative, which can lead to

“fast light” effects. If the medium is only weakly dispersive, vg may simply exceed c,

and the pulse will appear to propagate faster than the speed of light. In regions of

strong anomalous dispersion, the second term may actually become larger in magni-

tude than n and force the group velocity to become negative. Negative group velocity
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propagation has been predicted by Brillouin and others [21–25], and observed exper-

imentally in a variety of materials [15,26–31]. In all of these cases, the authors stress

that the resulting pulse propagation dynamics are strictly causal, and cannot produce

superluminal transmission of information.

2.2 Creating slow and fast light

One common goal within the slow-light research community has been to achieve

controllable and tunable slow light. An ideal slow-light material that provided tun-

ability over a high dynamic range for a broad signal bandwidth would open the door

towards slow-light optical buffers that may improve the operation of telecommunica-

tions equipment, especially if that slow-light was achievable in one of the standard

telecommunications bands. Engineering an ideal slow light material is a non-trivial

matter, however. The dispersion of the material must be carefully crafted from one

of several mechanisms, each of which have their advantages and disadvantages.

In general, the mechanisms that cause slow-light effects can be categorized as

either “atomic slow light” or “structural slow light.” These distinctions describe the

source of the dispersion that causes the slow-light effect. Atomic slow light materials

achieve dispersion by exploiting atomic or molecular resonances. Structural slow light

occurs when a region of high dispersion is caused by geometric or structural factors,

as is the case with waveguide dispersion or photonic band-gap effects.

Atomic slow light can be understood by examining a simple model of absorption

and gain. Let us consider the single Lorentzian gain feature shown in Figure 2.1a,

which has the form

g(∆ω) =
g0

1 + ∆ω2/γ2
, (2.10)

where ∆ω = ω−ω0 is the detuning from the resonance frequency ω0, γ is the linewidth

of the resonance, and g0 is the value of the intensity gain coefficient at line center.

This form could model a collection of atoms in an excited state that transitions to
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the ground state through the emission of a photon at frequency ω0.

The frequency-dependent optical intensity absorption coefficient α(ω), which is the

opposite of g(ω) in our model, is linked to the refractive index of a material through

a set of Hilbert transforms known as the Kramers-Kronig (KK) relations [32,33],

n(ω) = 1 +
c

π
−
∫ ∞

0

α(Ω)

Ω2 − ω2
dΩ, (2.11a)

α(ω) = −4ω2

πc
−
∫ ∞

0

n(Ω)− 1

Ω2 − ω2
dΩ. (2.11b)

Note that the dashed integrals indicate a Cauchy principal value. These relations are

an outcome of causality [34] and are fundamental to atomic slow light effects. They

predict that for our Lorentzian gain feature, we will have a refractive index profile

shown in Figure 2.1b of the form

n(∆ω) = n0 +

(
g0c

2ω0

)
∆ω/γ

1 + ∆ω2/γ2
, (2.12)

where n0 is the real frequency-independent “background” index of refraction. From

n(∆ω), we can calculate the group index ng(∆ω) shown in Figure 2.1c,

ng(∆ω) = n(∆ω) +

(
g0c

2γ

)
1−∆ω2/γ2

(1 + ∆ω2/γ2)2
. (2.13)

At line center, we have a region of strong normal dispersion which leads to a large

slow light effect. The group index ng is much greater than n0 if g0L/γ is large. The

expected “group delay” for a narrowband pulse centered at ω0 propagating through

this medium is τg = ngL/c = n0L/c+ g0L/2γ. In the wings of the gain resonance, we

have weak anomalous dispersion and observe a region of fast light, where the group

index becomes negative.

Since the Kramers-Kronig relations are a pair of Hilbert transforms, they are linear

functions. Thus, if we invert the sign of g to create an absorption resonance, the

Kramers-Kronig relations preserve the sign change and predict the opposite effect. In
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n

ng

ω

ω

ω

gain

resonanceg

fast light

slow light

Figure 2.1: Lorentzian gain peak and the dispersion profiles of the refractive index
n and group index ng associated with this gain spectrum by the Kramers-Kronig
relations. It is clear from the figure that a very large and positive group index occurs
in the region of strong linear dispersion in n. This region of slow-light propagation
is flanked by fast-light regions due to strong normal dispersion in the wings of the
refractive index dispersion profile.

that case, we see a strong fast-light effect on line center and a weak slow-light effect in

the wings. In addition, linearity forces them to be insensitive to a constant background

value, so they give the same prediction for an absorption resonance described by

−g(ω) and a dip in a background described by g0 − g(ω). This will be the particular

situation of study in our experiment, where we investigate fast light caused by a

narrow absorption resonance occurring within a broadband gain feature.

Atomic slow light accurately describes the pulse propagation effects observed from

single gain- or absorption-line structures [35–39] and complicated multiple-gain-line

or multiple-absorption-line structures [40, 41]. It also includes nonlinear processes
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[42] such as electromagnetically-induced transparency (EIT) [9, 12, 43, 44], four-wave

mixing (FWM) [45], and coherent population oscillations (CPO) [14,15,31,46–49].

In structural slow light, it is not the absorption or refractive index that produces

the desired dispersion. Instead, these systems support propagating modes whose

group velocity is governed by the geometry or structure of the system. Note that in

general, these effects are still bound by a Kramers-Kronig relation, as they can be

described by a complex transfer function H̃(ω) = A(ω)exp[iϕ(ω)] that is based on a

causal temporal response function. However, in this case, the Kramers-Kronig rela-

tion couples the amplitude and phase of the frequency response function rather than

absorption and refractive index, and may be more complicated to express analytically.

As a simple example, consider a waveguide that supports one or more mode in

some frequency range. The modes have a frequency-dependent “effective wavevector”

β that depends on the confinement and size parameters of the waveguide. These are

frequently characterized by a dispersion curve β(ω), from which group velocity can

be easily calculated. Adjustment of the waveguide size parameters, index contrast,

or geometry all have an effect on β and can be used to control the dispersion char-

acteristics and subsequently the group velocity of the waveguide. Structural slow

light also encompasses band-gap effects, or regions where propagating modes aren’t

supported. Near the edge of these regions β becomes highly dispersive, leading to

significant deviations in the group velocity.

“Designer” waveguides constructed in photonic crystal structures have demon-

strated slow-light effects [17, 50, 51], as have fiber Bragg grating structures [52–54].

Even in weakly dispersive waveguides, one can create slow light effects by introduc-

ing an external source of dispersion. This is frequently accomplished by introduc-

ing a resonator of some sort that couples to the waveguide, creating the structural

equivalent of an atomic resonance that modifies the dispersion properties of the sys-

tem [55–59]. One can even construct the waveguide entirely out of these resonator

structures [19,20,60–62]. Alternatively, one can combine structural and atomic tech-
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niques by introducing a true atomic resonance to the waveguide geometry [39,63,64].

2.3 Practical considerations

In practice, there are a number of complications that must be dealt with in any slow-

light system. The first of these is the effect of higher-order dispersion on the pulse.

To demonstrate these effects, we expand the real part of the wavevector k(ω) (or

equivalently β(ω)) using a Taylor series,

k(ω) = k(ω0) +
dk

dω

∣∣∣∣
ω0

(ω − ω0) +
1

2!

d2k

dω2

∣∣∣∣
ω0

(ω − ω0)
2 +

1

3!

d3k

dω3

∣∣∣∣
ω0

(ω − ω0)
3 + ...

= k(ω0) + β1∆ω +
β2
2!
∆ω2 +

β3
3!
∆ω3 + ... (2.14)

where

βn ≡ dnk

dωn

∣∣∣∣
ω0

(2.15)

is the nth-order dispersion factor. β1 is simply ng(ω0)/c, or 1/vg. In the ideal case

where all higher-order dispersion factors are zero, k(ω) = k(ω0) + β1(ω−ω0) and the

pulse at position z = L and time t can be described very simply:

E(L, t) =

∫ ∞

−∞
dωE(L, ω)e−iωt

=

∫ ∞

−∞
dωE(0, ω)eik(ω0)L+β1(ω−ω0)L−iωt

= eik(ω0)L+iβ1ω0L

∫ ∞

−∞
dωE(0, ω)e−iω(t−β1L)

= eik(ω0)L+iβ1ω0LE (0, t− β1L) (2.16)

Apart from a phase term, the pulse at z = L looks identical to the pulse at z = 0

but shifted in time by ∆t = β1L = ngL/c. Thus, the pulse preserves its shape upon

propagation and travels at the group velocity.

Higher-order dispersion terms disturb the relative phases of different frequency
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components, causing a number of distortion effects. The largest of these is group

velocity dispersion (GVD), governed by β2, which causes pulse broadening or com-

pression. GVD is particularly important in telecommunications applications. If the

pulse broadens enough it may encroach on a neighboring bit slot, leading to crosstalk

and higher bit-error rates. Third, fourth, and higher-order dispersion terms can lead

to more complicated distortion effects, including severe pulse reshaping and break-up.

Frequency-dependent gain or loss can also distort the pulse shape by modifying

the signal spectrum. Of course, the higher-order dispersion terms are in no small

part due to the frequency variation of gain or loss thanks to the Kramers-Kronig

relations. However, dispersion describes pulse distortions caused by phase differences

amongst the constituent monochromatic waves. Frequency-dependent gain or loss

also causes the amplitude of these monochromatic components to change, which can

lead to other pulse distortions. In general, one must consider both the phase and

amplitude distortion effects to accurately describe the total pulse distortion.

Furthermore, any loss mechanism will cause the pulse to be diminished in ampli-

tude after propagation through the slow light material. It is often impossible to avoid

loss in slow-light systems, which puts a practical limit on the maximum achievable

delay and system performance [65]. All of these sources of pulse distortion contribute

to whether a particular slow light mechanism is suitable for a given application, or in

some cases whether there is any slow-light process capable of achieving the desired

system performance.

The management or minimization of these effects is an active area of research. It

has been demonstrated that the use of multiple gain lines can reduce the amount of

distortion by “flattening” the gain curve in the region of the pulse’s bandwidth [40]. In

some systems, an additive background intensity at the probe frequency can also reduce

pulse distortion [66, 67]. For single-line slow light effects like stimulated Brillouin

scattering, electronic broadening of the gain line can lead to an increased bandwidth

available for slow light, reducing distortion for short pulses [38,68]. Finally, there are



2.4 Group velocity and causality 16

even techniques to reduce less obvious distortion effects like pattern dependence [69].

2.4 Group velocity and causality

Fast light and “backwards” light, or cases where vg > c or vg < 0 respectively,

appear to run afoul of our understanding of causality. They imply that objects

are propagating faster than the speed of light, or in the negative-group-velocity case

suggest that an object exits a material before it enters. Both of these situations would

be causality violations in the special theory of relativity. Upon careful consideration,

we find that this is not the case, and that causality is obeyed in all instances of

anomalous pulse propagation.

This question has been studied in some detail, dating back to the early 20th cen-

tury. In their examination of the propagation of discontinuous electric field envelopes,

Sommerfeld and Brillouin defined five different velocities of light [70,71]. They found

that the “front velocity,” or the velocity of the discontinuity representing pulse turn-

on, could never exceed c. Moreover, they found that no part of the waveform could

overtake the discontinuous pulse front. These results led to a reformulation of the spe-

cial theory of relativity to state that rather than an object, “information” could not

travel faster than c, despite the fact that a formal definition of information velocity

has never been agreed upon [1].

In 1970, Smith expanded the list of velocities to seven, including a “signal velocity”

which is almost identical to the front velocity of Brillouin, an energy velocity, and a

“centrovelocity” that describes the propagation of the pulse’s energy centroid [72]. All

of these velocities are distinct and differ from the standard group velocity definition.

More recently, the concept of information velocity has returned to the forefront of

discussion, and experiments measuring the propagation velocity of pulses with points

of non-analyticity have confirmed that these points propagate at c [2, 30, 73].

One way to see that these superluminal propagation effects must be consistent



2.4 Group velocity and causality 17

with causality is by examining their mathematical source. The group velocity is

predicted by the complex linear susceptibility χ(1), which is defined as the Fourier

transform of a causal response function [34]. The Kramers-Kronig relations that link

the real and imaginary parts of χ(1) are thus similarly constrained by causality, even

when they predict dispersion features that lead to anomalous group velocities. A

similar argument can be made for Maxwell’s equations, which obey special relativity

and govern the propagation of light through these materials. So despite the unusual

group velocities predicted, it is impossible for the results of these calculations to

violate causality.

What, then, is the meaning of the group velocity? It does not appear to represent

the propagation of information, energy, or pulse centroid. Under some circumstances,

it may be comparable or equal to some or any of those physical effects, but it isn’t in

general. In fact, Smith notes that,

“By its nature, the group velocity is a mathematical entity which may

not have any real physical significance associated with it. There is no

physical particle, mass, energy, or signal which necessarily travels at the

group velocity.”

This statement captures the essence of the group velocity quite well. The group

velocity describes the time evolution of a group of frequency components, which

in many cases also describes the propagation of the peak of an optical pulse. But

that peak is merely a mathematical construct. The peak does not have a physical

significance beyond being a point of maximum intensity; it is neither object nor signal.

And as we’ve seen, in situations where higher-order dispersion is present that peak

can be destroyed or distorted during propagation. As a result, the peak is not bound

by relativity or causality, and it should be of no surprise that a quantity describing

that peak gives values that are impossible for a physical entity.

That is not to say that the group velocity is a useless quantity. There are numerous

applications where the group velocity is relevant to the performance of a system. For
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example, in an optical telecommunications system data is encoded in bits represented

by the presence or absence of a pulse during a defined bit slot. Ideally, every pulse

is centered in its bit slot. However, during propagation a variety of effects may alter

the pulse’s position within its bit slot, even leading to encroachment on an adjacent

bit slot. Slow- and fast-light effects can help re-center the pulse in its bit slot and

reduce crosstalk and error rates, even though they have not altered the information

velocity.

2.5 Summary

In this chapter we have given an overview of the fundamentals of slow- and fast-light

propagation. A brief review of the mechanisms through which these anomalous group

velocities can be obtained was presented, and the practical issues that inevitably

occur in a practical slow- or fast-light system were discussed. Finally, we discussed

the relevance and meaning of the group velocity as well as its relationship to causality

and relativity.

In the next chapter, we will discuss our experimental investigation of fast-light or

“backwards” pulse propagation in an erbium-doped fiber amplifier.



Chapter 3

Backwards propagation

In this chapter we will discuss the topic of “backwards” propagation or negative group

velocities. We will first provide a brief overview of the conceptual interpretation of

negative group velocities, and then detail the erbium fiber system in which we will

be investigating the effect. A theoretical model that describes this system will be

provided, and our experimental investigation of the effect will be detailed.

3.1 Negative group velocity

As we discussed in the previous chapter, under certain conditions the dispersion of

the material can become highly anomalous and lead to negative group velocities.

This raises a number of questions about the nature of the process and about what

is physically occurring during propagation. A number of authors have addressed the

theoretical underpinnings of negative group velocity [21–25,74–77]. The conclusions of

these works are demonstrated in Figure 3.1, which is a simple simulation of a negative-

group-velocity medium. First, the peak of the transmitted pulse is predicted to exit

the rear interface of the material (represented by the red box) before the peak of the

incident pulse arrives at the first interface. In addition, there appears to be a pulse

propagating backwards through the material, such that the peak of the backward-

19
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propagating pulse coincides with the peaks of the entering and exiting pulses.
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Figure 3.1: Schematic diagram of pulse propagation within a negative group velocity
medium. Each panel is a sequential snapshot of the pulse envelope, with the boxes
representing the region of negative group velocity. The output pulse peak exits the
material between panels two and three, while the input peak does not enter the
material until after panel five. In addition, a peak propagates backwards within the
material linking output and input pulse peaks.

It should be noted that Figure 3.1 is an idealization that exaggerates the backwards

propagation effect for clarity. The simulation assumes a medium with two very strong

gain resonances separated in frequency. These gain lines each give a strong slow-light

effect at resonance, but combine to form a broad region of negative group velocity

between the resonances. The pulse bandwidth is constrained to be within this negative

group velocity region, and thus the pulse has infinite temporal extent. If the pulse had

any bandwidth component at gain resonance, there would be a considerable amount

of GVD and pulse distortion.

Perhaps the most idealized factor is that the simulation does not include any noise
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effects, which would be a significant source of error due to the strength of the gain

features required to obtain such a significant pulse advancement effect. Any noise

component at either gain resonance would be amplified significantly and create inten-

sity fluctuations that would exceed that of the pulse and distort its temporal profile.

In a practical backward-propagation system we would expect our pulse advancement

to be limited by GVD or noise effects, likely to less than one pulse length.

Pulse advancement in a negative-group-velocity medium has been observed in

previous work [15, 26–30, 78]. However, until our contribution, no attempt had been

made to investigate the dynamics of the backward-propagating pulse. In fact, it was

not entirely clear whether the theoretical predictions of backwards propagation were

robust enough to be observed under actual laboratory conditions. In addition, it was

unclear whether the energy velocity was positive or negative in this situation. The

group velocity and energy velocity are not generally equivalent, and in fact can only

be equal in the absence of gain or loss, which is equivalent to abandoning causality

and thus un-physical [72].

3.2 CPO in erbium doped fiber

To create our absorption feature, we used a technique known as coherent population

oscillations, or CPO. CPO was first demonstrated in a ruby crystal [14, 79], but has

also been demonstrated in alexandrite [15], semiconductor quantum wells [46,47], and

erbium-doped fiber [31].

The CPO effect occurs when an intensity-modulated probe beam interacts with a

homogeneously broadened atomic absorption or gain resonance. The probe causes the

atomic ground state population density to oscillate at the frequency of the modulation

with a slight lag in the modulation phase. As a result, the pulse sees a time varying

absorption or gain, which reshapes the pulse accordingly. For a single pulse, only one

oscillation of the population density occurs. The effect can be equivalently understood
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as a type of saturable absorption or as a nonlinear effect that creates a narrow spectral

hole at the pulse’s carrier frequency.

For our experiments, we chose to use erbium-doped optical fiber (EDOF) as our

negative-group-velocity material. Erbium has the energy level diagram shown in

Figure 3.2, and can act as a saturable absorber or reverse saturable absorber for light

at a wavelength of λ = 1550 nm in the absence or presence of an applied 980-nm pump

beam. It is thus a slow-light medium by nature, but becomes a fast-light medium

when a pump field is applied.

1550 nm

980 nm

Figure 3.2: Energy level diagram for erbium. A pump applied to the 980-nm transition
will invert the 1550-nm transition, changing the system from a saturable absorber to
a reverse saturable absorber. This turns erbium from a slow-light medium into a
fast-light medium.

In addition to a convenient material system, EDOF gives us the benefits of working

in optical fiber. Fiber provides tight confinement and subsequently large optical

intensities. It also makes long interaction lengths feasible so that effects can be studied

over many meters of distance. Both of these factors enhance nonlinear interactions

and lead to stronger slow- and fast-light effects. Finally, the ability to work in fiber

at a common telecommunications wavelength allows use of inexpensive and widely-

available off-the-shelf equipment.

If we chose to develop our theoretical treatment in the frequency domain, we

would follow the method shown in [14]. The probe beam would be represented as

a combination of a monochromatic carrier wave and one or more sidebands which
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represent the modulation,

E(t) = E0e
−iω0t + E1e

−i(ω0+δ)t, (3.1)

where ω0 is the carrier frequency and δ is the intensity modulation frequency. Density

matrix analysis would then lead to a modulation of the population inversion and a

dip in the atomic absorption profile α(δ),

α(δ) =
α0

1 + IN

(
1− IN(1 + IN)

(T1δ)2 + (1 + IN)2

)
, (3.2)

where IN = I0/Isat is the normalized intensity of the central frequency component,

Isat is the saturation intensity of the medium, T1 is the excited state lifetime of the

transition, and α0 is the unsaturated background absorption (or gain) coefficient. The

second term in equation (3.2) is the “spectral hole” that causes the slow- or fast-light

effects.

However, since the dipole dephasing time T2 of the medium is much smaller than

the excited state lifetime T1, we may also choose to address the problem in the time

domain with a rate equation treatment [31, 80]. This approach provides additional

insight into the process, as the effects of the spectral hole are interpreted to be

time-dependent saturation of the absorption or gain of the material. The nonlinear

saturable-gain picture of the process also nicely complements the purely linear energy

exchange description provided in [24]. Since this rate equation formulation is sufficient

to describe our experimental results, we will proceed with the time-domain analysis

as presented in [31].

We model the erbium atoms as a three-level system shown in Figure 3.2. A pump

wave at 980-nm excites the atoms from the ground state into an upper-level state,

and a signal wave at 1550-nm experiences the effects of a transition between the

ground state and a metastable upper-level state. The decay from the upper-level

pumping state to the metastable state is assumed to be rapid compared to T1, the
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metastable state’s lifetime. Under those conditions, the rate equation for the ground

state population density n can be written,

dn

dt
=
ρ− n

T1
+

(
1− n

ρ

)
βsIs −

n

ρ
αsIs −

n

ρ
αpIp, (3.3)

where ρ is the Er3+ ion density in the fiber, Ip is the pump intensity in units of

photons/area/time, Is is the signal intensity, βs is the stimulated emission coefficient

at the signal wavelength, and αp and αs are the absorption coefficients for pump and

signal waves, respectively. In this expression, the first term describes the natural

decay of the metastable state and the second term describes stimulated emission

caused by the signal wave. The last two terms describe the reduction of the ground

state population by absorption of signal and pump waves, respectively. In the steady-

state, the ground state population is

n0 =
1

ωc

(
ρ

T1
+
βs
Is

)
(3.4)

where the “CPO center frequency” ωc has been defined as

ωc =
1

T1
+
αpIp
ρ

+
(αs + βs)Is

ρ
. (3.5)

This frequency will later be shown to determine the width of the spectral hole. Note

that it is the inverse of the excited state lifetime, but also contains power-broadening

terms for both pump and signal fields.

The signal field can be expressed as Is(t) = I0 + I1 cos δt, with a constant back-

ground component I0 and a modulated portion I1 oscillating at frequency δ. The

ground state population can similarly be expressed as n(t) = n0 + n1(t), with the

same steady-state portion as before and an oscillating component n1(t). Plugging

these expressions for n(t) and Is(t) into (3.3), we get a linear differential equation for
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the oscillating component n1(t) which can be quickly solved to find

n1(t) =

(
ωc cos δt+ δ sin δt

ω2
c +∆2

)
I1g, (3.6)

with a gain coefficient g defined to be

g = −n0

ρ
(αs + βs) + βs. (3.7)

We construct the propagation equation for Is(t) by considering its z-dependence.

As the signal wave propagates, it will lose intensity to absorption and gain intensity

from stimulated emission. In this rate equation formulation, there are no coherent

interactions between pump and signal waves. We also ignore scattering and other

sources of loss in the fiber, as they are negligible compared to the near-resonance

effects. Thus, we arrive at the propagation equation given in [31,80],

dIs
dz

= −n
ρ
αsIs +

(
1− n

ρ

)
βsIs. (3.8)

To determine the behavior of I1, we substitute our expressions for n(t) and Is(t) =

I0 + I1 cos (δt+ ϕ), where we have allowed for a modulation phase shift ϕ during

propagation, into (3.8). Isolating the terms that oscillate at the modulation frequency

and ignoring terms of second-order or higher in I1, we have

dI1
dz

= gI1

(
1−

(
αs + βs

ρ

)(
ωc

ω2
c + δ2

)
I0

)
(3.9a)

dϕ

dz
=

(
αs + βs

ρ

)(
δ

ω2
c + δ2

)
I0g (3.9b)

We can define a modulation absorption coefficient α1 and modulation phase shift



3.2 CPO in erbium doped fiber 26

ϕ1 as

α1(I1, Ip, I0) =

(
αs + βs

ρ

)(
ωc

ω2
c + δ2

)
I1g (3.10a)

ϕ1(I1, Ip, I0) =

(
αs + βs

ρ

)(
δ

ω2
c + δ2

)
I1g (3.10b)

which gives a simpler form of equations (3.9),

dI1
dz

= gI1 − α1I0 (3.11a)

dϕ

dz
=
I0
I1
ϕ1 (3.11b)

The evolution of the amplitude of the modulation depends on two terms, the first

being a simple linear gain process and the second a modulation gain that depends

on the carrier wave I0. Note that since α1 shares the sign of g, it will always be a

modulation absorption effect if the system is inverted (g > 0), and a modulation gain

effect if the system is lossy (g < 0). From this it is clear that this effect is always a

spectral hole in the gain or absorption seen by I1.

The evolution of the phase of the modulation has only one term which depends

on I0, I1, and the phase shift ϕ1. ϕ1 shares the sign of α1 and g, indicating that in

a region of gain ϕ1 will be positive and the modulation will experience advancement;

conversely, in a region of loss ϕ1 will be negative and the modulation will be delayed.

From the derivation it is clear that α1 is taken from the in-phase part of n1, while

the phase shift ϕ1 is caused by the out-of-phase term δ sin δt.

Further, one can see from ϕ1 that the maximum value of the phase shift should

occur when the modulation frequency δ matches the CPO center frequency ωc. The

system can therefore be tuned for a particular modulation frequency by optimizing

ωc through power broadening. Conversely, at a given pump power or gain level, the

modulation frequency can be adjusted until maximum advancement is achieved. The

ideal modulation frequency will be on the order of 1/T1, which for un-pumped erbium
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ions (T1 = 10.5 ms) is approximately 100 Hz. Power broadening generally increases

this frequency by approximately one order of magnitude.

3.3 Experimental procedure and results

A schematic diagram of our experimental setup is shown in Figure 3.3. A continuous-

wave 1550-nm tunable diode laser (New Focus Velocity TLB-6328) serves as our signal

beam. The signal beam is intensity-modulated by a free-space electro-optic modu-

lator (New Focus 4104) to create approximately 0.5-ms full-width at half maximum

pulses or 1 kHz sinusoidal intensity modulations. A sharp optical triggering signal

which is too short to experience the CPO effect was added to each waveform for

synchronization and triggering purposes. In both cases the signal modulation is su-

perposed on a constant background intensity approximately ten times the size of the

modulation depth to help reduce distortion effects.

The signal is then fiber-coupled and sent through an optical isolator, and a split-

ter sends a portion of the beam to an InGaAs photodiode for use as a reference.

The remaining signal is combined with a continuous-wave 980-nm pump beam in a

wavelength-division multiplexer (WDM). The combined pump and signal are then

sent to one of two experimental configurations. Pump and signal powers at this point

in the system were approximately 128 mW and 0.5 mW, respectively.

In the first configuration, shown in Figure 3.3(b), the pump and signal co-propagate

through a series of three 3-m sections of EDOF separated by bi-directional 1% fiber-

optic couplers. After passing through all nine meters of EDOF, the signal is separated

from the pump by a WDM and detected with a photodiode. The same WDM and

photodiode were then used to measure the four outputs of the bi-directional taps

labeled A through D to determine direction of energy flow and approximate signal

strength. Signal and reference photodiode outputs were monitored and captured with

a digital storage oscilloscope.
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or

1550 nm laser splitterEOM

980 nm laser
WDM

Reference

(a)

(c)

(b)

WDM

1550

980

Signal

A B C D
1%1%

EDOF
Signal

Filter

EDOF

Figure 3.3: Experimental setup (a)-(c) for the backwards propagation experiment.
Abbreviations used: EOM = electro-optic modulator, WDM = wavelength division
multiplexer, EDOF = erbium doped optical fiber. Setup (a) acted as the source for
all experiments. Setup (b) was used to measure the field evolution within the fiber,
while setup (c) was used to determine energy transport dynamics.

As expected, measurements made on ports B and D showed strong signals for both

modulation formats, as did the output of the full nine meters of EDOF. In all cases,

the modulation was advanced and slightly distorted by the saturated amplification

process. The total advancement measured was approximately 120 µs for the full

9 meters of fiber, corresponding to a velocity of -75 km/s and a group index of

ng ≈ −4000.

However, measurements on ports A and C did not show an appreciable signal

pulse. The intensity at these two ports was barely distinguishable from the amplified

spontaneous emission (ASE) noise measured in the absence of a signal pulse. The

largest feature of these measurements was a dip in ASE background corresponding
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to the temporary saturation of the gain during the pulse transit. In addition, we

observed a small amount of energy due to back-reflections from the numerous fiber

splices in the system, though this was negligible compared to the ASE background or

signal powers.

These results confirmed that the energy flow in this system was confined to the

forward direction despite the appearance of pulse advancement. This is an important

conclusion for several reasons. It supports the proposed theoretical treatments of

negative-group-velocity materials, which suggest that there is no energy traveling in

the backward direction. It also demonstrates that the energy velocity and group

velocity can not only differ in magnitude, but that they can differ in sign as well.

Most importantly, it confirms that the behavior of the system at any point in the

fiber is not dependent on points further along in the fiber. This justification allows us

to continue with the second stage of our experiment and investigate the time evolution

of the pulse within the EDOF.

In this final stage of our experiment, we send the signal and pump from Figure

3.3(a) through the setup shown in Figure 3.3(c). The two beams propagate through

a nine-meter coil of EDOF, after which they are coupled into free space with a mi-

croscope objective and index-matching fluid. A bandpass filter isolated the signal at

1550 nm, which was imaged to a germanium photodetector for measurement. The

signal and reference detector outputs were again recorded with the digital storage

oscilloscope for both modulation formats.

The fiber was then cut with a mechanical cleaving tool to reduce its length by

approximately 25 cm and re-coupled to the objective. New measurements were taken

with this new fiber length, and the process was repeated until only a few centimeters

of fiber remained. In this fashion, we were able to collect data for a variety of fiber

lengths and reconstruct the time evolution of the pulse at many points along the

length of the fiber.

Example signal and reference pulses for propagation through six meters of EDOF
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are shown in Figure 3.4. The signal pulse has been amplified considerably, so the

intensities have been normalized to facilitate comparison. The output pulse is notice-

ably advanced compared to the input pulse, and a small amount of pulse distortion

is observed.
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∆τ = 72 μs

Figure 3.4: Pulse intensity profiles for the input (green) and output (blue) of 6 meters
of erbium-doped optical fiber. Pulse intensities have been normalized to clarify the
comparison of input and output pulse shapes. A constant background power equal
to approximately ten times the pulse modulation amplitude has been suppressed in
normalization. The output pulse is advanced in time by 72 µs and suffers a slight
amount of distortion.

Our data collection gives us a series of temporal intensity profiles I(t) at different

lengths Li of EDOF, which can be treated as a two-dimensional map of I(z, t), the

spatial and temporal intensity profile. Each individual trace I(t) is simply I(Li, t)

evaluated at a fixed value of z = Li. If we instead fix the value of t at a given time

step t = ti, we have I(z) = I(z, ti), the spatial intensity profile within the fiber. This
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technique is validated by our first measurement, which confirmed that downstream

portions of the fiber have no effect on the energy or pulse propagation dynamics

further upstream.

Figure 3.5 illustrates the result, showing snapshots of normalized pulse intensity

I(z, ti) as a function of normalized fiber position |ng|z for a series of time steps.

Pulse intensity has been normalized after background subtraction according to the

maximum value of I(Li, t) at each fiber length Li in the same fashion as Figure 3.4.

The small noise-like intensity fluctuations in the fiber region are a result of changes

in coupling and detection efficiency in individual traces, though these effects have

been partially mitigated by the normalization scheme. The group index has been

chosen as ng = −4000 for these plots based on our advancement measurements. The

green vertical bars indicate the entrance face of the fiber at |ng|z = 0 km and the

exit face at |ng|z = 36 km. Data points outside the fiber region are interpolated from

the measurements made at L = 0 m and L = 9 m assuming normal propagation at

vg = c/n. Arrows have been provided to help identify the approximate position of

the peak in all three regions.

It’s clear that the pulse peak exiting the fiber is created before the second snapshot

even though the peak of the incident pulse does not arrive at the entrance face of

the fiber until the last time step. Between these two times, a peak appears to be

created within the fiber that moves in the backward direction (from right to left)

linking input and output pulse peaks. The apparent “backwards propagation” occurs

because of time-dependent transfer of energy between the optical pulse and the gain

medium, which reshapes the pulse profile during propagation. The peak of the optical

intensity within the fiber coincides with a minimum of the stored energy density in

the material, as predicted theoretically [24, 81]; this is further substantiated by the

observation of a minimum in the amplified spontaneous emission power in the energy

measurements made on ports A and C of the first experiment.

While the pulse envelope does indeed appear to propagate backwards within the
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Figure 3.5: Snapshots of normalized pulse intensity I(z, t) showing the time evolution
of the optical intensity before (left), after (right), and within the erbium-doped fiber
(center). The edges of the EDOF are denoted by the vertical green lines, and the
times are given in microseconds. The group index for the erbium fiber region is
approximately ng = −4000. Arrows mark the approximate position of the peak.

fiber, the energy flow is always in the forward direction, suggesting that there is

no physically meaningful object moving backwards in the system. As such, there is

also no violation of causality in this system, since the peak exiting the material is

created from the leading edge of the input pulse as a result of gain saturation in the

EDOF. Similarly, the incident pulse peak becomes part of the tail of the exiting pulse,

confirming that the incident and exiting peaks are not causally related objects.

To demonstrate that the backwards propagation effect is not a side effect of the

normalization procedure, we provide the un-normalized data set in Figure 3.6. The

gain of the EDOF causes the output pulse to be much larger than the input pulse, so
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Figure 3.6: Snapshots of unnormalized pulse intensity I(z, t) at a series of time steps.
The output pulse is much larger than the input pulse, making it difficult to see the
input peak. Arrows have been provided to help identify the peak positions more
clearly. The pulse peak within the material still appears to move backwards, but has
a different apparent group velocity as a consequence of the influence of gain saturation
effects.

arrows have been provided to help identify the peak positions. The noise-like inten-

sity fluctuations caused by coupling efficiency changes are more pronounced in the

absence of the normalization procedure. In this data set, the pulse still appears

to move backwards through the EDOF section, but the apparent group velocity

is considerably smaller and the input peak no longer appears to coincide with the

backward-propagating peak at the first interface. This strange effect is a result of the

non-uniformity of the longitudinal gain distribution within the fiber.

While a uniform longitudinal gain profile g(z) = g0 would not affect the expected
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group velocity of a Gaussian pulse within the material, g(z) is neither uniform nor

stationary in our system. The pump beam saturates the gain in the early portions of

the fiber, but pump absorption leads to a reduction in the gain coefficient at longer

fiber lengths. As such, the apparent group velocity observed in the un-normalized

data is significantly different than the normalized data set. The nonlinear pulse

propagation dynamics which saturate the gain and cause temporal variations in the

longitudinal gain profile are not responsible for this change in group velocity, as those

are not eliminated by the normalization process.

It should also be noted that after t = 90 µs the entire pulse envelope within the

fiber is monotonically decreasing in intensity. The peak intensity at z = 0 occurs at

the same time on either side of the interface, even though a point of higher intensity

exists further along in the fiber. The pulse peak in the material is thus a result of the

complicated time-dependent longitudinal gain profile in the fiber, which is affected

by gain saturation in the EDOF due to the signal as well as gain recovery caused by

pump and signal absorption. In the limit of small gain (g0L < 1), the effects of gain

non-uniformity become very weak and the un-normalized data behaves exactly like

the normalized version shown in Figure 3.5.

It is for this reason that we feel the normalized data gives us better intuition for

the behavior within the fiber. It accurately describes the time at which the optical

intensity I(zi, t) reaches its maximum value, which is a stronger indicator that the

material gain at zi has been fully saturated. The normalization procedure removes the

complicating effects of gain non-uniformity caused by pump depletion while retaining

the dynamic nonlinear gain saturation effects that create the fast-light effect and

cause pulse advancement.
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3.4 Summary

In this chapter, we introduced the concept of negative group velocity and reviewed

the predictions that have been made about pulse propagation under those conditions.

These predictions were demonstrated with a simple simulation result, and the lim-

itations of both the simulation and practical negative-group-velocity materials were

discussed.

We also presented a brief theoretical treatment of coherent population oscillations

in erbium-doped optical fiber systems as a mechanism to achieve slow- and fast-light.

The theory demonstrated that it is capable of providing either pulse delay or pulse

advancement for the 1550-nm signal wavelength contingent on the absence or presence

of a pump laser at the 980-nm transition.

Finally, we described the first experimental measurements of pulse evolution and

energy dynamics within an EDOF operating in the negative-group-velocity regime.

We have found that the energy velocity is always positive in such a system, con-

sistent with theoretical predictions. In addition, we have observed the presence of

a backward-propagating peak within the material that links the input and output

pulses.

These results can be understood by properly including the time-dependent satu-

ration of the gain material in our conceptual model. The leading edge of the incident

pulse experiences a large amount of gain, but at some point the gain becomes sat-

urated and a new peak is created at the exit interface. This gain saturation effect

starts at the longest point in the fiber and slowly propagates back through the fiber

towards the entrance face as the input intensity increases further. This subsequently

causes a local maximum of pulse intensity within the fiber at the vicinity of this

transient saturation point, resulting in the appearance of a backward-propagating

intensity maximum that we identify as a peak. In systems where the gain is severely

non-uniform, which is frequently the case due to pump depletion, the intensity profile

in the fiber will be distorted but the propagation dynamics can be recovered by an
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appropriate normalization technique.



Chapter 4

Tunneling delays in one dimension

The concept of tunneling through a potential barrier is usually encountered very

early in a student’s undergraduate career. The finite barrier problem in particular

is frequently used to demonstrate the differences between classical and quantum-

mechanical behavior. However, within this simple undergraduate problem lies a

deeper and more intriguing question about the time associated with the tunneling pro-

cess. Complicating matters further, there is some uncertainty about the appropriate

way to calculate such a tunneling time and no universally agreed-upon interpretation

of the physical meaning of this time.

In this chapter, we will provide a complete derivation of the tunneling delay from

first principles, and express this quantity using two different interpretations. The

derivation is heavily based on papers by Steinberg [82] and Winful [83], primarily

using the notation of the latter. There are a number of other definitions of tunneling

time that we will mention in passing [84,85].

4.1 The one-dimensional finite barrier problem

Figure 4.1 shows a standard one-dimensional finite potential barrier problem. A

particle of energy E in a region of potential energy V = 0 is incident upon a barrier

37
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V0

ψ
I
 = eikx + Re-ikx ψ

II
 = Ce-κx+ Deκx ψ

III
 = Teikx 

E

Region I Region II Region III
0

Figure 4.1: Schematic diagram for one-dimensional barrier tunneling. A particle of
energy E approaches a barrier of potential V0. ψ is the wavefunction in each region.

region of potential energy V0 > E at x = 0. The barrier extends from x = 0 to

x = L, after which the potential energy returns to V = 0. To describe the particle

wavefunction in each region, we consult the time-dependent Schrödinger equation,

[
~2

2m

∂2

∂x2
− V (x)

]
Ψ(x, t) = −i~ ∂

∂t
Ψ(x, t). (4.1)

From this, we see that the wavefunction has solutions of the form

Ψ(x, t) = ΨE(x)e
−iEt/~, (4.2)

where ΨE(x) is the stationary state solution to the time-independent Schrödinger

equation

− ~2

2m

∂2ΨE

∂x2
+ (V − E)ΨE = 0. (4.3)

In regions I and III, V = 0 and ΨE has traveling-wave solutions of the form e±ikx,

with E = ~2k2/2m. Inside the barrier, the wave is evanescent, and solutions take the

form e±κx, with κ ≡
√

2m(V0 − E)/~. Thus, the stationary state wavefunctions in
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regions I-III can be expressed as

ΨI(x) = eikx +Re−ikx (4.4a)

ΨII(x) = Ce−κx +Deκx (4.4b)

ΨIII(x) = Teikx (4.4c)

where we have assumed that there are no particles incident from the right (x = ∞).

Finding T , R, C, and D is a straightforward, if tedious, exercise in algebra. At x = 0,

both Ψ and ∂Ψ
∂x

must be continuous,

ΨI(0) = ΨII(0) (4.5a)

Ψ
′

I(0) = Ψ
′

II(0) (4.5b)

Plugging (4.4) into (4.5) gives

1 +R = C +D (4.6a)

ik(1−R) = −κ(C −D) (4.6b)

from these two equations, we can express C, D, and ΨII(x) in terms of R:

2C = 1 +R− ik

κ
(1−R) (4.7a)

2D = 1 +R +
ik

κ
(1−R) (4.7b)

ΨII(x) = (1 +R)

(
eκx + e−κx

2

)
+
ik

κ
(1−R)

(
eκx + e−κx

2

)
= (1 +R) coshκx+

ik

κ
sinhκx (4.7c)
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Next, we’ll apply boundary conditions at x = L:

ΨII(L) = ΨIII(L) (4.8a)

Ψ′
II(L) = Ψ′

III(L) (4.8b)

Plugging in (4.4) and (4.7c) gives

(1 +R) coshκL+
ik

κ
(1−R) sinhκL = TeikL (4.9a)

κ(1 +R) sinhκL+ ik(1−R) coshκL = ikTeikL (4.9b)

which can be used to solve for T and R. Since eliminating T is easy, we solve R first.

Dividing (4.9b) by ik and setting the left-hand sides of (4.9) equal gives:

(1 +R) coshκL+
ik

κ
(1−R) sinhκL =

κ

ik
(1 +R) sinhκL+ (1−R) coshκL

2R coshκL+ i

[
k

κ
(1−R) +

κ

k
(1 +R)

]
sinhκL = 0

2R coshκL+ i

(
κ

k
− k

κ

)
R sinhκL = −i

(
k

κ
+
κ

k

)
sinhκL

For convenience, we define two parameters that simplify the notation:

∆ ≡ 1

2

(
κ

k
− k

κ

)
(4.10a)

∆′ ≡ 1

2

(
κ

k
+
k

κ

)
(4.10b)

with these, R becomes

R =
−i∆′ sinhκL

coshκL+ i∆sinhκL
.
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Here we define one more parameter to simplify the notation. Following convention

[86], we define g such that

g ≡ coshκL+ i∆sinhκL, (4.11)

which then gives R a very simple form:

R = −i∆
′

g
sinhκL (4.12)

Solving for T is easiest by evaluating (4.9a)+ 1
ik
(4.9b) and plugging in (4.12):

2TeikL = (1 +R) coshκL+
ik

κ
(1−R) sinhκL+

κ

ik
(1 +R) sinhκL+ (1−R) coshκL

= 2 coshκL+ i

(
k

κ
− κ

k

)
sinhκL− iR

(
κ

k
+
k

κ

)
sinhκL

= 2(coshκL− i∆sinhκL− iR∆′ sinhκL)

=
2

g

[
g(coshκL− i∆sinhκL)−∆′2 sinhκL2

]
=

2

g

[
coshκL2 +∆2 sinhκL2 −∆′2 sinhκL2

]
=

2

g

[
coshκL2 + (∆2 −∆′2) sinhκL2

]
=

2

g

[
coshκL2 − sinhκL2

]
=

1

g

T =
e−ikL

g
(4.13)

Finding C and D is also straightforward from (4.12) and (4.7). By noting that

1±R = (g∓ i∆′ sinhκL)/g, ∆+∆′ = κ/k, and ∆−∆′ = −k/κ, C quickly simplifies
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to

2C = (1 +R)− ik

κ
(1−R) =

1

g

[
g − i∆′ sinhκL− ik

κ
g +

k

κ
sinhκL

]
=

1

g

[
coshκL+ i(∆−∆′) sinhκL− ik

κ
coshκL+

k

κ
(∆ +∆′) sinhκL

]
=

1

g

[
coshκL+ sinhκL− i

k

κ
(coshκL+ sinhκL)

]
=

(
1− ik

κ

)
eκL/g

C =

(
1− ik

κ

)
eκL/2g (4.14)

In a similar fashion, D can be calculated as

D =

(
1 +

ik

κ

)
e−κL/2g (4.15)

Equations (4.12), (4.13), (4.14) and (4.15), along with the definitions of g, ∆,

and ∆′ completely describe the one-dimensional system’s stationary states. Figure

4.2 shows the probability distribution P (x) = |Ψ(x)|2 for such a state with κ = k/3,

which is equivalent to E = 0.9V . The incident and reflected parts of the wave function

interfere to form a standing wave in region I, and the probability distribution decays

as e−κx in the barrier region. The portion of the wave function describing the tunneled

particle in region III has the form of a traveling wave, and therefore has a constant

probability density. Since a single stationary state wave function exists at all points

in space and time, and does not have a moving “peak” that can be unambiguously

identified, we cannot infer a useful definition of tunneling time from one such state.
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x=0 x=L

P(x)eikx

Te ikxRe-ikx

Figure 4.2: Probability density function for the stationary state tunneling process.

4.2 Wave packets and the phase time interpreta-

tion of group delay

To discuss group delay, we need to construct a spatially localized particle or wave

packet. As in [83], we do this by summing over a narrow band of stationary states:

Ψ(x, t) =

∫
E

f(E − E0)ΨE(x)e
−iEt/~dE, (4.16)

where f is an energy distribution function that describes the energy components of

the wave packet, and ΨE(x) are the steady-state wavefunctions of energy E derived

in the previous section. The wavefunction of the incident particle is found by sub-

stituting (4.2) for region I into (4.16). We can describe the motion of the particle

by determining the time evolution of the peak, which exists where the phases of the

wavefunction’s constituent steady-states interfere constructively.
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4.2.1 The phase time interpretation of group delay

Through the method of stationary phase, we can obtain a constraint equation for the

time evolution of the peak,

∂

∂E
(arg (ΨE)− Et/~) = 0. (4.17)

By our definitions of ΨE in (4.4a), this occurs at x = 0, t = 0 for the wave packet

incident from the left in the absence of a barrier. This expression also describes the

wave packet’s propagation in region I far in front of the barrier, and can be evaluated

to give the velocity of the particle,

∂k

∂E
x− t/~ =

√
2m

~
1

2
√
E
x− t

~
= 0

x =

√
2E

m
t

=
~kt
m

v =
∂x

∂t
=

~k
m
.

We can also interpret v as the incident particle flux in region I.

The transmitted wave packet is described by substituting (4.4c) into (4.16),

ψT (x, t) =

∫
E

f(E − E0)|T (E)|eiϕT (E)+ikx−iEt/~dE. (4.18)

If |T (E)| does not vary greatly over the region where f(E − E0) is significant, the

wave packet is not distorted or reshaped upon transmission. The peak “leaves” the

exit face of the barrier under the same stationary phase condition, namely that

∂

∂E
(arg (ΨIII(L))− Et/~) = 0 (4.19)

where arg(ΨIII(L)) = arg(T ) + kL. If we say that this occurs at time t = τgt, and let
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T = |T |eiϕT , we have

τgt = ~
∂

∂E
(ϕT + kL) . (4.20)

If |R(E)| is also slowly-varying over the region of interest, we can define a delay time

for the reflected wave packet in a similar fashion. Differentiating the phase of the

reflected component far from the barrier, we have

∂

∂E
(arg(R)− Et/~) = 0. (4.21)

Evaluating this for R = |R|eiϕR gives us the delay of the reflected wave packet τgr in

terms of ϕR,

τgr = ~
∂ϕR

∂E
. (4.22)

The condition that |T (E)| or |R(E)| not vary greatly over the region where f

is significant can be interpreted as limiting the scope of these expressions to the

“quasi-static” regime. If this condition is not obeyed, the fluctuations in |T (E)| can

have a significant effect on the integral and the wave packet may begin to experience

distortion or reshaping which can lead to pulse breakup and ambiguity in the output

pulse’s peak.

Put another way, these equations retain their relevance as long as the localization

of the particle, or the particle “length,” is much broader than the barrier length. If the

particle length is reduced enough, it will contain energy components that lie outside

the barrier region and transient effects begin to occur that distort the particle and the

equations above lose their validity. In the extreme limit of a discontinuous particle

wave function, the discontinuity will propagate at c through the barrier region, and

the particle will exhibit extreme amounts of distortion.

The tunneling process for a spatially localized particle is illustrated schematically

in Figure 4.3. In the first panel a particle is incident upon the barrier region from the

left. As the peak approaches the left side of the barrier, the incident and reflected

portions of the particle wave function begin to interfere just as in the stationary state
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case of Figure 4.2. The visibility of this interference becomes maximum at t = 0,

the time at which the peak of the incident particle would have crossed x = 0 in the

absence of the barrier structure. The standing wave that this creates is a transient

effect which lasts only for the duration of the pulse overlap. Within the barrier the

particle wave function is decaying as e−κx as it undergoes the tunneling process, with

its amplitude adiabatically following the amplitude of the standing wave at x = 0.

In the last panel the incident particle has been reflected or transmitted, and the

transmitted particle’s peak exhibits advancement relative to a copy of the incident

particle that is scaled by the barrier transmission coefficient but does not otherwise

experience the barrier, represented by a green dashed line.

The interference of incident and reflected waves makes it difficult to accurately

determine an arrival time for the incident wave packet at the barrier interface. As

such, we extrapolate this arrival time from the behavior of the incident wave packet

far from the barrier to determine the time at which it should have arrived at x = 0 had

the barrier not been present. The departure time of the reflected particle is similarly

determined based on its behavior long after the tunneling process has taken place.

It is therefore important to recognize that the group delays in equations (4.20) and

(4.22) are quantities that describe completed tunneling events based on extrapolation

from measurements made far from the barrier, as shown in the third panel of Figure

4.3.

It is a common mistake to misinterpret these group delays as traversal or prop-

agation times, raising questions about causality violation [4–7]. The error in this

logic is the false assumption that the peaks of the incident and transmitted waves

are causally-related entities. These peaks are the result of interference between many

stationary states, and do not represent a localized physical object propagating from

entrance to exit. As Winful states in [87], “We cannot say where the transmitted

wave packet is at t = 0 and hence cannot say that the group delay measures the time

it takes a wave packet to travel from input to output.” Furthermore, the wave func-
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Figure 4.3: Schematic showing the tunneling dynamics of a particle composed of many
stationary states. During the tunneling process, the incident and reflected portions
of the particle wave function interfere to form a standing wave. The tunneled portion
decays in the barrier region, and the transmitted particle exhibits advancement rela-
tive to a scaled copy of the incident wave that has been causally propagated through
an equivalent length of free space, shown in green.

tion probability density in the transmitted region never exceeds that of a “reference”

version of the incident wave function that has been causally propagated [88].

This interpretation has prompted arguments that the group delay itself is not

physically meaningful [89]. On the contrary, it has a very clear physical significance: it

accurately describes the behavior of the peak of the transmitted and reflected particle

wavefunctions after experiencing the tunneling process [90]. It is the misinterpretation

of this quantity as a traversal time that lacks physical meaning. One would not claim

to measure the speed of a train by comparing the time at which the front of the train

exits a tunnel to the time at which the back of the train enters it, because the front
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and back of the train are distinct and different physical objects. The same is true in

the case of tunneled particles, because the peaks of the incident and tunneled wave

functions are not the same entity.

4.2.2 Reflection and transmission delay for asymmetric and

symmetric barriers

For a symmetric barrier τgt = τgr due to time-reversal symmetry and particle con-

servation. This is discussed in [91] and demonstrated in the appendix of [92] and in

greater detail in Section III and Appendix A of [93]. Here we provide a consolidated

derivation based on these sources using the system shown in Figure 4.4, which is an

asymmetric barrier with an arbitrary potential VII = V (x) in the barrier region and

constant potentials VI ̸= VIII and particle wavevectors k and k̃ in regions I and III

respectively

Ueikx

We-ikx

Feikx

V(x)V
I

V
III

Ge-ikx

x
1

x
2

~

~

Figure 4.4: Asymmetric barrier system for calculation of τgt and τgr as shown in [93].
The potential energies are VI , V (x), and VIII in regions I-III respectively.

For this system, we can write a transfer matrix describing the transformation

from the wavefunction Ψ2 = Feik̃x +Ge−ik̃x at point x2 in region III to wavefunction
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Ψ1 = Ueikx +We−ikx at point x1 in region I:U

W

 =

M11 M12

M21 M22

F
G

 =M

F
G

 (4.23)

The complex conjugate Ψ∗ obeys the same Schrödinger equation as Ψ; therefore

we can also write W ∗

U∗

 =M

G∗

F ∗

 (4.24)

Examining this relation for the two cases shows that

U =M11F +M12G, (4.25a)

W =M21F +M22G (4.25b)

U∗ =M21G
∗ +M22F

∗ (4.25c)

W ∗ =M11G
∗ +M12F

∗ (4.25d)

From the expressions for W and W ∗ we have W = M∗
12F +M∗

11G = M21F +M22G,

implying that

M22 =M∗
11, M21 =M∗

12 (4.26)

which is a statement of time-reversal symmetry.

Particle (or current) conservation gives us an additional constraint, namely that

the particle current J = (Ψ∗∇Ψ−Ψ∇Ψ∗) is a conserved quantity [94]. Evaluation

of this expression at points x1 and x2 gives us

(
Ψ∗

1

∂Ψ1

∂x
−Ψ1

∂Ψ∗
1

∂x

)
=

(
Ψ∗

2

∂Ψ2

∂x
−Ψ2

∂Ψ∗
2

∂x

)
(4.27)
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Substitution of Ψ1 into the left-hand side and simplifying gives

(
U∗e−ikx +W ∗eikx

) ∂

∂x

(
Ueikx +We−ikx

)
−
(
Ueikx +We−ikx

) ∂

∂x

(
U∗e−ikx +W ∗eikx

)
= 2ik

(
|U |2 − |W |2

)
Similarly, substitution of Ψ2 into the right-hand side gives

ik̃
(
F ∗e−ik̃x +G∗eik̃x

)(
Feik̃x −Ge−ik̃x

)
+ ik̃

(
Feik̃x +Ge−ik̃x

)(
F ∗e−ik̃x − ik̃G∗eik̃x

)
= 2ik̃

(
|F |2 − |G|2

)
Which gives (4.27) the form

k
(
|U |2 − |W |2

)
= k̃

(
|F |2 − |G|2

)
. (4.28)

If we substitute (4.25a)-(4.25b) into this, we find that

k (M11M22 −M12M21)
(
|F |2 − |G|2

)
= k̃

(
|F |2 − |G|2

)
(M11M22 −M12M21) = k̃/k

detM = k̃/k (4.29)

To derive the relation between reflection delay τgr and transmission delay τgt, we

consider two situations. The first is the “direct” process of a particle incident on the

barrier from the left; in this case U = 1, W = B, F = A, and G = 0, such that 1

B

 =M

A
0
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giving us the relations

M11A = 1 (4.30a)

M21A = B (4.30b)

and by inspection, A = 1/M11. The “indirect” or reverse process is a particle incident

from the right, for which U = 0, W = A, F = B, and G = 1. This gives us0

A

 =M

B
1



M11B +M12 = 0 (4.31)

M21B +M22 = A (4.32)

From which it’s clear that

A =
detM

M11

=
k̃

k
A (4.33)

and since k and k̃ are both real, the phases of A and A can be related simply by

α = arg
(
A
)
= arg (A) = α (4.34)

This result is significant, because the group delay in transmission for the “direct”

process is τgt = ~ ∂
∂E

(arg (A)) = ~ ∂α
∂E

. Thus, the group delay in transmission is the

same in either direction, or τgt = τgt. Note that α here is equivalent to ϕT + kL in

equation (4.20).

According to (4.28), the transmission probability T for the direct process would

be the transmitted particle flux k̃|F |2 divided by the incident particle flux k|U |2,

which evaluates to T = k̃
k
|A|2. By the same argument, the transmission probability

T for the indirect process is T = (k/k̃)|A|2. Equation (4.33) dictates that these two



4.2 Wave packets and the phase time interpretation of group delay 52

transmission probabilities are equal,

T =
k

k̃

∣∣A∣∣2 = k̃

k
|A|2 = T. (4.35)

A similar relation can be obtained for the reflected beams, since

B = −M12

M11

, B =
M21

M11

(4.36)

and from (4.26) the reflection probabilities are related by

R =
∣∣B∣∣2 = M12M

∗
12

M11M∗
11

=
M∗

21M21

M11M∗
11

= |B|2 = R. (4.37)

It’s clear from this that |B| = |B|, and that β = arg(B) and β = arg(B) do not share

the simple relationship found for α and α in (4.34). To find this relation, we can

relate B and B directly by eqs. (4.30a) and (4.36).

B∗ =
M∗

21

M∗
11

=
M12

M∗
11

=
M12M11

M11M∗
11

= −BA
∗

A
(4.38)

B = −B∗ A

A∗ (4.39)

Writing A = |A|eiα, B = |B|eiβ, and B = |B|eiβ, this gives us

∣∣B∣∣ eiβ = |B| |A|
|A|

ei(±π−β+2α) (4.40)

Setting the phases on either side equal to one another, we have

β = ±π − β + 2α (4.41)
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The sign ambiguity can be resolved by considering the case of a symmetric barrier.

In this case, β = β and the phase equality simplifies to

β = ±π
2
+ α (4.42)

A here is simply R in (4.12), and B is TeikL with T given by (4.13). From these, we

can work out α and β:

α = arg

(
1

g

)
= arg (g∗) = − tan−1 [∆ tanhκL] (4.43a)

β = arg

(
1

g

)
+ arg(−i) = α+ arg

(
e−iπ/2

)
= −π

2
+ α (4.43b)

from which it is clear that the negative sign should be chosen in (4.41). Thus, we

finally have a complete relation describing the phases in reflection and transmission

from an asymmetric barrier

β = −π − β + 2α (4.44)

We’ve already seen that τgt = ~ ∂α
∂E

, and similar definitions can be made for the group

delays in reflection from either side of the barrier, τgr and τ gr. Differentiating (4.44)

with respect to E, we have

τgt =
τgr + τ gr

2
. (4.45)

Thus, the transmission group delay is the arithmetic mean of the two reflection delays,

which may be different from one another in the case of an asymmetric barrier. For a

symmetric barrier, τgr = τ gr = τgt, indicating that a particle will experience the same

delay regardless of whether the particle is ultimately reflected or transmitted.

It should also be noted at this point that for an asymmetric barrier, we could
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define a “bi-directional” group delay based on a weighted average of τgt and τgr,

τ̃g = |A|2 τgt + |B|2 τgr. (4.46)

This expression simplifies to τ̃g = τgt = τgr for a symmetric barrier, as expected.

4.2.3 Phase time expressions for the group delay

Returning to our symmetric barrier problem once again, we will now calculate the

group delay explicitly. First, we express the transmitted wave as

ΨIII(L) = TeikL =
1

g
=

g∗

gg∗
= |A| eiα. (4.47)

We can then express α as

tanα =
ImΨIII

ReΨIII

=
Im(g∗)

Re(g∗)
= −∆tanhκL

α = arg(T ) + kL = − tan−1 (∆ tanhκL) (4.48)

Note that some other sources use a different form for α, such as that found in [95].

However, it can be shown that this form is equivalent to ours:

Φ =
π

2
− tan−1

(
−cothκL

∆

)
tan

(
Φ− π

2

)
= (∆ tanhκL)−1

tan
(
Φ− π

2

)
= −(tanΦ)−1 = (∆ tanhκL)−1

Φ = − tan−1 (∆ tanhκL) .

It will be advantageous to evaluate several energy derivatives we will encounter in
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the derivation for readability:

∂κ

∂E
=

√
2m

~
∂

∂E
(V0 − E)1/2 = − m

~2k
(4.49a)

∂k

∂E
=

√
2m

~
∂

∂E
E1/2 =

m

~2k
(4.49b)

∂∆

∂E
=

∂

∂E

1

2

(
κ2 − k2

κk

)
=

1

κk

(
κ
∂κ

∂E
− k

∂k

∂E

)
+
κ2 − k2

−2κ2k2

(
∂κ

∂E
k + κ

∂k

∂E

)
=

−2m

~2κk
− m

2~2κk

(
κ

k
− k

κ

)2

=
−m
2~2

1

κk

(
κ

k
+
k

κ

)2

=
−2m∆′2

κk~2
(4.49c)

In addition, the following substitution based on our definition of α in 4.48 will fre-

quently show up in the derivation.

tanα = −∆tanhκL

cos2 α =
1

12 + (−∆tanhκL)2

=
1

1 + ∆2 tanh2 κL
, (4.50)
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Now, we can evaluate τg = τgt fairly easily:

τg = ~
∂α

∂E
= ~

∂

∂E

(
− tan−1 [∆ tanhκL]

)
= − ~

1 + ∆2 tanh2 κL

∂

∂E
(∆ tanhκL)

= −~ cos2 α
(
∂∆

∂E
tanhκL+∆sech2 κL

∂(κL)

∂E

)
=
mL

~k
cos2 α

2

(
4∆′2 tanhκL

κL
+ 2

k

κ
∆sech2 κL

)
=
mL

~k
cos2 α

2

[(
κ

k
+
k

κ

)2
tanhκL

κL
+

(
1− k2

κ2

)
sech2 κL

]
(4.51)

Equation (4.51) represents our final form for the group delay τg. This expression,

arrived at through the phase time interpretation, accurately represents the behavior of

the peak of the particle wavefunction in region III for an incident particle described by

equation (4.16). We will now demonstrate how this expression leads to an apparent

case of superluminal propagation, and show why causality is not violated in the

tunneling process.

4.3 The Hartman effect and superluminality

Hartman investigated this effect in 1962 in the context of tunneling diodes, calculating

the expected electron tunneling delay through metal-insulator-metal sandwiches [96].

He observed that for a thin barrier the transmitted wave function had the same

“shape” as the incident wave function but the peak was shifted, indicating a de-

lay slightly larger than the “equal time,” or the time it would take the particle to

propagate through a length of free space equal to the barrier thickness L.

As the barrier length increased, the filtering action of the barrier led to a slight

blue shift of the transmitted particle’s energy distribution. However, this effect is

negligible as long as the particle has a very narrow energy distribution centered well

below the barrier potential. More importantly, he noted that the predicted delay
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for such a particle saturated with increasing barrier length, at some point becoming

smaller than the equal time. This saturation of the group delay eventually earned

the “Hartman effect” moniker [97]. The effect is demonstrated in Figure 4.5, which

plots the group delay given by equation (4.51) and the equal time as a function of

barrier width for E = V0/2. For small κL, corresponding to a thin barrier, the group

delay exceeds the equal time. However, the group delay saturates as κL increases,

and eventually crosses the strictly linear equal time.
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Figure 4.5: Group delay (solid line) and equal time L/v0 (dashed line) as a function
of barrier width κL. The equal time is the group delay for a particle traversing a
distance L in the absence of a barrier. The delay normalization factor is 2/κv0, and
the particle energy is E = V0/2. Adapted from [83].

When E = V0/2, k = κ and the second term in equation (4.51) vanishes, as does
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α. In this special case, the expression for group delay simplifies to

τ (E=V0/2)
g =

2 tanhκL

κv
(4.52)

with v = ~k/m as usual. It is very easy to see the mathematical source of the Hartman

effect in this form. As κL→ ∞, tanhκL saturates to a value of 1 and the group delay

saturates to τ
E=V0/2
g → 2/κv. The group delay should, therefore, become independent

of length in the long-barrier limit. From our previous discussion, this also means that

the reflection delay saturates to the same value for a symmetric barrier.

This limit is not even particularly difficult to achieve, as the saturation is almost

complete at κL = 2. Since e−κL describes the decay of the wave function in the

barrier region, one can intuitively interpret this condition as the point at which the

wave function has decayed to 1/e2. While this interpretation is only an approximation,

as it neglects the second term of ΨII, it corresponds to a barrier length of only a few

particle wavelengths.

If we were to näıvely define a group velocity for the particle by dividing the barrier

length by the group delay,

vg =
L

τg
, (4.53)

we see the apparent conflict with causality. Once τg has saturated to a constant

value, vg becomes linear in L, which can grow without bound. At some value of

L, vg will exceed the speed of light which suggests superluminal propagation. The

transmission of the particle decreases exponentially with the barrier length as well,

leading to a further quandary: as the particle tunnels “faster,” there’s less and less

of it to measure! In the infinite-barrier limit, the transmission drops to zero as vg

approaches infinity. These paradoxes have led to intense debate about the meaning

of the group delay in barrier tunneling, and are in part responsible for the continued

investigation of tunneling delays.

However, as we discussed in section 4.2, these paradoxes are based in the fun-



4.3 The Hartman effect and superluminality 59

damental conceit that the group delay represents the propagation delay of a single

unambiguous object, which is not the case. The peaks of the incident and transmit-

ted particles are interference effects, and do not represent a localized physical object

propagating from region I to region III.

It should also be noted that this is not an erroneous result caused by the use

of a non-relativistic Schrödinger equation; the effect still occurs in the relativistic

expression for group delay obtained from the Dirac equation [98]. It is a real effect

that has been measured experimentally in both electromagnetic [99–106] and acous-

tic [107, 108] analogs to the barrier tunneling problem. According to Winful’s fairly

exhaustive summary of the experimental findings [83], the group delay exhibits all of

the observable features discussed in this section. It accurately describes the time at

which the transmitted peak exits the barrier, is shorter than the equal time for an

appropriately long barrier, saturates with barrier length, and is equal in transmission

and reflection for a symmetric barrier. The attenuated transmitted pulse is not re-

shaped or distorted as long as the tunneling occurs under quasi-static conditions. As

such, any theoretical description of tunneling time needs to remain consistent with

these findings.

We will now describe an alternative theory for tunneling delay that adheres to

these conditions. This interpretation approaches the problem from a different per-

spective and provides additional physical intuition about the source and behavior of

the delays predicted by the phase delay approach.
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4.4 The dwell time interpretation of tunneling de-

lay

We can also develop the group delay quantum-mechanically using a variational method

outlined in [86,109]. First, we note that we can define a “dwell time” τd as in [110].

τd =

∫ L

0
|Ψ(x)|2 dx
jin

(4.54)

where jin = ~k/m is the incident particle flux. While this dwell time definition is an

integral over a stationary state, we will now show that it is equivalent to the integral

of the time-dependent wave function Ψ(x, t) (normalized to unity),

I =

∫ ∞

−∞
dt

∫ L

0

dx |Ψ(x, t)|2 . (4.55)

This integral in equation (4.55) can be arrived at by integrating the continuity equa-

tion over the barrier region as shown in [111, 112]. In the sources cited, the authors

have assumed that the photon is far away from the barrier at time t = 0 so that

Ψ(x > 0, 0) is negligible, though this detail has no bearing on the following proof.

Ψ(x, t) can be defined as a linear combination of stationary-state wave functions

Ψk(x),

Ψ(x, t) =

∫
dk

2π
f(k)Ψk(x) e

−iEt/~, (4.56)

where f(k) is the k-vector or frequency distribution of the input pulse, which we take

to be the Fourier transform of the incident photon wavefunction Ψ(x, 0):

f(k) = |f(k)| eiξ(k) =
∫
dx e−ikx Ψ(x, 0). (4.57)

We have assumed a transform-limited relationship here, though the relation is valid

for pulses that are not transform-limited as long as f(k) is unambiguously defined.

The limits of integration in (4.56) have been omitted, but are assumed to cover the
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regions of k-space where f is nonzero. |Ψ(x, t)|2 is then

|Ψ(x, t)|2 =
∫

dk

2π
f(k)Ψk(x) e

−iEt/~
∫
dk′

2π
f(k′)Ψk′(x) e

−iE′t/~ (4.58)

with E and E ′ being the energies that correspond to k and k′ respectively. Then the

integral I is

I =

∫ ∞

−∞
dt

∫ L

0

dx

∫ ∫
dk

2π

dk′

2π
f(k)f∗(k′)Ψk(x)Ψ

∗
k′(x) e

−i~(k2−k′2)t/2m (4.59)

using the change of variables q = k − k′ and Q = (k + k′)/2, such that k = Q + q/2

and k′ = Q− q/2, this is

I =

∫ ∞

−∞
dt

∫ L

0

dx

∫ ∫
dq

2π

dQ

2π
f(Q+ q/2)f ∗(Q− q/2)

ΨQ+q/2(x)Ψ
∗
Q−q/2(x) e

−i~qQt/m

(4.60)

The time integral can be carried out to give

∫ ∞

−∞
dt e−i~qQt/m =

2πm

~Q
δ(q). (4.61)

Substitution into I and evaluating the integral over q simplifies the expression further:

I =

∫ L

0

dx

∫
dq

∫
dQ

2π

(
m

~Q

)
δ(q) f(Q+ q/2)f∗(Q− q/2)

ΨQ+q/2(x)Ψ
∗
Q−q/2(x) (4.62)

=

∫ L

0

dx

∫
dQ

2π

(
m

~Q

)
f(Q)f ∗(Q)ΨQ(x)Ψ

∗
Q(x) (4.63)

From our earlier definitions of q and Q, we see that as q → 0, Q → k. Using the

latter substitution, I becomes

I =

∫
dk

2π
|f(k)|2

∫ L

0
dx |Ψk(x)|2

~k/m
. (4.64)
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Since ∆k << k for optical fields, the integral over dk acts like a delta function, leaving

I =

∫ L

0
dx |Ψk(x)|2

~k/m
, (4.65)

which is exactly the stationary-state integral definition of τd in equation (4.54).

Since we have expressions for Ψ(x), C, and D within the barrier, we can evaluate

τd directly from equation (4.54), noting that from equation (4.50)

1/gg∗ = [(coshκL+ i∆sinhκL)(coshκL− i∆sinhκL)]−1

=
[
cosh2 κL+∆2 sinh2 κL

]−1

=
[
cosh2 κL

(
1 + ∆2 tanh2 κL

)]−1

1

gg∗
=

cos2 α

cosh2 κL
.

with α = ϕT + kL = − tan−1(∆ tanhκL) as before).

jinτd =

∫ L

0

|Ψ(x)|2 dx

=
1

2κ

[
|C|2

(
1− e−2κL

)
+ |D|2

(
e2κL − 1

)]
+ (C∗D +D∗C)L

=
1

κ

[
|C|2 e−κL + |D|2 eκL

]
sinhκL+ (C∗D +D∗C)L

=
1

4κgg∗
[
eκL + e−κL

](
1 +

k2

κ2

)
sinhκL+

1

2gg∗

(
1− k2

κ2

)
L

=
1

2κgg∗

[(
1 +

k2

κ2

)
sinhκL coshκL+ κL

(
1− k2

κ2

)]
=

cos2 α

2

[(
1 +

k2

κ2

)
tanhκL

κ
+ L

(
1− k2

κ2

)
sech2 κL

]

τd =
mL

~k
cos2 α

2

[(
1 +

k2

κ2

)
tanhκL

κL
+

(
1− k2

κ2

)
sech2 κL

]
(4.66)

It is clear that while strikingly similar, τd ̸= τg derived with the “phase time” interpre-

tation. The relationship between the two can be calculated from the time-independent



4.4 The dwell time interpretation of tunneling delay 63

Schrödinger equation for Ψ, ĤΨ = EΨ. Differentiating, we get

Ĥ
∂Ψ

∂E
= Ψ+ E

∂Ψ

∂E
(4.67)

note also that since E is real,

ĤΨ∗ = EΨ∗ (4.68)

We consider the equality

Ψ∗E
∂Ψ

∂E
− ∂Ψ

∂E
EΨ∗ = 0 (4.69)

which is clearly true since Ψ, ∂Ψ
∂E

, and E are associative. Using (4.67) on the first

term and (4.68) on the second, we have

Ψ∗
(
Ĥ
∂Ψ

∂E
−Ψ

)
− ∂Ψ

∂E
ĤΨ∗ = 0

Ψ∗Ψ = −∂Ψ
∂E

ĤΨ∗ +Ψ∗Ĥ
∂Ψ

∂E
(4.70)

rearranging, and noting that Ĥ = −~2
2m

∇2 and ∂Ψ
∂E

= ∂Ψ
∂k

∂k
∂E

,

Ψ∗Ψ =
~2

2m

[
∂Ψ

∂E

∂2Ψ

∂x2
−Ψ∗ ∂3Ψ

∂2x∂E

]
Ψ∗Ψ =

~2

2m

∂

∂x

[
∂Ψ

∂E

∂Ψ∗

∂x
−Ψ∗ ∂

2Ψ

∂x∂E

]
Ψ∗Ψ =

~2

2m

∂

∂x

[
∂Ψ

∂k

∂Ψ∗

∂x
−Ψ∗ ∂

2Ψ

∂x∂k

]
∂k

∂E
(4.71)

Integrating (4.71) over the barrier length gives us

2m

~2

∫ L

0

Ψ∗Ψdx =

[
∂Ψ

∂k

∂Ψ∗

∂x
−Ψ∗ ∂

2Ψ

∂x∂k

]∣∣∣∣L
0

∂k

∂E
(4.72)

We can evaluate this expression at x = 0 and x = L by using equations (4.4a) and
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(4.4c). Since there is quite a bit of algebra, we’ll do so in several steps.

(
∂Ψ

∂k

∂Ψ∗

∂x
−Ψ∗ ∂

2Ψ

∂k∂x

)∣∣∣∣
x=L

=[(
iLT +

∂T

∂k

)
eikL (−ikT ∗) e−ikL − T ∗e−ikL

(
iT + ik

∂T

∂k
− kLT

)
eikL

]
=

[
kL|T |2 − ikT ∗∂T

∂k
− i|T |2 − ikT ∗∂T

∂k
+ kL|T |2

]
= −i2k

[
T ∗∂T

∂k
+

|T |2

2k
+ i|T |2L

]
(4.73)

Expressing T as |T |eiϕT allows us to simplify further,

(
∂Ψ

∂k

∂Ψ∗

∂x
−Ψ∗ ∂

2Ψ

∂k∂x

)∣∣∣∣
x=L

=

− i2k

[
|T |eiϕT

(
∂|T |
∂k

eiϕT + i|T |eiϕT
∂ϕT

∂k

)
+

|T |2

2k
+ i|T |2L

]
= −i2k

[
|T |∂|T |

∂k
+

|T |2

2k
+ i|T |2

(
∂ϕT

∂k
+ L

)]
= −i2k

[
|T |∂|T |

∂k
+

|T |2

2k
+ i

(
|T |2∂α

∂k

)]
(4.74)

where α = ϕT + kL as before. Repeating this process for x = 0 we have,

(
∂Ψ

∂k

∂Ψ∗

∂x
−Ψ∗ ∂

2Ψ

∂k∂x

)∣∣∣∣
x=0

=[
∂R

∂k
(−ik)(1−R∗)− (1 +R∗)

(
i(1−R)− ik

∂R

∂k

)]
=

[
2ikR∗∂R

∂k
− i

(
1− |R|2

)
+ i(R−R∗)

]
= i2k

[
R∗∂R

∂k
− |T |2

2k
+ i

Im(R)

k

]
= i2k

[
|R|e−iϕR

(
∂|R|
∂k

eiϕR + i|R|eiϕR
∂ϕR

∂k

)
− |T |2

2k
+ i

Im(R)

k

]
= i2k

[
|R|∂|R|

∂k
− |T |2

2k
+ i

(
|R|2∂ϕR

∂k
+

Im(R)

k

)]
(4.75)
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Combining (4.72)-(4.75), we have,

2m

~2

∫ L

0

Ψ∗Ψdx = −i2k
[
|T |∂|T |

∂k
+ |R|∂|R|

∂k

]
∂k

∂E

+ 2k

[(
|T |2∂α

∂k
+ |R|2∂ϕR

∂k
+

Im(R)

k

)]
∂k

∂E
(4.76)

Here we note that since |T |2 + |R|2 = 1, ∂
∂k
(|T |2 + |R|2) = 0, which eliminates the

imaginary term. We can do some further simplification by moving terms around and

using our previous definitions of jin, τd, τgt, and τgr:

m

~2k

∫ L

0

Ψ∗Ψdx− Im(R)

k

∂k

∂E
=

(
|T |2∂α

∂k
+ |R|2∂ϕR

∂k

)
∂k

∂E

1

jin

∫ L

0

Ψ∗Ψdx− Im(R)

k
~
∂k

∂E
=

(
|T |2~ ∂α

∂E
+ |R|2~∂ϕR

∂E

)
τd −

Im(R)

k
~
∂k

∂E
=

(
|T |2τgt + |R|2τgr

)
τd −

Im(R)

k
~
∂k

∂E
= τ̃g (4.77)

Thus, the dwell time τd and the bi-directional group delay τ̃g differ by a term we

define as the “self-interference delay” τi,

τi = −Im(R)

k
~
∂k

∂E
(4.78)

The term “self-interference delay” seems to have been first used by Steinberg [91],

though he did not define it mathematically. Note that τi can be, and often is, negative.

It arises out of the overlap of incident and reflected waves in region I, in front of the

barrier. This is reinforced by its disappearance when reflection coefficient becomes

zero, such as at a barrier resonance or in the absence of a barrier. It can also be

written as τi = −~ Im(R) ∂
∂E

(ln k), or noting that ∂k
∂E

= m/~2k,

τi = −Im(R)

kv
(4.79)
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where v = jin = ~k/m. Winful notes in [86] that this has a very similar form

to a one-dimensional scattering cross section σ = 2Im(R)/k, with scattering length

Ls = Im(R)/k divided by particle flux jin. The self-interference delay can thus be

interpreted as the time delay obtained from traversing that length. There is a notable

similarity between this phenomenon and the optical theorem; both are caused by the

interference of incident and scattered waves. Winful also notes that Im(R) can be

related to the Lagrangian for the Schrödinger equation in such a way as to identify

it as a result of a stationary action principle, noting that for matter waves stationary

action and stationary phase are equivalent concepts.

To provide yet another way to interpret the self-interference delay, Winful points

out that it is common to define τd in classical contexts as τd = |T |2τT + |R|2τR, treat-

ing transmission and reflection as mutually exclusive events. However, a quantum

wave packet can be both transmitted and reflected simultaneously, and as such it is

not proper to sum probabilities. If instead the summation is performed over complex

amplitudes, the quantum-mechanical relation of dwell time to transmission and re-

flection delay works out to τd = |T |2τgt + |R|2τgr − τi, consistent with our current

formulation. In this form, τi can be thought of as the delay caused by the interference

of transmission and reflection amplitudes, which is neglected in the classical version.

Since this expression is directly obtained from the Schrödinger equation, it is more

fundamental than the classical version. One could, of course, divide τi up in portions

of |T |2 and |R|2 for a lossless barrier to put the latter into the form of the classical

version, essentially defining τT = τgt − τi and τR = τgr − τi. In that case, τT and τR

become the Larmor times discussed in [110].

To evaluate this expression explicitly for the one-dimensional finite barrier prob-
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lem, we use (4.12) to find Im(R):

R =

(
1

gg∗

)
(−i∆′ sinhκL) (coshκL− i∆sinhκL)

=

(
cos2 α

cosh2 κL

)(
−i∆′ sinhκL coshκL−∆∆′ sinh2 κL

)
= −

(
cos2 α

) (
i∆′ tanhκL+∆∆′ tanh2 κL

)

Im(R) = −∆′ cos2 α tanhκL (4.80)

Combining this expression with the explicit form of ∂k
∂E

gives us

τi = −~
k

(
−∆′ cos2 α tanhκL

) (m
~k

)
=
m

~k
cos2 α

∆′

k
tanhκL

=
m

~k
cos2 α

2

1

κ

(
κ2

k2
+ 1

)
tanhκL

=
mL

~k
cos2 α

2

(
1 +

κ2

k2

)
tanhκL

κL
(4.81)

From this, it is straightforward to show that τi + τd as given in equations (4.66)

and (4.81) is identical to the expression for τg in equation (4.51) by the phase time

interpretation.

Figure 4.6 shows all three delay times as a function of normalized particle energy.

At low energies (E ≪ V0), where most of the particle is reflected and R ≫ T , the self-

interference delay is the dominating component of the group delay. As particle energy

increases, τi steadily decreases while the dwell time τd increases, eventually becoming

the primary component at around E = V0/2. At particle energies near E = V0 or

larger, where the reflected component is weak, the dwell time is the primary compo-

nent of the group delay. When the particle experiences a transmission resonance, the

self-interference delay becomes zero, consistent with a vanishing reflection coefficient.
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Figure 4.6: Group delay, dwell time, and self-interference delay as a function of
normalized particle energy E/V0 for a simple one-dimensional barrier. The delays are
normalized to the “barrier time” τ0 = L/v0, with v0 = ~γ/m and γ =

√
2mV0/~. This

“barrier time” is the delay a particle of energy V0 would experience when propagating
through a distance L in free space. The barrier height in this plot is defined by
γL = 3π.

The group delay normalization shown in Figure 4.6 was chosen for consistency

with [83,86]. However, this “barrier time” τ0 = mL/~γ may not be the most intuitive

choice of normalization factor. It accurately describes the behavior of the group delay,

which is large for E ≥ V0 and E → 0 and small for 0 < E < V0. However, one could

misinterpret this plot and conclude that the tunneling delay becomes slower than the

vacuum propagation time when E → 0, which is not the case.

This point is more clearly illustrated in Figure 4.7, which is normalized to the

vacuum propagation time of the particle τvac = ~k/2m. In this normalization scheme,

we clearly see that even when E → 0, the particle continues to tunnel through the

distance L faster than it would propagate through that length. While the tunneling

(group) delay does increase in this region just as we saw in Figure 4.6, the particle

velocity in vacuum v = ~k/m =
√

2E/m is also decreasing in this region, leading to
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Figure 4.7: Group delay, dwell time, and self-interference delay as a function of
normalized particle energy E/V0 for a simple one-dimensional barrier. The delays are
normalized to the “vacuum time” τ0 = L/v, with v = ~k/m, or the delay a particle
of energy E would experience when propagating through a distance L in free space.
The barrier height in this plot is defined by γL = 3π, and γ =

√
2mV0/~ as before.

a longer vacuum propagation time. The vacuum propagation time continues to grow

as fast or faster than the tunneling delay in this region, ensuring that the tunneling

process continues to take less time than vacuum propagation.

As a final note, any constant normalization factor will generate a plot like Fig-

ure 4.6. This includes normalizing by a “causal time” τcausal = L/c, a case we are

particularly interested in. On such a plot, the group delay would be superluminal in

the vicinity of E = V0/2 but become subluminal again as E → 0. Yet we know that

the delay should saturate as the barrier gets longer or higher (κL → ∞). These two

seemingly disparate observations can be reconciled; the Hartman effect certainly still

occurs at low particle energies, but the intersection of the group delay and causal time

occurs at larger values of γL, the parameter which defines V0 and L. If we assume

that the barrier height V0 (and thus γ) is fixed, this means that a longer barrier is



4.5 Flux delays 70

required to reach the superluminal-to-subluminal transition at smaller E.

The conceptual explanation is that the self-interference delay, which dominates in

the low-E/V0 region, is growing rapidly at low E/V0 because the particle is spending

more time “caught” in the standing wave at the barrier front. Since this growth

occurs independently of L and V0 as particle energy E decreases, the group delay is

increasing while τcausal = L/c is not, leading to a return to subluminal behavior. If

we increase L without increasing V0, E/V0 is unchanged but τcausal increases, which

can push the system back into the superluminal regime.

4.5 Flux delays

The dwell time derived above is defined as the stored probability (or number of

particles) within the barrier divided by the incident particle flux. It is essentially a

measurement of the time it takes to build up the expected accumulation of stored

particles in the barrier, or equivalently the time it takes to empty the barrier of stored

particles when the incident flux stops. In each sense, it describes the escape process

through the two exit channels of the barrier: transmission and reflection. The third

escape channel, absorption, is ignored for the present discussion.

As outlined in §2.6 of [83], it is possible to consider the flux delay for each exit

channel separately and relate those to τg. In this section, we will briefly reproduce

this derivation for our one-dimensional barrier system.

The transmitted flux is canonically defined as

jt = Re [Ψ∗(~/im)∂Ψ/∂x] , (4.82)

with Ψ being the usual steady-state solution in a particular region. It can be verified

that this is constant at any point x by evaluating it for ΨI-ΨIII given by (4.4). In

all three regions, jt works out to (~k/m)|T |2. We could define a “transmitted flux
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delay” by dividing the stored probability by the transmitted flux jt,

τtf =

∫ L

0
|Ψ(x)|2

jt
. (4.83)

It should be noted that this is not a transit time, which is perhaps easiest demon-

strated by considering an example from fluid mechanics. Let a fluid have a local

velocity field v(x) such that the transmitted particle flux jt depends on v and the

local particle density ρ(x) = Ψ∗(x)Ψ(x) as jt = ρv. We could define a delay time by

considering the integral
∫
dx/v:

∫ L

0

dx

v(x)
=

1

jt

∫ L

0

ρ(x)dx =
1

jt

∫ L

0

Ψ∗(x)Ψ(x)dx (4.84)

Note that this has the same form as (4.83). It is clear that this delay is made up of

both forward- and backward-going components according to v(x), and thus the delay

is a property of the velocity field rather than any individual particle.

We can define an associated “reflected flux delay” in the same fashion,

τrf =

∫ L

0
|Ψ(x)|2

|jr|
, (4.85)

with jr = −|R|2~k/m as calculated by substituting the reflected component of the

wavefunction in region I, Ψ
(R)
I (x) = |R|eiϕre−ikx, into (4.82). Like τtf , τrf is not a

transit time. Conceptually, either delay is more accurately thought of as the number

of particles stored in the region x = 0 to x = L divided by the rate at which particles

leave that region via a given channel.

By inspection, the incident flux must be equal to the sum of transmitted and

reflected fluxes, so jin = jt + |jr|. If we divide this equation by
∫ L

0
|Ψ(x)|2dx, we have

1

τd
=

1

τtf
+

1

τrf
. (4.86)
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This equation is the usual relation for escape rate addition, where the reciprocal of

the total escape rate is equal to the sum of the reciprocals of the escape rates for each

individual channel. To see how this relates to group delay, we combine the definition

of bi-directional group delay in (4.46) with the expression τg = τd + τi and re-arrange

to write

τd = |T |2 (τgt − τi) + |R|2 (τgr − τi)

and since τd/|T |2 = τtf and τd/|R|2 = τrf , we have

1 =
τgt − τi
τtf

+
τgr − τi
τrf

. (4.87)

For a symmetric barrier, τgt = τgr = τg and τg − τi = τd, and (4.87) reduces to (4.86).

4.6 Electromagnetic analog to tunneling

Up until now we have considered the one-dimensional barrier problem in the tra-

ditional context of particle wave functions. However, the concept of tunneling is

not limited to particles. It occurs for waves of all types, including electromagnetic

waves [113]. The derivation of the Hartman effect for electromagnetic waves is almost

identical to that of particles because of the similarity between the time-independent

Schrödinger equation and the Helmholtz equation. If we write the two side by side,

the equivalence becomes clear.

∇2Ẽ+

(
n(r̄)ω

c

)
Ẽ = 0 (4.88a)

∇2Ψ+
2m

~2
(E − V (r̄))Ψ = 0 (4.88b)

If k2 = (nω/c)2 in equation (4.88a) is identical to 2m(E − V )/~2 in equation

(4.88b), then the electromagnetic wave Ẽ will behave exactly the same way the quan-
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tum mechanical wave function Ψ does in the finite barrier problem. In “forbidden”

regions where k becomes imaginary, the electromagnetic wave will become evanescent

and decay just like the particle wavefunction does within the barrier region. Practi-

cal situations where this occurs are common; undersized waveguides supporting no

modes at frequency ω, photonic band gap structures, and frustrated total internal

reflection are all examples of this behavior.

For the electromagnetic case, the dwell time is defined by average stored energy

and input power rather than number of particles,

τd =
⟨U⟩
Pin

(4.89)

where U and Pin are both averaged over a full cycle of the electromagnetic wave. The

stored energy includes both electric and magnetic contributions:

⟨U⟩ = ⟨Ue⟩+ ⟨Um⟩

⟨Ue⟩ =
1

4

∫
V

E · E∗ ∂

∂ω
(ωϵ(ω)) dv (4.90a)

⟨Um⟩ =
1

4

∫
V

H ·H∗ ∂

∂ω
(ωµ(ω)) dv (4.90b)

which need not be equal for an arbitrary structure. Usually the material dispersion

is negligible compared to the waveguide’s structural dispersion, so (4.90a)-(4.90b)

simplify to

⟨Ue⟩ =
1

4

∫
V

ϵE ·E∗dv (4.91a)

⟨Um⟩ =
1

4

∫
V

µH ·H∗dv. (4.91b)

Again, these stored energy terms include both transmitted and reflected components,

and represent the wave as a whole rather than any individual result. As such, the

dwell time calculated from these stored energy contributions is not a transit time and
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cannot be associated with a velocity. The group delay in the electromagnetic case is

defined exactly as in (4.20), or τg = ∂ϕ/∂ω.

To further illustrate this concept, Figure 4.8 shows the time-averaged energy den-

sity ⟨U⟩ as a function of position for two situations. In the top panel, we have a

particle propagating through a length L of free space. The energy density in the re-

gion from x = 0 to x = L (highlighted in green) is simply the usual free-space energy

density ⟨U0⟩ of a propagating wave. In the second panel, we have replaced a section

of free space with a barrier region that does not support propagating electromagnetic

modes. The evanescent waves in this region penetrate a small distance into the bar-

rier setting up an exponentially decaying energy density ⟨U⟩ < ⟨U0⟩, highlighted in

green. A significant amount of the wave is reflected, setting up a standing wave in

the region x < 0, and a very small part of the wave is transmitted into region III (not

visible).

We once again see how the Hartman effect manifests itself in this system. As the

barrier length increases, the amount of stored energy in the free-space region increases

roughly linearly, but the amount stored in the barrier configuration saturates very

quickly. This reinforces the argument that the delay observed in tunneling is not a

propagation delay but a cavity lifetime, describing the amount of time it takes for

the cavity to respond to an increase in incident power.

Winful shows in [114] the case of the one-dimensional waveguide below cut-

off, which is the most direct analog to the quantum-mechanical tunneling problem.

Rather than present the full derivation here, we will briefly summarize the important

points.

The system shown in Fig. 8(b) of [83], which is assumed to support a single TE10

mode, has electric fields E = ŷ sin ηxΨ(z), with Ψ(z) identical to that given in (4.4)

for regions I-III other than a substitution of β for k. The variational theorem relates
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Figure 4.8: Plots of time-averaged energy density as a function of position for free-
space and barrier regions. In the top panel, a pulse propagates through a length L
of free space, and has the usual free-space energy density ⟨U0⟩. In the bottom panel,
the section of free space is replaced with a barrier region, and the resulting energy
density is significantly reduced by the exponential decay of the electric field in that
region. The arrows in each panel represent the direction and relative magnitude of
the plane-wave components e±ikx in each region.
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E and H to the time average stored energy ⟨U⟩ in region II as follows:

∮
S

[
∂E

∂ω
×H∗ + E∗ × ∂H

∂ω

]
ds = 4i⟨U⟩ (4.92)

The surface integral is carried out over the boundaries of region II. Since the waveguide

walls are assumed to be metal, this simplifies the integral to an integration over the

planes z = 0 and z = L. If we substitute our expression for E into the integrand, we

have, ∮
S

(
i|E0|2

ωµ0

)[
∂Ψ

∂ω

∂Ψ∗

∂z
−Ψ∗ ∂

2Ψ

∂ω∂z
+

Ψ∗

ω

∂Ψ

∂z

]
ẑ · ds = 4i⟨U⟩ (4.93)

This looks strikingly similar to (4.71), but with an additional term caused by the dis-

persion relation for 3-dimensional electromagnetic waves. The inclusion of transverse

dimensions in the model contributes an additional term to the dispersion, and thus

to the self-interference delay as we will see shortly. If we substitute our values for E,

ΨI, and ΨIII into this equation to evaluate the integral and solve for τg = ∂ϕ0/∂ω, a

lengthy series of algebraic operations brings us to the following expression for τg:

τg ≡
dϕ0

dω
=

⟨U⟩
Pin

+
Im(R)

β

(
β

ω
− dβ

dω

)
. (4.94)

Here Pin = ϵ0|E0|2Ac2β/4ω is the time-averaged incident power, E0 the amplitude

of the incident mode in region I, A is the cross-sectional area of the waveguide in

region I, and Im(R) is the imaginary part of the reflected wave amplitude in (4.4a).

The first term is clearly the dwell time τd given in (4.89). The second term is the

self-interference delay,

τi =
Im(R)

β

(
β

ω
− dβ

dω

)
(4.95)

and is reminiscent of the same term in the quantum calculation. We have the same

Im(R) factor that we saw in the quantum calculation, but also an extra dispersive

factor that arises from the extra term in the variational theorem integrand. It’s in-

teresting to note that this dispersive factor arises solely from the evaluation of the
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integral at z = 0, reinforcing its interpretation as a result of interference between inci-

dent and reflected waves in front of the barrier region. As before, the self-interference

delay becomes zero if the reflection coefficient is zero or purely real. In addition, we

see that it vanishes for a dispersionless waveguide, which has dβ/dω = β/ω. This is

expected, as the interference pattern and phase fronts propagate at the same speed in

such a waveguide, producing no extra delay. By applying the complex Poynting theo-

rem [115], which in this case gives Im(R) = −ω(⟨Um⟩−⟨Ue⟩)/Pin, the self-interference

delay can be written as

τi =
⟨Um⟩ − ⟨Ue⟩

Pin

(
v0p1
v0g1

− 1

)
(4.96)

where v0p1 = ω/β and v0g1 = dω/dβ are the phase and group velocities in the region

before the barrier. ⟨Um⟩ − ⟨Ue⟩ is easily recognized as the reactive energy stored in

the barrier region.

Winful notes [114] that this expression for Im(R) looks very similar to the defini-

tion of Q for a resonant cavity, which is

Q =
ω × (time-averaged energy stored in cavity)

(energy loss per second in cavity)
. (4.97)

However, the form of (4.96) relates the reactive stored energy to the energy per second

incident on the barrier. In that sense, it describes an “external” Q. As Winful puts

it [114], “the barrier region forms an evanescent mode resonator with a finite decay

time.”

Explicit evaluation of (4.89) and (4.96) is straightforward and performed in [114]

for a waveguide system of constant area A composed of a region of lower index n2

sandwiched between two regions of index n1 > n2. We quote the results here for
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completeness,

τd =
L

v0g1

cos2 ϕ0

2

[
ω2
c1

ω2

(
1 +

β2

κ2

)
tanhκL

κL
− n2

2

n2
1

(
β2

κ2
− 1

)
sech2 κL

]
(4.98a)

τi =
L

v0g1

cos2 ϕ0

2

ω2
c1

ω2

(
1 +

κ2

β2

)
tanhκL

κL
(4.98b)

τg =
L

v0g1

cos2 ϕ0

2

[
ω2
c1

ω2

(
β

κ
+
κ

β

)2
tanhκL

κL
− n2

2

n2
1

(
β2

κ2
− 1

)
sech2 κL

]
(4.98c)

where ωc1 = (n2/n1)ωc2 and ωc2 = ηc/n2 are the cutoff frequencies of the waveguide

in regions I and II, which form the boundaries of the stop band. Note that for the

electromagnetic case we will use ϕ0 in place of α to conform to the notation found in

other references. When evaluated in the limit of L→ ∞, these simplify to

τd =
2

κv0g1

(ωc1

ω

)2 κ2

κ2 + β2
(4.99a)

τi =
2

κv0g1

(ωc1

ω

)2 β2

κ2 + β2
(4.99b)

τg = τd + τi =
2

κv0g1

(ωc1

ω

)2

(4.99c)

Since all three of these become independent of length, all three delays demonstrate

the Hartman effect.

4.7 Summary

In this chapter, we have reviewed the theory of the one-dimensional Hartman effect

and described the predicted delays in terms of both a Wigner “phase time” inter-

pretation as well as the “dwell time” interpretation promoted by Winful. We have

shown that the two interpretations give consistent results, and provided some intu-

ition about the meaning of the dwell time and self-interference delay. We have also

shown how these concepts relate to flux delays, and demonstrated that the Hartman
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effect has an electromagnetic analog which may be more convenient for experimental

measurements.

The most important revelation in this chapter, however, is that the interpretation

of the group delay as a transit time is incorrect because the peaks of the incident and

transmitted particle are not indistinct causally related objects. As such, one cannot

conclude that this quantity represents a propagation velocity or that a tunneled par-

ticle travels superluminally. At most, we can state that the particle’s peak exhibits a

delay that is shorter than the equivalent light propagation time in vacuum.

If we instead view the tunneling phenomenon in the dwell-time interpretation, we

see the tunneling process in a different light, as a cavity effect. The delays observed

in transmission and reflection are related to cavity lifetimes in this interpretation,

which eliminates any apparent conflict with causality. In the next chapter, we will

extend our investigation to two-dimensions systems and show that the dwell-time

interpretation becomes even more relevant in that analysis.



Chapter 5

Tunneling delays in two dimensions

Tunneling delays and the Hartman effect can be observed in two-dimensional systems

as well. Traditionally, the case considered is that of frustrated total internal reflection

(FTIR). The group delay for FTIR has been worked out by several authors for the

simple case of a glass-air-glass interface [82, 116, 117]. However, none of these treat-

ments have addressed the problem in the context of dwell time and self-interference

delay. Steinberg worked out expressions relating the group delay in FTIR to the group

delay in the one-dimensional finite barrier problem [82], but was only able to provide

these expressions in certain limits, for E ≪ V0, E ≈ V0, and E ≫ V0. In this chapter,

we will demonstrate that by breaking the group delay down into its dwell time and

self-interference components one can derive a single expression for group delay that

is valid for arbitrary E. In addition, this expression illustrates the physical meaning

behind the limiting cases observed by Steinberg.

5.1 1-D Hartman review

To set up the two-dimensional calculation, we briefly revisit the one-dimensional

problem. To represent a localized electron wave packet, we chose to integrate over

a narrow band of stationary states in (4.16). We then made the argument that the

80
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peak of this wave packet occurs according to the energy derivative of the phase of the

integrand. This statement is an invocation of the stationary phase approximation;

put briefly, that the integral only gains appreciable contributions in locations where

the derivative of the phase of the integrand is near zero. Since the integral in this

case represents the output wave function, this is equivalent to stating that the wave

packet’s maximum occurs where all of the individual frequency components are in-

phase with one another and interfere constructively. This is generally only a good

approximation when the phase varies rapidly with energy, which is valid in this case.

It is clear from (4.16) that the maximum of the incident wave, ignoring the inter-

ference with the reflected wave, occurs at x = 0 at a time t given by

∂

∂E
(argΨE − Et/~)|x=0 =

∂ϕ

∂E

∣∣∣∣
x=0

− t/~ = 0

t = ~
∂ϕ

∂E

∣∣∣∣
x=0

(5.1)

where the phase derivative is evaluated only for the incident portion of the wavefunc-

tion in region I at x = 0, Ψ
(in)
I = eikx. The choice of incident wave function and initial

barrier plane ensure that ϕ = 0 at x = 0 and subsequently that the incident peak

arrives at t = 0.

We can repeat this calculation for x = L using ϕ = arg (ΨIII(L))−Et/~, and get

τg = ~
∂ϕL

∂E
= ~

∂

∂E
(arg(T ) + kL)

τg = ~
∂

∂E
(ϕT + kL) (5.2)

which we have shown previously in (4.20). In this chapter, we will use τg exclusively

to represent the delay calculated in the one-dimensional quantum calculation for

consistency. Other sources use a different notation; in particular Steinberg chooses

to use τe in [82] to signify that it is an electron (i.e particle) delay rather than an

electromagnetic analog delay.
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We will develop the two-dimensional case in a similar fashion to [82]. As we will

see, the addition of a second dimension is a straightforward process and the two-

dimensional wave functions closely resemble those of the one-dimensional problem.

However, the addition of a second dimension causes the stationary phase approxima-

tion to change from a simple derivative to a gradient operator, significantly compli-

cating the calculation of delay times.

5.2 Frustrated total internal reflection

The system we will consider in our two-dimensional calculation is shown in Figure

5.1. A slab of material with index n2 and width L is sandwiched between two regions

of material of index n1. We will label the regions I, II, and III from left to right as

in the one-dimensional calculation, with the region of index n2 acting as the barrier

region. A photon is incident on the interface between regions I and II with angle θ to

the surface normal at position x = 0, y = 0. The dotted lines in the figure represent

the planes y = 0 and y = ∆y.

Δy

L

θ

n1 n1n2

Ψ
I 
=(eikxx + Re-ikxx)eikyy

Ψ
II 
= (Ce-κx + Deκx)eikyy

Ψ
III
=(Teikxx)eikyy

y

x

Figure 5.1: Schematic diagram for two-dimensional barrier tunneling.

For total internal reflection (TIR) to occur, Snell’s law requires that n1 sin θ ≥ n2,

or that θ > θc, where θc = arcsin (n2/n1) is the critical angle. In such a situation, the
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majority of the wave will be reflected with a lateral Goos-Hänchen shift of ∆y, while

a small portion will tunnel to the other side and be transmitted, again with lateral

shift ∆y.

The electric field of a TE-polarized wave can be represented in regions I-III as

E(x, y, t) = E(x, y, t)ẑ = Ψ(x, y)e−iωtẑ = ψ(x)eikyy−iωt (5.3)

where we have implicitly defined k2i = (niω/c)
2 = k2ix + k2iy and taken advantage of

the continuity of ky across the barrier to eliminate the extra subscript. The system’s

symmetry dictates that k1 = k3 and k1x = k3x = k1 cos θ, which leaves us with

only three unique components of ki: k1x, k2x, and ky. Substitution of this into the

Helmholtz equation yields

(
∇2 + k2i

)
ψeikyy = 0

ψ
′′
+
(
k2i − k2y

)
ψ = 0 (5.4)

In regions I and III, this simplifies to

ψ
′′
+ k21 cos

2 θψ = 0,

while in region II the continuity of ky means that we instead have

ψ
′′
+
(
k22 − k21 sin

2 θ
)
ψ = 0.

Or, substituting our definitions of ki,

I,III: ψ
′′
+
ω2

c2
n2
1 cos

2 θψ = 0 (5.5a)

II: ψ
′′ − ω2

c2
(
n2
1 sin

2 θ − n2
2

)
ψ

′′
= 0 (5.5b)
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which bear a striking resemblance to (4.3) in the one-dimensional calculation. In

fact, ψ(x) has exactly the same solutions as the one-dimensional case. The Snell’s

law condition for TIR constrains
(
n2
1 sin

2 θ − n2
2

)
to be positive, forcing k2x to be

imaginary. To simplify the notation, we define k2x = iκ and drop the numerical

subscript from k1x, so that our three unique ki components (k1x, k2x, ky) become

(kx, iκ, ky). ΨI(x, y) through ΨIII(x, y) are then,

ΨI(x, y) =
(
eikxx +Re−ikxx

)
eikyy (5.6a)

ΨII(x, y) =
(
Ce−κx +Deκx

)
eikyy (5.6b)

ΨIII(x, y) =
(
Teikxx

)
eikyy. (5.6c)

The terms in parentheses in (5.6) are ψ(x) for regions I through III. If we plug these

into (5.5), we find expressions for kx and κ:

I,III: k2x =
ω2

c2
n2
1 cos

2 θ (5.7a)

II: κ2 =
ω2

c2
(
n2
1 sin

2 θ − n2
2

)
(5.7b)

Equation (5.7a) is simply our definition of kx, while (5.7b) gives us the explicit defi-

nition of κ in terms of k and θ. We can compare this to the values of k and κ in the

one-dimensional calculation in the text preceding equations (4.4a)-(4.4c), summarized

in table 5.2 below.

Table 5.1: Coefficient Equivalences

1-D (QM) 2-D (EM)

propagating wavevector k2x 2mE/~2
n2
1ω

2

c2
cos2 θ

evanescent wavevector κ2 2m(V0 − E)/~2
(ω
c

)2

(n2
1 sin

2 θ − n2
2)

The tunneling dynamics of the x-direction in the two-dimensional problem differ
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only in the values of kx and κ. At the critical angle θc, κ is zero, corresponding to

the case of E = V0 in the 1-D calculation. For angles greater than the critical angle

we have tunneling, while angles less than θc lead to free propagation in the gap.

We have developed this formulation for a TE-polarized wave with E = Eẑ. The

tangential component of the electric field Ez must be continuous across the boundary,

forcing ψ(x) to be continuous. Assuming µ = 1 ensures that By is also continuous,

leading to the continuity of ψ′(x) as shown in section 5.4. Thus, in this special case,

the boundary conditions are identical to those of the Schrödinger equation for the

one-dimensional tunneling problem solved earlier.

However, the expressions in this section for Ψ(x, y) are also valid for a TM-

polarized wave, with H = H ẑ. In the TM case, the boundary conditions are slightly

more complicated, necessitating a different definition of the coefficients R, C, D, and

T . We will address these details in section 5.4, where we evaluate these coefficients

for both polarizations.

Also note that the energy E and frequency E/~ of the one-dimensional particle

are not equal to the energy Ep and frequency ω of the photon in the two-dimensional

case. We have assumed that the k-vector of the one-dimensional particle is equal to

kx in the two-dimensional case, and Ep = ~ω as usual.

5.3 Wave packets in two dimensions

To construct our wave packet in the two-dimensional case, we integrate over a narrow

frequency band as before,

E(r̄, t) =

∫ ∫
f(k̄)Ek̄(r̄, t)dk̄

=

∫ ∫
f(k̄)Ψk̄(x, y)e

−iωk̄tdk̄ (5.8)
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where f(k̄) again represents a distribution of incident wavevectors, and Ψk̄ are the

steady-state functions given in (5.6) for a particular input vector k̄ = (kx, ky). In the

two-dimensional case, the stationary phase approximation requires that the gradient

of the phase in k-space must vanish. Writing this out explicitly with Φ = ϕT + kxx+

kyy − ωt representing the total phase of the steady-state contribution at k̄, we have

∂Φ

∂kx
x̂+

∂Φ

∂ky
ŷ = 0, (5.9)

and since kx and ky are independent this equation implies that each term must go to

zero individually.

Steinberg states in [82] that these derivatives can instead be taken with respect to

the magnitude and direction of the k-vector in the paraxial approximation. While he

does not elaborate on this point, we can make a reasonable guess about his method.

Since the gradient must have the same value in any coordinate system, it is valid

to consider derivatives in wavevector components kx′ and ky′ in a rotated coordinate

system (x′, y′) instead of kx and ky. We choose a coordinate system rotated from

the default axes (x, y) by an angle θ0. In this coordinate frame, the wavevector k

is decomposed into kx′ = k cos (θ − θ0) and ky′ = k sin (θ − θ0). We assume that θ0

is chosen such that θ − θ0 is small, and thus kx′ ≈ k and ky′ ≈ k(θ − θ0). From

this it is easy to show that ∂Φ/∂kx′ ≈ ∂Φ/∂k and ∂Φ/∂ky′ ≈ ∂Φ/∂θ. Thus, the

partial derivative with respect to kx′ is equivalent to differentiation with respect to

k or ω, and the partial derivative with respect to ky′ is equivalent to differentiation

with respect to θ.

However, no approximation is necessary to reach this conclusion. The stationary

phase argument is simply that ∇Φ = 0, and could easily be carried out in polar

coordinates (k, θ) instead of Cartesian coordinates (kx, ky). Doing so immediately

gives us
∂Φ

∂k
k̂+

1

k

∂Φ

∂θ
θ̂ = 0. (5.10)
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Since each term must still go to zero independently, we arrive at the conclusion

without making any approximation. Thus, we can express the evolution of the wave

packet peak with the expressions

∂Φ

∂ω

∣∣∣∣
θ

= 0 (5.11a)

∂Φ

∂θ

∣∣∣∣
ω

= 0 (5.11b)

where we have chosen to represent the wavevector derivative as a frequency derivative

for consistency with [82].

If we substitute Φ = ϕT + kxx+ kyy+ ωt into these equations at time t = τγ, and

note that ϕT +kxx is equivalent to ϕ0 from our one-dimensional calculation, we have

τγ =
∂ϕ0

∂ω

∣∣∣∣
θ

+
n1

c
∆y sin θ (5.12a)

0 =
∂ϕ0

∂θ

∣∣∣∣
ω

+
n1ω

c
∆y cos θ (5.12b)

Equation (5.12a) clearly shows that there are two contributions to the delay. The

first term, τ0 = ∂ϕ0/∂ω|θ, is the frequency derivative analog to (4.20) and represents

the time delay due to the longitudinal shift in x. The second term is proportional

to ∆y, which is related to the angular dispersion of the transmitted phase ∂ϕ0/∂θ

through (5.12b). We could interpret this term as the time delay due to the lateral

shift in y.

This can be understood a little more clearly by considering Figure 5.2 which is

taken from [82]. The total group delay τγ represents the delay between the “arrival” of

a phase front at (x = 0,y = 0) and the “departure” of a phase front at (x = L,y = ∆y).

Since we’re considering plane waves, we could equivalently say that this phase front

departed from (x = L,y = 0) and propagated through an amount of free space

∆y sin θ, acquiring a time delay of n1

c
∆y sin θ. This leaves τ0 = τγ − n1

c
∆y sin θ

as the delay acquired between “arrival” at (x = 0,y = 0) and “departure” from
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(x = L,y = 0). From this perspective, τ0 represents the delay due to tunneling from

(0, 0) to (L, 0) and n1

c
∆y sin θ is just a propagation delay caused by the Goos-Hänchen

shift ∆y.

Figure 5.2: Diagram from [82] that illustrates the meaning of the second term in τγ.

The fact that τ0 and ∆y are independently determined by ∂ϕ0/∂ω and ∂ϕ0/∂θ

respectively is interesting. In this case, it means that the x-direction dynamics are

uniquely determined by the frequency derivative of ϕ0 while the y-direction dynamics

are uniquely determined by the angular derivative of ϕ0. In addition, it suggests that

if we can isolate τ0 in a measurement, we would have a one-to-one correspondence

with the one-dimensional problem.

We can combine equations (5.12) to express the group delay τγ for the electromag-

netic case in terms of phase derivatives, which will allow us to relate τγ to the group

delay τg of the tunneled particle in the one-dimensional calculation. For consistency,

we will continue to use τd and τi to refer to the dwell time and self-interference delay

of the one-dimensional calculation. In the same fashion as τγ, we will use Greek sub-

scripts to indicate the electromagnetic versions of the dwell time and self-interference

delay, τδ and τι respectively.

Developing the relationships between τγ, τδ, τι, τg, τd, and τi will be the focus of

the next section.
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5.4 Boundary conditions for TE and TM

The extension into two dimensions introduces an additional complication to the FTIR

derivation of tunneling delay. The incident light now has two distinct polarization

states to consider, and slight differences in the boundary conditions cause minor

variations in the results. In most cases, these effects are very weak, and the TE

derivation suffices to develop intuition. Most sources choose to deal with only the

TE case [82, 116, 118, 119], though several address the differences in passing [120] or

directly [117]. Our experiment had to be performed in the TM configuration, so we

have developed a unified derivation that can properly represent either polarization

state without difficulty. To our knowledge, this representation of the problem has not

been presented before.

The bulk of the mathematical framework has already been set up in section

5.2. There, we developed expressions for an incident TE-polarized electric field

E = E(x, y, t)ẑ with a given input wavevector k. These expressions have the form

E(x, y, t) = ψ(x)eikyy−iωt, where ψ(x) is identical to the expressions found in the

one-dimensional problem. However, as noted in that section, this treatment is also

applicable to the case of a TM-polarized field if we instead consider H = H(x, y, t)ẑ,

with H(x, y, t) = ψ(x)eikyy−iωt.

To solve either the TE or TM case, one simply has to take the expressions for

Ψ(x, y) in equations (5.6) and use the appropriate boundary conditions to find explicit

expressions for C, D, R, and T in terms of the fundamental quantities k, n1, n2, and L.

We will now proceed with that derivation for each case, after which we will compare

the two to demonstrate their similarity and present a notation which works properly

for either case.
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5.4.1 TE boundary conditions

For the TE case, the electric fields involved are

EI = EIẑ =
(
eikxx +Re−ikxx

)
eikyy−iωtẑ (5.13a)

EII = EIIẑ =
(
Ce−κx +Deκx

)
eikyy−iωtẑ (5.13b)

EIII = EIIIẑ =
(
Teikxx

)
eikyy−iωtẑ. (5.13c)

The boundary conditions are that the transverse components of E and H, which for

the TE case are Ez and Hy, are continuous across each interface. Continuity of Ez is

straightforward, giving us two equations,

EI|x=0 = EII|x=0 (5.14a)

EII|x=L = EIII|x=L (5.14b)

The continuity of Hy is identical to continuity of ∂Ez/∂x provided the magnetic

permeability is invariant, or µI = µII = µIII = µ:

∇× E = −∂B
∂t

(5.15)

∂Ez

∂y
x̂− ∂Ez

∂x
ŷ = iωB

= iωµH (5.16)

= iωµ (Hxx̂+Hyŷ)

By inspection, the y-component must then satisfy

Hy =
i

ωµ

∂Ez

∂x
. (5.17)
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Therefore, as long as µ is consistent across the boundaries, we can simplify our second

boundary condition to the form

∂EI

∂x

∣∣∣∣
x=0

=
∂EII

∂x

∣∣∣∣
x=0

(5.18a)

∂EII

∂x

∣∣∣∣
x=L

=
∂EIII

∂x

∣∣∣∣
x=L

. (5.18b)

These four boundary conditions are identical to the boundary conditions of Ψ given

in (4.5) and (4.8) for the one-dimensional problem, and successfully demonstrate a

one-to-one mapping of the two-dimensional problem on to the one-dimensional case.

Unsurprisingly, if we evaluate these explicitly, we get equations (4.6) and (4.9),

1 +R = C +D (5.19a)(
Ce−κL +DeκL

)
= TeikxL, (5.19b)

ik (1 +R) = −κ (C −D) (5.19c)

−κ
(
Ce−κL −DeκL

)
= ikxTe

ikxL. (5.19d)

From here, it is clear that the solutions for R, C, D, and T in terms of k, κ, and L

will be identical to the one-dimensional case, with k and κ given by equations (5.7).

To make it easier to spot the differences between TE and TM cases, we will repeat
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the relevant equations here:

k2x =
ω2

c2
n2
1 cos

2 θ

κ2 =
ω2

c2
(
n2
1 sin

2 θ − n2
2

)
∆ ≡ 1

2

(
κ

k
− k

κ

)
∆′ ≡ 1

2

(
κ

k
+
k

κ

)
g ≡ coshκL+ i∆sinhκL

R = −i∆
′

g
sinhκL

T =
e−ikL

g

C =

(
1− ik

κ

)
eκL/2g

D =

(
1 +

ik

κ

)
e−κL/2g

5.4.2 TM boundary conditions

In the TM case, we instead focus on the magnetic field H, which has only one com-

ponent Hzẑ. The magnetic fields in each region can be expressed in similar fashion

to (5.13),

HI = HIẑ =
(
eikxx +Re−ikxx

)
eikyy−iωtẑ (5.20a)

HII = HIIẑ =
(
Ce−κx +Deκx

)
eikyy−iωtẑ (5.20b)

HIII = HIIIẑ =
(
Teikxx

)
eikyy−iωtẑ. (5.20c)
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The boundary conditions are still the continuity of all transverse components of E

and H, but in the TM case this is the continuity of Hz and Ey. The first gives us

HI|x=0 = HII|x=0 (5.21a)

HII|x=L = HIII|x=L , (5.21b)

exactly like Ez did in the TE case. Substitution of equations (5.20) into these expres-

sions leads directly to equations (5.19a)-(5.19b).

Continuity of Ey is a little more subtle, however. Using the same logic as the TE

case, we can start from ∇×H = ∂D/∂t to find that

Ey = − i

ωϵ

∂Hz

∂x
. (5.22)

However, it is clear that we cannot make the same assumption about the dielectric

permittivity ϵ that we did about the magnetic permeability µ. The permittivity must

change significantly at each interface to provide the necessary refractive index con-

trast to achieve FTIR. Thus, we require continuity of (1/ϵ)(∂Hz/∂x), or equivalently

(1/n2)(∂Hz/∂x) for a lossless material, at each interface:

1

n2
1

∂HI

∂x

∣∣∣∣
x=0

=
1

n2
2

∂HII

∂x

∣∣∣∣
x=0

(5.23a)

1

n2
2

∂HII

∂x

∣∣∣∣
x=L

=
1

n2
1

∂HIII

∂x

∣∣∣∣
x=L

. (5.23b)

While the conversion from ϵ to n2 implicitly assumes that the materials in regions

I-III are lossless, the results should retain validity for very weakly lossy materials.

Plugging (5.20) into these equations gives the TM analogs to (5.19c) and (5.19d),

ikx
n2
1

(1−R) = − κ

n2
2

(C −D) (5.24a)

− κ

n2
2

(
Ce−κL −DeκL

)
=
ikx
n2
1

TeikxL (5.24b)
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To simplify these expressions, we define a factor Mij = n2
i /n

2
j which represents the

refractive index contrast of the interface. Another way to interpret Mij is the ratio

of the intrinsic impedances of medium j to medium i, or Mij = (η2j/η
2
i )(µi/µj). Since

our barrier is symmetric, we need only concern ourselves with M12 = 1/M21. With

this modification the four boundary conditions become,

1 +R = C +D (5.25a)(
Ce−κL +DeκL

)
= TeikxL (5.25b)

ikx (1−R) = −M12κ (C −D) (5.25c)

−M12κ
(
Ce−κL −DeκL

)
= ikxTe

ikxL (5.25d)

As in the one-dimensional calculation, we combine equations (5.25a) and (5.25c)

to express C and D in terms of R and T ,

(5.25a)− 1

M12κ
(5.25c) ⇒ 2C = 1 +R− ikx

M12κ
(1−R) (5.26a)

(5.25a) +
1

M12κ
(5.25c) ⇒ 2D = 1 +R +

ikx
M12κ

(1−R) (5.26b)

Using these expressions to eliminate C and D in (5.25b) gives

TeikxL =
1

2
(1 +R)

(
eκL + e−κL

)
+

ikx
2M12κ

(1−R)
(
eκL − e−κL

)
TeikxL = (1 +R) coshκL+

ikx
M12κ

(1−R) sinhκL. (5.27)
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And doing the same in (5.25d) yields

ikxTe
ikxL = −M12κ

2
(1 +R)

(
e−κL − eκL

)
− ikx

2
(1−R)

(
−e−κL − eκL

)
ikxTe

ikxL =M12κ (1 +R) sinhκL+ ikx (1−R) coshκL. (5.28)

We can now use equations (5.27) and (5.28) to eliminate T and solve for R,

(5.27) =
1

ikx
(5.28) ⇒

(1 +R) coshκL+
ikx
M12κ

(1−R) sinhκL

=
M12κ

ikx
(1 +R) sinhκL+ (1−R) coshκL

2R coshκL = −i
[

kx
M12κ

(1−R) +
κM12

kx
(1 +R)

]
sinhκL

2R coshκL = −i
[(

kx
M12κ

+
M12κ

kx

)
+

(
κM12

kx
− kx
M12κ

)
R

]
sinhκL

2R coshκL = −i
[
2∆

′

M + 2∆MR
]
sinhκL

R(coshκL+ i∆M sinhκL) = −i∆′

M sinhκL

R =
−i∆′

M sinhκL

coshκL+ i∆M sinhκL

R =
−i∆′

M

g
sinhκL

where we have used our earlier definition of g = coshκL + i∆sinhκL, but replaced

∆ and ∆
′
with their TM-equivalents,

∆TM ≡ 1

2

(
M12κ

kx
− kx
M12κ

)
∆

′

TM ≡ 1

2

(
M12κ

kx
+

kx
M12κ

)
.

Note that the expression for R is identical to both the TE and one-dimensional cases
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outside of the substitution of ∆TM for ∆ and ∆
′
TM for ∆

′
. In fact, with a simple

redefinition of Mij,

Mij ≡

n
2
i /n

2
j if TM-polarized,

1 otherwise (TE, 1-D).

we find that ∆TM = ∆ and ∆
′
TM = ∆

′
in the TE case. This definition of Mij is

equivalent to the factor m found in [120, 121] or the encapsulation of n1 and n2 into

the particle effective mass in Lee’s treatment [117]. With this updated definition of

Mij, we can dispense with the subscripts on ∆ and have one consistent expression for

R that applies to all three cases of interest.

With an explicit definition of R, we can now solve for T ,

(5.27) +
1

ikx
(5.28) ⇒

2TeikxL = (1 +R) coshκL+
ikx
M12κ

(1−R) sinhκL

+
M12κ

ikx
(1 +R) sinhκL+ (1−R) coshκL

= 2 coshκL+ i

[
kx

M12κ
(1−R)− M12κ

kx
(1 +R)

]
sinhκL

= 2 coshκL+ i

[(
kx

M12κ
− M12κ

kx

)
−R

(
kx

M12κ
+
M12κ

kx

)]
sinhκL

TeikxL = coshκL− i∆sinhκL− iR∆
′
sinhκL

= coshκL− i∆sinhκL− i

(
−i∆′

g

)
∆

′
sinh2 κL

= g∗ − ∆
′2

g
sinh2 κL

=
1

g

[
gg∗ −∆

′2
sinh2 κL

]
=

1

g

[
cosh2 κL+∆2 sinh2 κL−∆

′2
sinh2 κL

]
=

1

g

[
cosh2 κL− sinh2 κL

]
=

1

g
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T =
e−ikxL

g
.

Again, exactly like the previous cases. We can also find updated expressions for C

and D, the process of which is made easier by recognizing a few simple relations,

∆ +∆
′
=
M12κ

kx

∆−∆
′
=

−kx
M12κ

1±R = g−1
[
g ∓ i∆

′
sinhκL

]
= g−1

[
coshκL+ i

(
∆∓∆

′
)
sinhκL

]
1 +R = g−1

[
coshκL− i

kx
M12κ

sinhκL

]
1−R = g−1

[
coshκL+ i

M12κ

kx
sinhκL

]

Plugging these expressions into (5.26) gives us expressions for C and D,

2C = 1 +R− i
kx

M12κ
(1−R)

= g−1

[
coshκL− i

kx
M12κ

sinhκL− i
kx

M12κ
coshκL+ sinhκL

]
= g−1

[
coshκL+ sinhκL− i

kx
M12κ

(coshκL+ sinhκL)

]
= g−1

[
eκL − i

kx
M12κ

eκL
]

which simplifies to

C =

(
1− i

kx
M12κ

)
eκL/2g, (5.30)

and a similar derivation yields

D =

(
1 + i

kx
M12κ

)
e−κL/2g. (5.31)
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With this, our unified derivation is complete. C and D have a slightly different form

than the earlier TE case because they now include the impedance factor M12. Our

updated definition ofM12 accounts for this, so we can consider equations (5.30)-(5.31)

the “proper” definitions of C and D, and the earlier expressions for the TE case a

simplified special case.

5.4.3 Summary

We now have a general set of expressions for R, C, D, and T based on the boundary

conditions of our two-dimensional tunneling problem, and can proceed with explicit

calculation of the dwell time τδ, the self-interference delay τι, and the group delay τγ.

For convenience, we collect here all of the relevant equations we have derived that

will be useful in the next section.

Wave function expressions

(time dependence e−iωt omitted)

1-D: ΨI = eikx +Re−ikx ΨII = Ce−κx +Deκx ΨIII = Teikx

2-D TE: EI =
(
eikxx +Re−ikxx

)
eikyy EII =

(
Ce−κx +Deκx

)
eikyy EIII =

(
Teikxx

)
eikyy

2-D TM: HI =
(
eikxx +Re−ikxx

)
eikyy HII =

(
Ce−κx +Deκx

)
eikyy HIII =

(
Teikxx

)
eikyy

Coefficients

R = −i∆
′

g
sinhκL = |R| eiϕR C =

(
1− i

kx
M12κ

)
eκL/2g

T = eikxL/g = |T | eiϕT D =

(
1 + i

kx
M12κ

)
e−κL/2g
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Definitions

g ≡ coshκL+ i∆sinhκL

∆ ≡ 1

2

(
M12κ

kx
− kx
M12κ

)
∆

′ ≡ 1

2

(
M12κ

kx
+

kx
M12κ

)

Mij ≡

n
2
i /n

2
j if TM-polarized,

1 otherwise (TE, 1-D).

ϕ0 = ϕT + kxL

5.5 Expressions for the dwell time, self-interference

delay, and group delay

We proceed with the derivation in the TM case, as it is more general.

5.5.1 Dwell time

The general definition of dwell time from equation (4.54) is, in the notation of our

two-dimensional problem,

jinτδ =

∫ L

0

|ψ(x)|2 dx,

where jin remains the incident particle flux and ψ(x) now replaces the one-dimensional

wavefunction Ψ(x). Since the field is not constrained in the y-dimension, the integra-

tion is still performed only over x. Another way to interpret this is that any effect

on the dwell time due to the addition of the y-dimension is implicitly included in the

calculation because as ky varies, so does kx and κ.
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Substitution of ψ(x) into this expression gives,

jinτδ =

∫ L

0

|C|2 e−2κx + |D|2 e2κx + CD∗ + C∗D

= − 1

2κ

(
|C|2 e−2κx

∣∣L
0
+ |D|2 e2κx

∣∣L
0

)
+ (CD∗ + C∗D)L

=
1

2κ

[
|C|2

(
1− e−2κL

)
+ |D|2

(
e2κL − 1

)]
+ (CD∗ + C∗D)L

=
1

κ

[
|C|2 e−κL + |D|2 eκL

]
sinhκL+ (CD∗ + C∗D)L.

Substituting our expressions for C and D gives us,

jinτδ =
1

4κgg∗

[(
1 +

k2x
M2

12κ
2

)
eκL +

(
1 +

k2x
M2

12κ
2

)
e−κL

]
sinhκL

+
L

4gg∗

[(
1− i

kx
M12κ

)2

+

(
1 + i

kx
M12κ

)2
]

=
1

4κgg∗

[(
eκL + e−κL

)(
1 +

k2x
M2

12κ
2

)]
sinhκL+

L

2gg∗

[
1− k2x

M2
12κ

2

]
=

1

2κgg∗

(
1 +

k2x
M2

12κ
2

)
sinhκL coshκL+

L

2gg∗

(
1− k2x

M2
12κ

2

)

Remembering that

1

gg∗
=

cos2 ϕ0

cosh2 κL
,

we can put the expression for the dwell time in a more recognizable form.

jinτδ = L
cos2 ϕ0

2

[(
1 +

k2x
M2

12κ
2

)
tanhκL

κL
+

(
1− k2x

M2
12κ

2

)
sech2 κL

]
(5.32)

Note that this is the same expression we have for τd in equation (4.66), but with

additional factors of M12 to support two-dimensional TM boundary conditions. In

fact, we can write τd in a slightly simpler form by using our definitions of ∆, ∆
′
, and
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jin = ~k/m:

τd =
L cos2 ϕ0

jin

k

κ

[
∆

′ tanhκL

κL
+∆sech2 κL

]
.

With a few subtle algebraic manipulations, we can put τδ in the same form,

τδ =
L cos2 ϕ0

2jin

kx
M12κ

[(
M12κ

kx
+

kx
M12κ

)
tanhκL

κL

+

(
M12κ

kx
− kx
M12κ

)
sech2 κL

]
τδ =

L cos2 ϕ0

jin

kx
M12κ

[
∆

′ tanhκL

κL
+∆sechκL

]
(5.33)

So the definition of dwell time carries over very well to the two-dimensional elec-

tromagnetic case. The only differences are an additional factor of 1/M12, similar

variations within ∆ and ∆
′
, and of course a different definition of jin than in the

particle case. If we neglect the small variations in ∆ and ∆
′
, we can write,

τδ =
j
(1D)
in

M12jin
τd (5.34)

where we have used jin to represent the incident flux in the general formulation, and

j
(1D)
in to refer specifically to the incident particle flux of the one-dimensional electron-

tunneling calculation.

5.5.2 Self-interference delay

To express τι, we start with the definition in equation (4.79) with kx substituted for

k,

τι = −Im(R)

kxjin
.

We will later see that this definition is reasonable, as it gives us exactly the same result

as the “phase time” development of τγ would suggest. For the moment, it will suffice

to observe that the ~∂k/∂E in (4.79) could be represented in the electromagnetic case

as ∂k/∂ω, which evaluates to 1/vgroup. Since our materials are only weakly dispersive
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for the photon bandwidths we are interested in, we can approximate this as n/c, or

1/vphase. The expression for Im(R) is developed exactly as in equation (4.80),

R =

(
g∗

gg∗

)(
−i∆′

sinhκL
)

=

(
cos2 ϕ0

cosh2 κL

)(
−i∆′

sinhκL coshκL−∆∆
′
sinh2 κL

)
= −

(
cos2 ϕ0

) (
i∆

′
tanhκL+∆∆

′
tanh2 κL

)
,

Im(R) = −∆
′
cos2 ϕ0 tanhκL,

giving

τι = −
(

1

kxjin

)(
−∆

′
cos2 ϕ0 tanh

κL
)

=
L cos2 ϕ0

jin

κ

kx

(
∆

′ tanhκL

κL

)
=

L

jin

cos2 ϕ0

2

(
1 +

κ2

k2x

)
tanhκL

κL

which is identical to equation (4.81). In this case, the only difference between τi and

τι is the choice of jin such that

τι =
j
(1D)
in

jin
τi, (5.35)

using the same definitions of jin and j
(1D)
in as in (5.34).

5.5.3 Group delay

The phase of the transmitted field at x = L is given by HIII(x = L, y, t),

HIII(L, y, t) = TeikxL+ikyy−iωt. (5.36)
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The phase ϕH of this expression is simply

ϕH = ϕT + kxL+ kyy − ωt, (5.37)

or ϕH = ϕ0 + kyy − ωt using our definition of ϕ0. As we saw in section 5.3, the

stationary phase condition gives us the two constraint equations,

(
∂ϕH

∂ω

)
θ

= 0(
∂ϕH

∂θ

)
ω

= 0

which can be rewritten in the form of equations (5.12),

τγ =

(
∂ϕ0

∂ω

)
θ

+
n

c
∆y sin θ (5.39a)

0 =

(
∂ϕo

∂θ

)
ω

+
nω

c
∆y cos θ (5.39b)

If we eliminate ∆y in these equations, we are left with

τγ =

(
∂ϕ0

∂ω

)
θ

− tan θ

ω

(
∂ϕ0

∂θ

)
ω

(5.40)

We will now evaluate these expressions to represent τγ in terms of the dwell time τδ and

self-interference delay τι. It is slightly easier to do so if we expand the two derivatives

of ϕ0 in terms of kx and κ derivatives. To make the algebra more transparent, we will

first provide some useful identities.
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kx =
nω

c
cos θ ∆ ≡ 1

2

(
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Since we’ll be expanding in terms of κ and kx derivatives, we will evaluate those

explicitly as well,

(
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)
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=
∂

∂κ
(− arctan (∆ tanhκL))

= − 1

1 + ∆2 tanh2 κL

∂

∂κ
(∆ tanhκL)

= − cos2 (arctan (∆ tanhκL))

(
∂∆

∂κ
tanhκL+∆L sech2 κL

)
= − cos2 ϕ0

(
∆

′

κ
tanhκL+∆L sech2 κL

)
= −L cos2 ϕ0

(
∆

′ tanhκL

κL
+∆sech2 κL

)
(
∂ϕ0

∂kx

)
κ

=
∂

∂kx
(− arctan (∆ tanhκL))

= − cos2 ϕ0
∂

∂kx
(∆ tanhκL)

= − cos2 ϕ0

(
∂∆

∂kx
tanhκL+ 0

)



5.5 Expressions for the dwell time, self-interference delay, and group delay 105

= cos2 ϕ0

(
∆

′

kx

)
tanhκL(

∂kx
∂ω

)
θ

=
n1

c
cos θ =

kx
ω(

∂kx
∂θ

)
ω

= −n1ω

c
sin θ(

∂κ

∂ω

)
θ

=
1

c

√
n2
1 sin

2 θ − n2
2 =

κ

ω(
∂κ

∂θ

)
ω

=
ω

2c

(
n2
1 sin

2 θ − n2
2

)−1/2 (
2n2

1 sin θ cos θ
)

=
ω

c

( ω
cκ

) (
n2
1 sin θ cos θ

)
=
n1ω

cκ
sin θ

n1ω

c
cos θ

=
n1ω

c

kx
κ

sin θ

From here, we can evaluate the derivatives of ϕ0 with respect to θ and ω found in

equation (5.40).
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and plugging these into (5.40), we get our expression for τγ,
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(
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and finally,

τγ =
jinω

kxc2
[
M12n

2
2τδ + n2

1τι
]

(5.41)

Let’s scrutinize this result for a moment. It states that the observed group delay

τγ can be decomposed into two components, one proportional to the dwell time τδ,

and one proportional to the self-interference delay τι. This seems reasonable and

consistent with our one-dimensional results. In fact, we can relate τγ directly to τd

and τi through equations (5.34) and (5.35). If we make those substitutions along with
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the particle flux j
(1D)
in = ~kx/m, we find
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2
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jin
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in ω

kxc2
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n2
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ω

kxc2
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1τi
]

=
~ω
mc2

[
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2τd + n2

1τi
]

(5.42)

This is a surprisingly simple mapping of the two-dimensional problem in k, θ, n1,

and n2 onto the one-dimensional problem. In addition, it is applicable for arbitrary

E and V0 as implicitly defined by n1, n2, and k̄ in table 5.2,

V0 =
~2ω2

2mc2
(
n2
1 − n2

2

)
(5.43a)

E = V0
n2
1 cos θ

n2
1 − n2

2

(5.43b)

As a final confirmation, let us compare our results to those found in Steinberg and

Chiao’s analysis of this problem in [82]. In equation (21) of that paper, they define V0

and E in terms of n, θ, and ω. The situation considered in their paper is a glass-air-

glass system for which n1 = n and n2 = 1. Under those conditions, our expressions

(5.43) match theirs exactly. Note that their method of deriving τγ by breaking the

phase derivatives in θ and ω down into derivatives in V0 and E is entirely equivalent

to our derivation, giving identical results.

Our general expression for τγ also matches theirs in the limits they consider. In

the low-energy or “deep tunneling” limit (kx ≪ κ or E ≪ V0), the bulk of the delay

is due to the self-interference delay τi. Thus τd → 0 and τg → τi, in which case (5.42)

simplifies to

τγ =
~ω
mc2

n2
1τi, (5.44)
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in agreement with their result. Similarly in the “critical” limit, where k ≫ κ or

E ≈ V0, τi → 0, and τd becomes the dominant contribution to group delay. This is

also true of the “WKB” (Wentzel-Kramers-Brillouin) or “semiclassical” limit, where

E > V0 and κ becomes imaginary. Under either of those conditions, (5.42) simplifies

to

τγ =
~ω
mc2

n2
2τd, (5.45)

again in complete agreement with their results since n2 = 1.

They also observed that with a specific choice of effective mass for the photon, the

one-dimensional tunneling delay seen by a massive particle will be identical to the

tunneling delay seen by a photon. In the deep-tunneling limit (grazing incidence for

the photon), the effective mass needs to be chosen such that mc2 = n2
1~ω, while in the

critical and WKB limits that effective mass is reduced to mc2 = ~ω. Our expression

clarifies this discrepancy by demonstrating that the appropriate expression in this

limit is mc2 = n2
2~ω.

Our expression also provides intuition for why the effective mass changes. In the

deep-tunneling limit, the particle delay is primarily due to self-interference before the

barrier interface. In other words, the photon “spends more of its time” in a cavity-like

state within a region of material with refractive index n1. A similar argument shows

that photons in the critical and WKB limits “spend more time” in the barrier region,

which has a refractive index n2.

Perhaps a more intuitive way to see this is to consider energies. In the cavity

interpretation of tunneling, the delay is a representation of the amount of stored

energy in the evanescent cavity. The energy density of an electromagnetic field is

u = 1
2
(E ·D+B ·H), which will be proportional to n2~ω for a photon of frequency

ω in a medium of index n. So we see that in any of the limits considered, the photon

group delay τγ is simply the equivalent one-dimensional particle delay τg scaled by

a ratio of energies - the energy of the photon and the rest mass of the particle mc2.

More generally, equation (5.42) could be interpreted to mean that the distribution of
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delay between the self-interference and dwell-time is similar in the two cases, but each

term is weighted individually by the permittivity of that region to properly adjust

for the difference in energy density between a massive particle and electromagnetic

waves.

It is interesting that both TE and TM cases map to the one-dimensional problem

identically according to (5.42), despite having different boundary conditions. If we

stick with the electromagnetic breakdowns τδ and τι however, this is not the case.

To demonstrate this, we substitute the electromagnetic particle flux jin = c/n into in

equation (5.41) to find,

τγ =
c

n1

1

kx

ω

c2
[
M12n

2
2τδ + n2

1τι
]

=
1

n2
1

[
M12n

2
2τδ + n2

1τι
]

=

[
M12

n2
2

n2
1

τδ + τι

]
. (5.46)

For the TM case, τγ = τδ + τι, which perfectly mimics the one-dimensional result

τg = τd + τi. The TE case differs only in the multiplicative factor n2
2/n

2
1 in front of

τδ. Surprisingly, in this form the TM case seems more similar to the one-dimensional

result despite having different boundary conditions, as all of the dependence on n1

and n2 is encapsulated in the constituent delays τδ and τι.

Another interesting observation we may make here is that a photon of arbitrary

polarization undergoing FTIR will “break up,” as its TE and TM components will

experience different amounts of dwell time. Since n2 < n1 for the usual FTIR case,

this suggests that the TE component will experience less total delay than the TM

component.
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5.6 Summary

In this chapter, we have recast the traditional two-dimensional FTIR problem in

terms of a cavity-like model, with the total group delay divided into self-interference

and dwell-time terms. We have shown that once expressed in these terms, the 2-D

problem maps directly to the one-dimensional quantum-mechanical problem in a very

simple fashion. In this form, the mapping is valid for arbitrary particle energy E and

barrier height V0, as defined in terms of n1, n2, θ, and k by similarity between the

time-independent Schrödinger equation and Helmholtz equation. Further, we have

shown that our version simplifies to match previous predictions in the special cases

considered by Steinberg and Chiao in [82].

In addition, this interpretation of the tunneling delay phenomenon gives us new

physical insight into the process. Conceptually, it breaks the process down into delays

due to a cavity-like effect in the tunneling region and a standing-wave effect in the

region of incidence. It also suggests that this is not an arbitrary decomposition,

but rather that the dwell time and self-interference delays are physically meaningful

quantities that may even be able to be tested and measured individually. In the next

chapter, we will describe our attempts to measure the group delay in FTIR, and how

those measurements necessarily differ from the ideal 2-dimensional case that we have

presented here.



Chapter 6

Experimental measurement of

tunneling delay in FTIR

In this chapter, we will discuss the double-prism (DP) system as a method of mea-

suring tunneling delay. We will address the limitations of the device and the mea-

surements we make with it, as well as the particular implementation we used to make

time-delay measurements of barrier tunneling with a Hong-Ou-Mandel interferome-

ter. Finally, we will present the results of those measurements and comment on the

meaning of those results.

6.1 Double-prism systems and their limitations

The theoretical treatment presented in the previous chapter addressed the general

case of tunneling delay in a two-dimensional FTIR structure. This approach is con-

sistent with the usual treatment of the topic [82, 116, 117]. However, experimental

measurement of this delay is slightly more complicated, as one has to consider the

geometry of the experiment as a whole. The usual experimental implementation mim-

ics that proposed in [82] and shown in Figure 6.1, which is a system of two prisms

with an air gap. The theory presented in the literature does not accurately reflect the

111
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Δy

glass

glass

air

Figure 6.1: Experimental FTIR implementation as described in [82].

experimental measurements one can obtain in this system, because the practical issue

of coupling in and out of the double-prism system is generally overlooked or ignored.

To illustrate this effect, we present Figure 6.2, which shows a simple diagram

of FTIR in an equilateral prism. If the second region were filled with a perfectly

conducting material, the light would reflect along the dotted red line, with no Goos-

Hänchen shift ∆y. However, if region II is air, we observe FTIR with a non-zero

Goos-Hänchen shift and a simultaneous reduction in the amount of glass propagation

length of the reflected beam. The amount of glass reduction σ can be related to ∆y

very simply,

σ = ∆y sin θ, (6.1)

and the total propagation delay for this amount of glass is nσ/c = n∆y sin θ/c. Thus,

the delay we measure experimentally in an FTIR configuration is not the τγ derived

in the previous chapter and in the bulk of the literature, but τγ,meas = τγ − nσ/c. By
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Δy

σ

glass

region 2

Figure 6.2: FTIR in an equilateral prism. The Goos-Hänchen shift ∆y causes a
change σ in the glass propagation length, which has ramifications for an experimental
measurement of tunneling delay in the double-prism geometry.

inspection of equation (5.39), we see that

τγ,meas = τγ − nσ/c

τγ,meas =

(
∂ϕ0

∂ω

)
θ

+
n

c
∆y sin θ − n

c
∆y sin θ

τγ,meas =

(
∂ϕ0

∂ω

)
θ

. (6.2)

As discussed in the previous chapter, the first term ∂ϕ0/∂ω describes the delay con-

tribution from the propagation in the x-direction while the second term describes

the contribution from the y-direction, or Goos-Hänchen shift. This is perhaps more
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clearly seen with the same substitution made immediately preceding equation (5.41):

τγ,meas =

(
∂ϕ0

∂ω

)
θ

=

[
− κ2jin

kxω
M12τδ +

kxjin
ω

τι

]
=

jin
kxω

[
k2xτι − κ2M12τδ

]
(6.3)

Note that if we’re below the critical angle, κ = ik2x and −κ2 = k22x, where we’ve used

k2x to represent the x-component of the propagation vector in the second material.

One can express the “unmeasurable” portion in a similar fashion,

τγ,unmeas = −tan θ

ω

[
− kxjin tan θ (τι +M12τδ)

]
=

jin
kxω

[
k2x tan θ(τι +M12τδ)

]
=

jin
kxω

[
k2y(τι +M12τδ)

]
(6.4)

We can also express the measurable and unmeasurable portions in terms of the 1-

dimensional delays τd and τi using equations (5.34) and (5.35).

τγ,meas =
j
(1D)
in

kxω

[
k2xτi − κ2τd

]
=

~
mω

[
k2xτi − κ2τd

]
(6.5a)

τγ,unmeas =
j
(1D)
in

kxω

[
k2y (τi + τd)

]
=

~
mω

[
k2y (τi + τd)

]
(6.5b)

In other words, apart from an constant factor, the “measurable” portion of the

delay is the weighted average of the dwell and self-interference delays, with each

component weighted by the x-component of the wavevector in the appropriate re-

gion. The “unmeasurable” portion is the complementary expression, the average as

weighted by the y-component of the wavevector, which is the same in each region.

After substitution of kx = n1ω/c and κ = in2ω/c, τγ,meas bears a striking resemblance



6.1 Double-prism systems and their limitations 115

to equation (5.42). This is expected, as the Goos-Hänchen shift dominates the total

photonic delay τγ in the tunneling regime but becomes negligible in the Fabry-Perot

regime.

Equations (6.2)-(6.4) suggest that the double-prism system is incapable of directly

measuring delay variations caused by the Goos-Hänchen shift. Any delay incurred

through the ky component is identically offset by a glass propagation reduction of

equivalent magnitude. Note that this is true for any value of the prism apex angle;

for these examples we have used equilateral prisms, but the same result is obtained for

right-angle prisms, rhombi, or any other arbitrary triangular or quadrilateral shape.

And while we have only shown normal incidence at the exterior prism faces, the result

is the same for non-normal incidence, as the boundaries of the system must always

be defined by planes normal to the input and output wavevectors.

There is a considerable practical significance to this observation, as the Goos-

Hänchen shift is responsible for the majority of the predicted delay τγ. For the

devices discussed in the next section, τγ may be on the order of picoseconds at a

Fabry-Perot resonance, but τγ,meas is smaller by a factor of 100. Similar discrepancies

can be observed in the barrier region.

Rather than consider this a failing of the design, we could perhaps consider this

a “feature.” By eliminating the ability to measure variations that occur in the y-

dimension, we are able to isolate the variations that occur due to the x-direction.

One could argue that such a measurement allows us to more directly probe the “tun-

neling” aspects of FTIR, and thus more intimately observe its relationship to the

one-dimensional problem.

This practical issue has been overlooked by the majority of the literature [116–118,

122]. Haibel and Nimtz appear to have mentioned this effect in passing, stating that

“The measured time was obtained by properly taking into consideration the beam’s

path in the prism” [3]. However, they make no further mention of the fact and do

not provide experimental delay data for further scrutiny. In addition, they state that
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their experiments were performed under conditions where the Goos-Hänchen shift ap-

proaches its asymptotic value, which suggests that their experimental measurements

should be identically zero. This is a curious omission given their conclusion that the

observed delay was entirely due to the Goos-Hänchen contribution.

It should be noted here that this separation into “measurable” and “unmeasur-

able” parts is specific to a time-domain measurement scheme, though it should be

applicable to any direct measurement of time delay in such a structure. The FTIR

phenomenon provides other observable quantities that can be exploited to make indi-

rect measurements that are correlated to delay values according to theory. Of partic-

ular note here are two different measurements performed by Deutsch and Golub [123]

and Balcou and Dutriaux [95].

In [123], the authors reported the measurement of the optical analog to the Larmor

clock treatment proposed by Büttiker [110]. In this experiment, they draw parallels

between the spin precession of the electron in a Larmor clock measurement and the

polarization rotation of photons tunneling through a birefringent material in FTIR.

By measuring the Stokes parameters of the tunneled beam as a function of incidence

angle, they were able to infer a Larmor-like tunneling delay and achieved reason-

ably good agreement between theory and experiment. However, they note that the

strong anisotropy in their system prevents them from unambiguously determining

the Larmor time as a traversal time, and that it is still an open question whether

the Büttiker treatment, which gives a complex time delay, has a significant physical

meaning [90,124].

The work described in [95] instead focuses on the Goos-Hänchen shift ∆y and the

deviation in output angle caused by the selective frequency transmission of FTIR,

both of which they measure precisely. From these position and angle measurements,

they infer the tunneling delay times in both reflection and transmission. Their mea-

surement of ∆y seems to confirm the “phase time” predictions of Hartman and oth-

ers, while the measurement of deviation of output angle agrees with the “loss time”
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suggested by Büttiker’s treatment. They also observed that the “phase time” was

symmetric in transmission and reflection but depended on the boundary conditions

(TE- vs. TM-polarized input beams), while the “loss time” was heavily asymmetric

in transmission and reflection but showed no dependence on the boundary conditions.

They contend that this makes the “loss time” the more relevant measure of time spent

within the barrier, though this conclusion overlooks some significant criticisms of this

formulation [90].

In addition, it is our feeling that their conclusion overlooks the fact that boundary

conditions do have a significant effect on the time spent in the barrier region, as a

different boundary condition corresponds to a different effective barrier height and

smaller wavefunction presence in the barrier region. Much of this is clearly seen in the

derivations performed in the previous chapter. It should be no more surprising that

the “phase time” measurement saturates to a different value for TE- and TM-polarized

photons than that it saturates to different values for different barrier heights.

The dichotomy between “failing” and “feature” in our experiment is perhaps a

bit clearer given these results. We cannot measure the true time spent in the barrier

region, as a significant portion is tied up in the y-direction mechanics that are unavail-

able to us. Based on that, one might question the relevance of any measurement that

can be performed in this configuration. However, by eliminating that component, we

are free to make precise measurements of the portion ∂ϕ0/∂ω, which describes the

evanescent x-component of the field and captures the aspects of the process that are

specific to tunneling, making them potentially more interesting than methods that

are incapable of separating the two.

6.2 Tunable double-prism structure

While it would be ideal to build a double-prism structure as proposed by Steinberg

[82], there are practical concerns that make it difficult to achieve experimentally.
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A glass-air-glass FTIR structure has a large index contrast and leads to very short

interaction distances on the order of λ/2. Achieving a uniform air gap of less than

400 nanometers is not an easy feat outside of a cleanroom environment, especially for

large surface areas. Initial attempts at achieving a tunable air gap through mechanical

means lead to significant stress-induced refractive index changes that would have been

an order of magnitude larger than the tunneling delays we desired to measure.

However, the tunneling process is governed by κL, the barrier “opacity.” Thus,

instead of increasing the barrier length, we can consider increasing the “height” by

changing κ. We have chosen this approach for our experiment, modulating the barrier

height by introducing a liquid crystal into the barrier region. The liquid crystal (LC)

can be tuned by an externally-applied voltage to change the index contrast of the

glass-LC interface and subsequently the effective barrier height. Our system has

the added advantage of having no moving parts and introducing no significant beam

deviations during the tuning process, both of which are liabilities inherent to the

mechanically-tuned version initially proposed.

Our experimental implementation of a double-prism system is shown in figure 6.3.

A liquid crystal cell is sandwiched between two equilateral prisms made of high-index

N-SF11 glass, which has a refractive index of n = 1.77 at λ = 727 nm [125]. A small

amount of index-matching fluid (n = 1.70) is applied to the prism-cell interfaces to

minimize unwanted reflections. The high-index glass is necessary to create a large

enough index contrast between liquid crystal and substrate to observe FTIR.

Liquid Crystal cell construction is a multi-stage process that occurs in a cleanroom

environment. Two 3-mm thick N-SF11 substrates are sputter-coated with a 30-nm

layer of Indium Tin Oxide (ITO) to create a transparent conductive layer that can

serve as an electrode. Next, a 15-nm alignment layer of polyimide is spin-coated

on top of the ITO layer and thermally cured. The substrate is then subjected to a

mechanical buffing technique in which a rotating felt drum passes over the polyimide

layer. This process shears the polyimide layer, which will cause the liquid crystal to
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Figure 6.3: Diagram of the double-prism system. In (a) a liquid crystal cell is sand-
wiched between two glass equilateral prisms. An exploded diagram of the liquid
crystal shell is shown in (b), with the liquid crystal (LC), Indium Tin Oxide (ITO)
layer and polyimide alignment (PI) layer labeled.

align along the buffing direction when the cell is filled [126].

Epoxy spacers are applied to four spots on one substrate and the substrates are

pressed together, processed surfaces facing one another. The two substrates are offset

from each other slightly so that the ITO electrodes are accessible after the cell is

complete, as illustrated in Figure 6.4. Pressure is applied while the epoxy cures, which

creates a void of approximately 12 µm between the substrates. We have performed

this procedure several times with low concentrations of microspheres mixed into the

epoxy, and despite varying the diameter of the spheres from 3 to 10 µm the void

was consistently 12 µm, indicating that this thickness is characteristic to the pressure

applied and the epoxy volume or viscosity. Measurements of the cell thickness are

made with a spectrophotometer before proceeding further.

The cell is then filled with liquid crystal solution through capillary action. The

liquid crystal chosen was E7, a uniaxial nematic liquid crystal which is popular,

commercially available, and inexpensive. The edges of the cell are sealed with epoxy

to prevent evaporative loss and deterioration of the liquid crystal, as well as to prevent

foreign objects from entering the cell. Wires are attached to the exposed ITO sections

with conductive silver epoxy to accommodate an external voltage source.
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Figure 6.4: Close-up diagram of cell construction. Two high-index N-SF11 glass
substrates are coated with an Indium Tin Oxide (ITO) layer and a Polyimide (PI)
alignment layer. The cell is created by sandwiching epoxy spacers in-between the
substrates and applying pressure. Once the epoxy cures, the liquid crystal is added
from the side through capillary action.

While an in-depth discussion of liquid crystals is beyond the scope of this thesis,

we will briefly describe the characteristics which are essential to our experiment. A

liquid crystal has many of the properties of a liquid, such as flow and capillary action,

but the individual molecules align with one another as in a crystalline structure.

We will limit our discussion to uniaxial nematic liquid crystals, whose molecules

have a single orientation axis and can be conceptually thought of as cylindrical rods.

The asymmetry of the liquid crystal leads to birefringence, such that light polarized

parallel to the liquid crystal axis experiences an “extraordinary” refractive index ne

and light propagating along the axis of the liquid crystal experiences an “ordinary”

refractive index no regardless of polarization. The orientation of these molecules can

be changed by the application of an external electric field, with the long axis of the

cylinder tending to align to the electric field vector. Thus, the optical properties of

the liquid crystal can be electronically controlled by adjusting the angle between the

polarization vector of incident light and the orientation axis or “director” of the liquid

crystal [127]. For E7, the extraordinary and ordinary refractive indices are ne = 1.718

and no = 1.514 at λ = 727 nm [128].

The buffing process performed on the alignment layer of polyimide in our cell

causes the liquid crystal to naturally orient along the direction of buffing, perpendic-
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ular to the surface normal. By applying a voltage to the ITO electrodes, we impose

an electric field that supplies a torque to the crystals and attempts to twist their

orientation. If a sufficient voltage is applied the crystal will twist a full 90◦ and its

director axis will align to the electric field vector, which is parallel to the surface

normal.

If we consider the cell alone in the absence of the prisms or applied voltage,

it is clear that light incident normal to the surface will experience an index ne if

it is polarized along the liquid crystal director and no if it is perpendicular to the

director. Applying a voltage to the cell will continuously change the index seen by the

parallel polarization from ne at VLC = 0 to no at VLC = V90◦ , while the perpendicular

polarization will experience no change. The dependence of liquid crystal rotation

angle on applied voltage can be determined experimentally from birefringence data

obtained through transmission measurements on each polarization as described in

[129].

Measurements of FTIR must be performed at oblique incidence, of course. At

high incidence angles, tuning of the liquid crystal angle is equivalent to tuning the

critical angle of the glass-LC interface. The relevant indices of E7 and N-SF11 dictate

a range of achievable critical angles from 58.5◦ to 76.1◦. Thus, the desired angle of

incidence is between 60◦ and 65◦ such that we can make measurements in both the

FTIR and Fabry-Perot regimes by tuning the critical angle of the structure. The

equilateral prisms are necessary as a coupling aid to accomplish this, otherwise we

would be unable to achieve the appropriate angle in the glass region.

6.3 Matrix model

The theory of plane wave propagation through anisotropic materials has been de-

veloped over the course of more than a century, as has the analysis of refraction

and reflection at interfaces between isotropic and anisotropic materials [130]. Several
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papers in the early 1970’s addressed the particular problem of propagation through

arbitrarily-oriented anisotropic materials using a 4x4 matrix technique [131–133]. In

this technique, Maxwell’s equations are solved in matrix form for two dimensions of

the field (usually Ex, Ey, Hx, and Hy). While complicated, this general treatment is

capable of finding solutions even when the anisotropy of the material varies in one di-

mension, as is the case in cholesteric liquid crystals. For the slightly simpler problem

of a uniform anisotropic medium, this method has been used to generate analytical

solutions for certain special cases of the anisotropy orientation [130,134,135].

We have chosen to employ this matrix technique to numerically calculate the

expected delay in our double-prism system. Since this technique solves Maxwell’s

equations for the system, it produces valid solutions even under conditions which

result in FTIR. Our implementation is virtually identical to that given in [133]. We

calculate the complex transmission and reflection coefficients as a function of crystal

orientation for a particular frequency ω and incidence angle θ. The crystal orientation

is constrained to lie in the plane of incidence, and is described by the angle ϕ between

the crystal axis and the surface normal. Repeating the calculation at different input

angles θ and photon frequencies ω gives us the necessary information to calculate

the frequency and angular derivatives of the transmission and reflection phases. This

gives us a complete picture of the evolution of the system as the liquid crystal is

rotated from ϕ = 0◦ (perpendicular to the interface) to ϕ = 90◦ or ϕ = −90◦ (parallel

to interface). Note that the limitation of incidence-plane rotation is imposed by our

experimental configuration; the matrix technique is also capable of handling rotations

about an arbitrary axis if desired.

Since this analysis only applies to plane waves, we need to modify it slightly to

account for the spread of k-vectors present in our Gaussian beam. We have chosen

to convolve the calculated phase of the transmission and reflection coefficients with a

Gaussian function to simulate these effects. In addition, any disorder or irregularity

in the liquid crystal alignment can be encompassed by this operation. This step is



6.3 Matrix model 123

−60 −50 −40 −30 −20

−4.5

−3.5

−2.5

−1.5

LC angle φ (deg) 

U
n

w
ra

p
p

ed
 P

h
as

e 
an

g
le

 Φ
R
 (

ra
d

ia
n

s)
 

ΦR

ΦR
 ⊗ Gauss

Figure 6.5: Unwrapped reflection phase ΦR as a function of liquid crystal rotation
angle ϕ. The blue curve is the phase output of the 4x4 matrix method simulation,
which contains several π phase discontinuities at the Fabry-Perot resonances. The
green curve is the convolution of that phase with a narrow Gaussian (σGauss = 0.35◦)
to account for the effects of focusing. The indices of refraction used are n1 = n2 =
nN−SF11 = 1.76954, ne = 1.633, and no = 1.54, and the liquid crystal region was
L = 8µm thick.

illustrated in Figure 6.5, which shows the unwrapped reflection phase ΦR as a function

of liquid crystal rotation angle ϕ. The blue curve is the raw output of the simulation

for a plane wave, and contains π phase discontinuities at each Fabry-Perot resonance.

The green curve is phase after the convolution has been performed. The width of the

Gaussian was chosen as σGauss = 0.35◦ based on our experimental parameters. Unlike

ΦR, the transmission phase ΦT (not shown) is continuous after unwrapping and does

not contain regions of inverted phase slope. The unwrapping process is required to

remove a number of 2π phase discontinuities that do not have physical significance,

unlike the π phase shifts in ΦR, but would otherwise impact the convolution process.

The discontinuities present in ΦR lead to a peculiar effect in the predicted delay

∂Φ/∂ω, as shown in Figure 6.6. The two delay predictions are similar in the off-
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resonance regions, but the reflection delay exhibits sharp dips corresponding to the

regions of inverted phase slope. These abrupt dips occur on every Fabry-Perot peak,

where we would instead expect a delay maximum because of the extra time spent in

the cavity region. This is due to the π phase discontinuity that occurs in reflection at

the Fabry-Perot peaks [136]. This effect would not occur for a plane wave because it

contains a single k-vector component. However, our focused beam contains a spread

of k-vectors from either side of the phase discontinuity, and their interference causes

this anomalous effect. The width of the Gaussian convolution function determines the

size and depth of these features; as the Gaussian function narrows and approaches a

Delta function, the reflection delay begins to look more and more like the transmission

delay, but with a spike discontinuity at the Fabry-Perot peak.
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Figure 6.6: Transmission and Reflection delays ∂ΦT/∂ω and ∂ΦR/∂ω as functions of
liquid crystal angle ϕ. The parameters used here are the same as in Figure 6.5.

The transmission delay values are approximately 2.5 fs higher than those of the

reflection curve, including a non-zero delay prediction in the tunneling region. Inter-

estingly enough, the exact opposite is also present in the ∂Φ/∂θ terms, such that the
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total delay τγ for the reflection and transmission processes are identical. It is notewor-

thy that the delay offset is identical to L(ne−no)/c, suggesting that the liquid crystal

asymmetry is the source of this effect. Furthermore, reversing the rotation direction

of the liquid crystal flips the asymmetry, giving the reflection delay a 2.5-fs lead over

the transmission delay. In test simulations where the liquid crystal is replaced with

an isotropic medium with a varying index, the asymmetries disappear and all three

of the quantities (τγ, ∂Φ/∂ω, ∂Φ/∂θ) are identical in transmission and reflection.

Our interpretation of this is that the total transmission and reflection delays (τγr

and τγt) are constrained to be identical by the symmetry of the glass-LC-glass bar-

rier system, as would be expected by the cavity interpretation. However, the local

asymmetry of the liquid crystal layer imparts a change in the distribution of that

delay amongst the two phase derivative terms. This means that the LC asymmetry

causes a different Goos-Hänchen shift at the two interfaces, which leads to a differ-

ent stationary phase constraint on ∂Φ/∂ω for transmission and reflection. This is

consistent with the effect disappearing when the barrier medium becomes isotropic,

a feature that we also observe in simulation. In addition, TE-polarized light does

not experience this reversal effect in our simulation, in agreement with theoretical

predictions [137].

To complete the model we need to relate the crystal orientation ϕ to an applied

voltage V . This is determined experimentally with the setup described in reference

[129]. A laser and polarizer are arranged to provide linearly polarized light. The

cell is placed such that the beam strikes it at normal incidence and the plane in

which the liquid crystal axis rotates makes an angle of 45◦ with the polarizer. An

analyzer is placed after the cell to isolate the components of the transmitted field that

are parallel and perpendicular to the polarizer, and transmission measurements are

made for both polarizations as a function of voltage applied to the liquid crystal cell.

This data is processed and fit to determine the numerical birefringence curve ∆n(V ).

The birefringence ∆n can then be related to ϕ using the well-known equations for
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the angle-dependent refractive index of a birefringent material [34]. Combining these

gives us numerical relations with which we can convert between ϕ and V in either

direction.

The matrix calculation also calculates the Goos-Hänchen shift ∆y and total delay

τγ. An exhaustive analysis of these predictions is not necessary here, but it is worth

briefly making note of their approximate values to demonstrate that the predicted τγ

values are significantly larger than those for τγ,meas. The Goos-Hänchen shift varies

from approximately 2 µm deep in the barrier region to hundreds of microns in the

Fabry-Perot region. The group delay τγ reflects these swings, varying between 10-30 fs

within the barrier region and rising to over 100 fs near the Fabry-Perot peaks. These

discrepancies are very large, and the experimental measurements presented later in

this chapter will confirm that τγ,meas, not τγ, is the quantity of interest in such an

experiment.

6.4 The Hong-Ou-Mandel effect

The time delays we expect to observe in this structure are on the order of tens of

femtoseconds, necessitating the use of a very precise measurement system for the

observed delays. For this purpose we chose to employ a Hong-Ou-Mandel (HOM)

interferometer, which exploits quantum interference effects to achieve sensitive time

measurements [138, 139]. We will now briefly review the operating principles of a

HOM interferometer.

Figure 6.7 shows a simple HOM interferometer setup. A pump laser at frequency

2ω incident on a parametric down-conversion (PDC) crystal generates entangled pairs

of “signal” and “idler” photons at frequencies ωs = ω+δω and ωi = ω−δω, such that

ωs + ωi = 2ω. Signal and idler photons travel through different arms before being

brought together at a perfect beamsplitter. The two output ports of the beamsplit-

ter are sent through bandpass interference filters before collection by single-photon
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detectors. The detector outputs are then post-processed with circuitry that tracks

the number of “coincidences,” events when both detectors fire within a fixed time

window. This coincidence window is necessarily very large compared to any other

time scale in the system [140, 141], so any two detection events caused by a single

down-conversion event will always fall within this window.

PDC

2ω

ω
i

ω
s

F1

F2

BS

Figure 6.7: Basic Hong-Ou-Mandel interferometer. A parametric downconversion
crystal (PDC) generates entangled pairs of signal and idler photons which are brought
back together on a beamsplitter (BS) before arriving at two detectors. When the
interferometer is balanced, quantum path interference leads to destructive interference
that reduces the rate of coincidences detected at the detectors.

When the signal and idler photons arrive at the beamsplitter each has an equal

probability of being transmitted or reflected, leading to four possible outcomes: both

photons transmitted (TT), both photons reflected (RR), and two combinations with

one photon reflected and one transmitted (TR, RT). The circuitry will register a

coincidence for the TT and RR events as long as the photons arrive within the fixed

time window. However, they will not fire for the TR or RT events, as in those two

situations both photons arrive at the same detector. By measuring coincidences, the

system is postselecting the subset of events where both photons arrive at different

detectors.

If the interferometer is heavily unbalanced, such that the difference in photon ar-

rival time at the beamsplitter is significantly larger than the coherence length of the

signal-idler field [142], quantum interference cannot take place and each of the four

outcomes is equally likely. However, if the two arms are balanced and the photons ar-

rive at the beamsplitter simultaneously, quantum-mechanical destructive interference
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occurs between the TT and RR results, and no coincidence counts will be measured by

the detection system. If the path length asymmetry of the interferometer is scanned

through the balance point, either by moving the beamsplitter itself or by introducing

a variable-path-delay element in one arm, the coincidence rate will exhibit a “Hong-

Ou-Mandel dip,” continuously changing from no coincidences at the balance point to

the background coincidence rate on either side of that point.

In practice, the visibility of the HOM dip is not one-hundred percent. Accidental

coincidences due to dark counts, stray light, simultaneous downconversion events,

asymmetry in the beamsplitter, and imperfect optics will all reduce the visibility.

However, the visibility of the dip is not closely tied to timing precision unless it is so

low that the dip becomes unrecognizable compared to noise-level fluctuations.

The time resolution of this interferometer is primarily determined by the width

of the HOM dip. This width is related to the frequency weight function of the

downconverted photons as dictated by the crystal and pump beam parameters in

the interaction Hamiltonian [143]. The width of the HOM dip is proportional to

the Fourier transform of this weight function. If we assume the weight function is

roughly Gaussian with bandwidth ∆ω, the HOM dip width is then proportional to the

inverse of the down-conversion bandwidth, or 1/∆ω. Thus, broader down-conversion

bandwidths give narrower HOM dips and better time resolution. However, in most

setups, the bandwidth and transmission function of the interference filters acts as a

more stringent limitation than the down-conversion process.

In the seminal paper on this effect, Hong, Ou, and Mandel demonstrated a dip

with visibility in excess of 80% and a width of about 16 µm of beamsplitter movement,

or 100 fs of path length [138]. They noted that the time resolution of this system could

be better than 1 fs. Later measurements by Steinberg et al. demonstrated resolutions

of 4 fs in measurements of single-photon propagation velocity in glass [140] and 0.2 fs

in measurements of the single-photon tunneling time in a one-dimensional photonic

band-gap material [99] with dip widths of 35 to 50 fs.
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6.5 Experimental setup

The experimental setup is shown in abbreviated form in Figure 6.8a. An ultraviolet

pump beam incident on a nonlinear crystal generates spontaneous parametric down-

conversion (SPDC), providing a source of entangled photon pairs. The photon in

the upper arm is incident on the double-prism FTIR system in either a reflection or

transmission geometry. The lower arm contains a “trombone” system constructed

from a corner cube retroreflector mounted on a motorized linear translation stage.

The two arms of the interferometer are then combined at a non-polarizing 50/50

beamsplitter to create a HOM interferometer. Beamsplitter outputs are coupled into

single-mode fiber and sent to avalanche photodiode single-photon counting modules,

the output of which is sent to coincidence counting circuitry.

Inset (b) in Figure 6.8 shows a schematic diagram of the interaction region. The

liquid crystals have an effective index neff determined by their rotation angle, which is

controlled with the applied voltage V . The interfaces between nglass and neff serve as

the boundaries of the barrier region. Reflected light undergoes a Goos-Hänchen shift

as indicated by the dotted vertical lines. Inset (c) shows an example data trace taken

with the coincidence-counting circuitry, which we then digitize and fit in a computer.

A more complete experimental diagram is shown in Figure 6.9. The pump source

is a continuous-wave Coherent Innova Sabre argon-ion laser operating at 364 nm,

producing up to 1 W of power with a linewidth of approximately 3 GHz. This laser

pumps a 3-mm BBO crystal to generate entangled photons at 727 nm by Type I

non-collinear SPDC. The crystal is aligned and angle-tuned such that the generated

photons are emitted in a cone with a half-angle of approximately 0.1 radians, or a

little under 6◦. Our particular crystal has a cut angle of 29.2◦ for optimized second-

harmonic generation at 800 nm, so this alignment process includes an approximately

3◦ rotation from the pump normal to achieve phase matching for PDC at 727 nm

(32.3◦). The pump beam is focused on the crystal to increase the intensity and

subsequently the SPDC generation rate. This also increases collection rates, as the
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Figure 6.8: Abbreviated setup diagram showing FTIR measurements in the reflec-
tion geometry. Panel (a) shows the Hong-Ou-Mandel arrangement and placement of
components. PDC is the parametric downconversion crystal, CC is a corner cube
retroreflector, BS is a non-polarizing 50/50 beamsplitter, IF are 10-nm bandpass in-
terference filters centered at 727 nm, APD are avalanche photodiode single-photon
counting modules. Inset (b) shows a detailed view of the FTIR region, with two
prisms of index nglass and a barrier region of liquid crystals with an effective index
neff due to the applied voltage V . Inset (c) shows an example data trace containing
a Hong-Ou-Mandel dip, along with a numerical Gaussian fit.

single-mode fibers in our detection system can only collect photons generated from a

relatively small active area on the crystal.

We use Type I down-conversion for this experiment because the two generated

photons have the same polarization state. Our pump is horizontally polarized (in

the plane of the diagram), generating down-converted photons that are vertically

polarized (perpendicular to the plane of the diagram). We chose this over Type

II down-conversion, in which the two photons have different polarization states, to

avoid several potential pitfalls. The most obvious issue is that since the photon in

the upper arm could be in either polarization state, we would have both TE and TM

polarization states incident on our prism system. We could eliminate one or the other
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Figure 6.9: Complete setup diagram, including all optical elements. PDC is the
parametric downconversion crystal, CC is a corner cube retroreflector, HWP are
half-wave plates, BS is a non-polarizing 50/50 beamsplitter, IF are 10-nm bandpass
interference filters centered at 727 nm, APD are avalanche photodiode single-photon
counting modules.

by introducing a polarizer in the lower arm to perform pre-selection, but this would

reduce our effective generation rate by half, which is not desirable.

Another potential issue with Type II down-conversion is that birefringence in the

crystal causes a small relative delay between the two generated photons. This delay

depends on the polarization of each and the exact position along the optic axis at

which the generation took place. Experimentally this means that there is a minimum

uncertainty in the relative delay between the two photons which manifests itself as a

broadening of the Mandel dip and a decrease in timing resolution. The magnitude of

this broadening depends on the crystal length, but for a 3 mm crystal it could be as

large as 300-600 fs (∆n ≈ 0.066). While we could observe a Mandel dip under such

conditions, it would significantly reduce our timing accuracy. In combination with

the reduced generation rate this makes Type II less desirable than Type I since the
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latter avoids both of these problems.

The two down-converted photons then proceed through different arms of the inter-

ferometer. In each arm, a small lens of approximately 10-cm focal length is positioned

about 20 cm from the down-conversion crystal. These lenses image the downconver-

sion plane to a spot within each arm, which serves two purposes. The first is to ensure

that the beam size remains small near the interaction region of the prism structure,

which helps minimize the effects of large-scale irregularities in the prisms or liquid

crystal cell. The second is to prevent the mode size from growing so large that it

overfills the microscope objectives in the collection arms. This is a significant im-

provement in collection efficiency in a long system such as this one; observed count

rates improved by more than a factor of five when the lenses were inserted and aligned

properly.

Each arm also contains an iris immediately following the lens. These irises do not

serve any purpose for data collection, but are extremely valuable for system alignment

and troubleshooting. We will discuss this in more depth later in the chapter.

In the lower arm, the photon proceeds through two mirrors to encounter a “trom-

bone” system consisting of a corner cube retroreflector mounted on a motorized linear

translation stage (Aerotech model ATS50-25-M-2). This system introduces a control-

lable amount of path delay for the photon in the lower arm. The stage is capable

of step sizes as small as 50 nm and has a unidirectional repeatability of 300 nm.

The resolution far exceeds the motion intervals of 1 µm that were used in the ex-

periments, but the unidirectional repeatability was critical for achieving consistency

between successive data traces. Since our trombone arm introduces a double-pass

path delay, an error of 300 nm in position would cause a 2 fs error in the location

of the Mandel dip minimum. In our experiments the observed error at high count

rates was closer to 1 fs, suggesting that the repeatability error distribution function

was a little narrower than 300 nm. In any event, we believe that this source of error

established the lower bound on our system’s time resolution. Coincidence count rates



6.5 Experimental setup 133

and thermal stability of the system dictated how close our data would come to this

lower bound.

We chose to use a corner cube instead of a more traditional right-angle prism

for greater alignment fidelity. We found that the right-angle prisms available in

our laboratory produced a vertical deviation in the output wavevector. Since this

error was inherent to the prisms, it led to alignment instability as the stage was

translated from one limit to the other. The corner cube retroreflector did not exhibit

this behavior, which led to much more stable alignment across the entirety of the

translation stage’s 2.54-cm travel length. The two pairs of mirrors before and after

the corner cube allow for precise parallel alignment of the input beam path to the

translation stage’s motion vector. A small angle between these two vectors causes a

lateral shift of the output beam as the stage advances, which leads to mode mismatch

and a reduction in the visibility of the quantum interference. For even small angles,

this can cause the Mandel dip to disappear, and for more serious alignment errors a

loss of coincidence can occur. These factors make the control afforded by these four

mirrors critical to stable operation.

In the upper arm, the photon interacts with the double-prism test system. Figure

6.9 shows the two possible configurations under which the system can be tested.

The diagram demonstrates the reflection geometry, in which photons reflected by

the barrier are collected and measured. The inset shows the transmission geometry,

in which photons that tunnel through the barrier and emerge on the other side are

measured. The prism system itself is the same for both measurements, but the mirrors

immediately preceding and following the system must be adjusted to account for the

change in orientation, necessitating a significant degree of re-alignment in the test

arm when changing from one geometry to the other.

The two arms of the interferometer are then brought back together at a non-

polarizing 50/50 beamsplitter to create the HOM interferometer. Beamsplitter out-

puts are passed through interference filters to suppress stray light from the pump,
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pump fluorescence, and ambient light. The interference filters are 10-nm band-pass

filters centered at 730 nm, which are then tilted 12◦ to re-center the bandpass region

at 727 nm. The transmitted light is then coupled into a fiber-based collection module

with another pair of mirrors. The collection module consists of a microscope objec-

tive on an x-y translation mount and a single-mode fiber (ThorLabs P1-630A-FC)

mounted in an FC connector plate on a z-direction translation mount. These mounts

are supported by a home-built ThorLabs cage substructure that mimics their KT110

free space fiber coupler system.

The fibers transport the light to the avalanche photodiode (APD) single-photon

counting modules (PerkinElmer SPCM-AQR-14-FC). These modules have very low

dark count rates (less than 100 counts per second) and a quantum efficiency of approx-

imately 70% at 727 nm. They produce 30-ns long TTL output pluses upon a detection

event, though there is a 50-ns “dead time” between pulses which limits the maximum

count rates to around 10 million counts per second [144]. Our single-detector count

rates rarely exceeded 100 thousand counts per second, so this limitation is of little

consequence to our experiment.

A coincidence circuit takes the electrical output of the APDs and performs an

array of logic functions, tracking the number of individual (“singles”) events at each

detector as well as the number of coincidence events. The circuit is home-built and

based on a design published by Mark Beck [145] which is freely available online

[146]. This particular model has since been retired in favor of newer models based on

field programmable gate arrays (FPGAs). The new models connect to the computer

by USB or RS323 cables and do not require the National Instruments PCI-6602

counter/timer board that our model does, which make them cheaper and easier to

interface with. The discrimination time window of the circuit is nominally about

12-15 nanoseconds, which is sufficiently large to guarantee that any generated pair

of entangled photons which successfully triggers both APDs will be counted. The

width of this window also ensures that odd-order dispersion effects (including group
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velocity dispersion) cancel out and do not artificially broaden the HOM dip [141]. A

shorter discrimination window would result in better count statistics by reducing the

number of random coincidence events, but may lead to dispersion-broadening of the

dip and a reduction in timing accuracy.

6.6 System construction and alignment

System construction and alignment is a complicated, multi-stage process. Initially,

down-conversion must be achieved in a sparse system as shown in Figure 6.10a. Irises

I1-I4 define the two down-conversion beam paths and I5-I6 the pump beam path,

all of which intersect in the crystal. The pump beam is aligned to the pump irises

with two mirrors (not shown), and the collection modules are “back-aligned” to the

down-conversion beam paths using four mirrors. This is done by sending the output

of a Ti:Sapphire laser operating in continuous-wave mode at 727 nm “backwards”

through the fiber output of one collection module and aligning the beam to the two

appropriate irises. The process is repeated for the second module and pair of irises.

Once this is complete, the back-alignment laser is disconnected and the collection

modules are connected to the APDs. The pump beam and crystal angles are then

adjusted until down-conversion is achieved and optimized.

Once down-conversion is optimized the translation stage and corner cube retrore-

flector are introduced to the lower arm as in Figure 6.10b. It is crucial that the

wavevector of the down-converted light incident on the retroreflector is parallel to the

translation stage motion axis to prevent beam walk-off. To accommodate this, the

system is “front-aligned” by sending a continuous-wave 632-nm HeNe beam forward

through the lower beam path by aligning it to irises I1-I2. The output of the retrore-

flector is allowed to propagate for approximately 5 meters to a screen upon which

the beam center is marked. Mirrors M1 and M2 are then adjusted as the stage is

translated between its two limits until the spot on the screen no longer moves. M1
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and M2 are then considered “fixed” and excluded from subsequent alignment steps

to prevent introduction of walk-off error.

The rest of the setup is straightforwardly constructed through a combination of

back-alignment and singles/coincidence maximization. The beamsplitter, mirrors,

and lenses are added to the setup as shown in Figure 6.9c. Mirrors M3-M9 are placed

such that the estimated path difference between the two arms is less than 1 cm,

while mirrors M10-M13 are placed to make the path difference between the collection

modules and the beamsplitter faces approximately equal. The back-alignment beam

is applied to the lower collection module, and mirrors M10-M11 are adjusted until

the beam is approximately centered on the beamsplitter at normal incidence and

operating height. Mirrors M3-M4 are adjusted to align this beam with irises I1-I2,

and mirrors M5-M9 are adjusted until the upper arm is similarly aligned to irises

I3-I4.

Next, the back-alignment beam is removed and an APD is connected to the lower

collection module. Mirrors M3-M4 are adjusted to maximize singles counts while the

upper arm is blocked, and M8-M9 are adjusted to maximize singles counts while the

lower arm is blocked. Once that is complete, the back-alignment and singles maxi-

mization processes are repeated for the upper collection module, this time adjusting

only mirrors M12-M13. Coincidences should be easily observed at this point, and

fine-tuning of mirrors to maximize coincidence counts can take place. The particular

mirrors used in this process depend on several different pieces of information includ-

ing overall coincidence rate, the singles rate at each collection module due to each

arm, and the efficiency of both APDs and collection modules.

We then introduce lenses L1-L3 to increase our coincidence count rate to more

convenient levels. The focal length of all three lenses are approximately 10 cm. L1 is

mounted on a three-dimensional translation stage and adjusted to focus the collimated

pump beam on the crystal, while L2-L3 are mounted on two-dimensional (xy) trans-

lation stages. The back-alignment beam is reintroduced and the z-translation-stage
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of each collection module is adjusted until the microscope objective images the fiber

tip to the test location of the upper arm. Lenses L2 and L3 are then hand-adjusted

to re-image this point to the crystal. The distance between the crystal and each lens

should be equal, though hand-adjustment limits the accuracy of this to roughly 1 mm.

This error can manifest itself as a slight imbalance in the observed singles count rate

when blocking either arm, as one arm will couple to the fiber more efficiently than

the other if the imaging conditions of L2 and L3 are not identical. While it was not

a significant problem in practice, the signal-to-noise may have been slightly better if

these lenses were also mounted on xyz-translation stages. The addition of these three

lenses can increase the observed coincidence rate very significantly; a rough estimate

based on unrecorded observations places the contribution of these three lenses to the

coincidence rate at a factor of around 10 or 20.

The APDs are then connected and coincidence is maximized again through mirrors

M3-M4 and M6-M7. A coarse scan of the translation stage is performed to search

for the Hong-Ou-Mandel dip, and once located fine scans are performed to assess its

fidelity. Further mirror adjustment may be performed here to improve the visibility

and shape of the dip, though it is not particularly necessary at this point.

Finally, the system to be tested is added to the upper arm. This usually necessi-

tates a significant change in the positions of M6 and M7 because of the added glass

path length. These mirrors are then used to back-align the upper arm to irises I3-I4,

and adjusted again to maximize singles and coincidences under operating conditions.

The coarse and fine scans of the translation stage are repeated to find the new loca-

tion of the HOM dip and optimize its properties. Experimental data collection can

then proceed as described in the next section.
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6.7 Experimental procedure

On a conceptual level, data acquisition for these experiments is very straightforward

once the system is constructed and aligned properly. The basic building block of

the experiments is a HOM “trace,” consisting of coincidence measurements made at

sequential positions of the translation stage. In our traces, measurements are made

over a 50-micron range of stage movement in 1-micron increments for a total of 51

data points per trace. At each new stage position we record the position, integration

time, singles counts on each detector, and coincidence counts. The time and date of

each trace are also recorded. In post-processing, the collected data is imported into

MATLAB to fit each HOM trace with a Gaussian function as described in the next

section. A position value that describes the minimum of the HOM dip is extracted

from this fit. An individual experimental data run involves performing a large number

of HOM traces with different voltages applied to the liquid crystal.

From the position values extracted in post-processing, we can pair these voltages

with HOM dip positions to find the relationship between applied voltage and path

delay. We can interchangeably talk about the “position” or “time” at which the HOM

dip minimum occurs, so to avoid confusion we will refer to this value as the “centroid”

of the HOM dip. The centroid can be expressed in either unit system as desired, with

the understanding that a centroid position x corresponds to a centroid “time” 2x/c

due to the double-pass nature of the trombone arm. Similarly, the difference in two

centroid positions x1 and x2 is equivalent to the delay τ = 2(x2 − x1)/c.

Since our experiment contains no absolute reference, all of our measurements

are necessarily relative delays, or measured centroid differences between a reference

voltage and a test voltage. As such, we cannot make statements about absolute delays

or superluminality from our data. We can, however, characterize the delay curves as

a function of voltage or liquid crystal angle and compare them to the theoretical

predictions for our system to determine whether the model of tunneling is accurate.

In practice, there are a number of issues that complicate the data collection pro-
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cess. The largest is thermal drift of the set-up and pump laser, as the temperature

stability of the room housing the experimental setup is quite poor. It is not un-

common to observe temperature changes of up to 10◦ F over the course of a few

hours. This leads to thermal expansion and contraction of the optical mounts, and

can produce slow drifts in the relative path delay of the two arms.

A single HOM trace takes around one minute to acquire even when the coincidence

rate is high, so this drift poses a significant problem. The drift error observed between

two adjacent traces may not be very large, but the accumulated error over 10 or more

traces frequently will be, especially for longer traces with higher integration times.

Based on our empirical observations, the thermal drift effect is smaller than 1 fs of

total change in the dip centroid value over approximately five minutes. However, over

longer time scales the drift can exceed 10 fs per hour.

To combat this drift we employed a differential data acquisition method. We per-

form the a HOM trace at a reference voltage Vr, and then repeat the measurement at

our test voltage Vt. An entire data set is thus a series of Vt traces interleaved with the

same number of Vr traces. After post-processing provides us with the corresponding

centroid positions Zt and Zr, we can calculate a set of values zi = Z
(i)
t −Z(i)

r for every

(Vr, Vt) pair that describe the drift-corrected centroid of the HOM dip.

An additional drift-related complication arises from the nature of tunneling itself.

In the transmission geometry (see inset of Figure 6.9) very few of the photons incident

upon the structure successfully make it to the detectors. This significantly reduces

coincidence count rate, dip visibility, and fidelity, which subsequently reduces the

accuracy of the Gaussian fitting algorithm. The transmission becomes so bad that

some cases simply cannot be fit without increasing the integration time significantly.

However, increasing integration time also increases the likelihood and magnitude

of drift errors. If we were to increase the integration time such that each test and refer-

ence trace took 30 minutes to acquire, the error with the differential acquisition tech-

nique could still be prohibitive. Instead, we chose to employ a “double-interleaving”
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method in which we acquire data in smaller “chunks” and combine them in post-

processing. To acquire M minutes of integration time at Vt we perform N differential

measurements of duration M/N , and in post-processing combine the coincidence to-

tals for each of the N individual test and reference measurements before attempting

to fit the data.

As an example, if we want M = 15 minutes of integration time but want to

limit our maximum single-trace time to 5 minutes to limit drift error, we perform

N = 3 test traces of 5-minute duration at Vt interleaved with 3 reference traces of

5-minute duration at Vr. In other words, we perform 5-minute measurements for the

voltage sequence V = (Vt, Vr, Vt, Vr, Vt, Vr). The coincidence data for the odd traces

are summed in the computer to give one compiled test trace with 15 minutes of

integration time, and the reference trace is similarly compiled from the even traces.

These compiled traces are then used in the fitting subroutine to determine one Zt

value for the voltage Vt and similarly for (Vr, Zr).

Mathematically, this can be conceptualized as taking a collection of Gaussian func-

tions G(x, x0, σ) = exp(−(x − x0)
2/2σ2) with offsets x0 and summing them. While

the offsets x0 are not truly random, they are small enough compared to σ that the

resulting sum still strongly represents a Gaussian with slight broadening. Since the

drift should be fairly consistent between any given pair of (Vt, Vr) measurements, the

broadening and deformation characteristics of the sum should be strongly correlated.

This means that both traces should show the same deformities and the fit algorithm

should respond similarly to each. As a result, the broadening or deformities intro-

duced through this method are suppressed in the final relative delay measurements

as long as the signal-to-noise ratio is still high enough for the fit algorithm to give

reasonable results.

The voltage Vr is usually chosen based on coincidence rate in order to maximize

the accuracy of the reference trace. This often leads to situations where the coinci-

dence rate at Vt is significantly lower than Vr, making the above “double-interleaving”
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method somewhat inefficient, as it spends the same amount of time integrating at Vr

as at Vt. In practice, we perform slightly more complicated interleaving operations

to increase data collection efficiency.

To provide a specific example, let’s say we want 30 minutes of integration time

at Vt, but it only takes 5 minutes of integration time at Vr to get an acceptable

reference trace. We could perform one 6-minute trace at Vt and one 1-minute trace

at Vr, and then repeat that sequence a total of five times to get our 30 minutes

of integration time. Alternatively, we might perform five measurement sequences of

(Vt, Vt, Vt, Vt, Vt, Vt, Vr) with 1 minute of integration time for each trace. The 6x1-

minute method has some advantages over the 1x6-minute method; it performs some

smoothing of short-term noise effects (1-minute duration or less) by spreading their

effect across more data points within a single trace, and it keeps the mechanical

motion of the stage independent of trace type.

For more severe imbalances, like 30 minutes for every Vt but only one minute for

Vr, we oversample Vr in order to keep the time between reference traces reasonable,

usually no more than 10-12 minutes. Sparser sampling limits our accuracy due to

the slow thermal drifts that we’ve experimentally observed in the system, which take

place on the order of 10-30 minutes.

Accumulation of this data is performed mostly unattended with the help of a group

of Labview virtual instruments (“VIs”) that we have written specifically for this HOM

setup. The Labview code provides a graphical user interface within which one can

set all of the relevant experimental parameters and initiate the scan sequence. This

“master VI” then calls a variety of sub-VIs to handle portions of the experiment,

including performing stage operations based on the scan parameters, querying the

coincidence circuitry for accumulated APD data, applying voltages to the Liquid

Crystal cell, constructing the interleaving scheme, and writing the data to raw text

files for storage.



6.8 Data and post-processing 143

8340 8360 8380 8400 8420 8440
0

1000

2000

3000

stage position (microns)

co
in

ci
d
en

ce
 c

o
u
n
ts

 p
er

 s
ec

o
n
d

 

 

gaussian fit

Figure 6.11: Sample Hong-Ou-Mandel trace along with Gaussian fit.

6.8 Data and post-processing

Once the coincidence data has been collected, it goes through several postprocessing

steps to extract accurate values for the FWHM, position, and visibility of the dip for

a given trace or set of traces. First the traces are imported into MATLAB from the

raw text data files. The traces are combined according to the interleaving settings

of the particular data run to create sequences of alternating Vt, Vr data trace pairs.

Figure 6.11 shows an example data trace generated in this fashion, along with the

accompanying functional fit. The small “humps” on either side of the dip are believed

to be due to a photon bandwidth or mode match asymmetry between the two arms

caused by the 3◦ rotation necessary for downconversion crystal alignment.

These sequences are then processed by the fitting module, which attempts to fit

each individual trace using a nonlinear least squares method. The functional form
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used for the fit is

y(x) = D − Ce−4 ln 2(x−B
A

)2 (6.6)

where A is the FWHM and B is the average position. While C is the maximum

“depth” of the dip, it is clear from Figure 6.11 that D is not an accurate estimate

of the background coincidence rate because of data weighting. When calculating the

fit, the data points are subject to a weight function of the form

w(x) = e((x−x0)/18)4 . (6.7)

The value of x0 is chosen to be the location of the minimum coincidence value in the

data trace as long as that point occurs within the center 50% of the domain. If it does

not, x0 is arbitrarily set to the mid-point of the x-axis. This super-Gaussian weight

function emphasizes fitting of the dip region and reduces the influence of the “humps”

and background, which become a significant source of error in low-transmission traces.

The value of 18 was chosen empirically by visually assessing how well the fit matched

moderately noisy data traces. Coincidentally, the average FWHM of the data traces

is around 20 µm, which means that this weight function drops to zero at roughly the

same point as the second term in equation (6.6).

To calculate background coincidence levels Cbkgd, we instead take the average

of all data points that satisfy the condition y > D − C/4, which seems to do an

excellent job of accounting for the “humps” based on our observations. Nonetheless,

we note that this value is simply an estimate, and as such should be considered an

approximate value. The visibility of the dip, calculated by C/(2Cbkgd + C), is thus

also best considered approximate. Neither of these values are directly involved in the

results, though they both serve as useful tools for evaluating the quality of a given

trace and thus the fidelity of a given delay measurement.

Figure 6.12 shows the results of our measurements in the reflection geometry. Four

sets of data are shown, each of which contains 176 data points representing individual
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HOM traces. For each trace, coincidence was measured at 51 stage positions for 2

seconds, giving a total integration time per trace of 102 seconds. The black line

represents the arithmetic mean of all four data points at each position. The reference

voltage in reflection is Vr = 0 volts, and all delay measurements here are relative to

the delay observed at that voltage.

The reflection delay ∂ΦR/∂ω predicted by the simulation is shown in Figure 6.13

for liquid crystal voltages ranging from 1.5 V to 5 V, corresponding to rotation angles

of ϕ = 69.3◦ to ϕ = 18.3◦ respectively. In this simulation the light is incident at

63.5◦ from N-SF11 glass (nN−SF11 = 1.76954) on an 8-micron liquid crystal cell. The

extraordinary and ordinary refractive indices used for the liquid crystal are ne = 1.633

and no = 1.54. These indices are a little lower and higher, respectively, than the

expected values for the E7 liquid crystal used in our experiment, and the cell thickness

is a little thinner than the nominal value of 12 µm inferred from spectrophotometric

measurements. However, these parameters primarily affect the spacing and magnitude

of the Fabry-Perot fringes observed, and were chosen for better agreement with our

experimental data. The cell contains a non-trivial amount of wedge, so it is not

unreasonable to believe that the experiment took place at a different position on the

cell that had a thickness closer to 8 microns or less.

The experimental data are in excellent agreement with the model predictions for

τγ,meas, making it clear that the ∆y contributions to the delay truly are suppressed in

this type of measurement. The delay in the tunneling region (below approximately

2.2 V) appears to be identically zero within the experimental uncertainty, observed

to be approximately ± 1 fs or less. Measurements below 1.5 V were consistent with

these results as well, though they have been omitted from the plot for clarity. In

the Fabry-Perot region, we observe the sharp dips at each resonance corresponding

to interference from the Gaussian beam k-vector distribution as well as the slowly-

increasing delay predicted between resonances. The sharp dips are not as pronounced

as those shown in Figure 6.13 because the simulation only addresses the phase of
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Figure 6.12: Reflection delay in FTIR from a double-prism barrier system. The
black line is the arithmetic mean of four individual data sets, shown in colored dots.
Each data point represents an individual Hong-Ou-Mandel trace with 102 seconds of
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Figure 6.13: Predicted ∂ΦR/∂ω based on the 4x4 matrix method described in the text
for 727-nm light propagating through an 8-micron liquid crystal cell. The parameters
used are θ = 63.5◦, nglass = 1.76954, ne = 1.633, and no = 1.54.
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the reflection coefficient and weights each contribution equally. In experiment, the

amplitude of the reflection coefficient is smaller at the Fabry-Perot resonances than

when off-resonant, leading to an uneven weighting that reduces the magnitude of the

dips in the measured delay.

Data taken in the transmission geometry is shown in Figure 6.14. Four data

sets are shown, each of which has a successively larger integration time per stage

position. The HOM trace time varies from 153 seconds for the first set to 4 hours

and 15 minutes in the final set. The black line represents the weighted average

according to integration time of all four data sets. In this case, the reference voltage

is Vr = 10 volts, leading to an arbitrary delay offset as the reference voltage is

located on one of the Fabry-Perot resonance lines. Despite this, the Fabry-Perot

fringe effect is very clearly observed above the FTIR threshold. However at the lower

voltages, where we’re approaching the FTIR condition and entering the tunneling

regime, the transmission drops significantly and we quickly become unable to fit the

dip accurately. The effect of this transmission drop is immediately visible in the data

as the voltage decreases from 3.5 volts to 2 volts. The variance or “spread” of the data

points increases as voltage decreases, and below 2.2 volts the data becomes extremely

unreliable. For voltages smaller than 2 volts, the data becomes bad enough that the

fitting algorithm cannot give any useful information about the dynamics.

The transmission delay predicted by the numerical model is shown in Figure 6.15

for the same parameter values used in the reflection simulation. Fabry-Perot trans-

mission resonances occur above the “critical voltage” where we transition from FTIR

to allowed propagation as in the reflection plot, but in transmission there is no phase

discontinuity at resonance and subsequently no anomalous delay features. These

qualitative features of the model match the observed behavior, as expected.

However, there are some noticeable discrepancies between the data and the model

that must be addressed. We do observe the expected Fabry-Perot effects all the way

down to around 2.2 volts, but the peaks occur at different voltage values than the
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Figure 6.15: Predicted ∂ΦT/∂ω from the 4x4 matrix method described in the text
for the same parameters as shown in Figure 6.13.
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model. This is a trivial effect that can be attributed to a change in the angle of

incidence, which is difficult to avoid when reconfiguring the setup from the reflection

geometry to the transmission geometry. In addition, we are likely interrogating a

different section of the cell, which could lead to a different value of barrier thickness

and/or cavity finesse. These two factors may also explain why the magnitude of the

Fabry-Perot peaks is considerably larger than that predicted by the model. It is also

possible that some sort of aberration is contributing, as it’s not clear what a small

amount of wedge would do to the Fabry-Perot features.

Below 2.2 volts, it is unclear whether we continue to see resonances, but the low

transmission in this region suggests that FTIR has taken over for the majority of the

beam, and we’ve transitioned into the tunneling regime. Without higher transmission

or longer integration times, both of which are difficult if not impossible to obtain with

our cell and experimental setup, we cannot obtain better resolution in this region.

We hope to repeat the experiment with a much thinner cell in the future to increase

transmission and obtain convincing tunneling delay data in transmission.

6.9 Conclusions

In this chapter, we have provided an extensive treatment of the double-prism FTIR

system and identified a peculiarity of this system that as of yet has not been satis-

factorily addressed in the literature. The suppression of the ∆y contribution in the

measurable portion of the tunneling delay in this system leads to differences between

τγ,meas and τγ in excess of 50 fs or more, which are large enough to be easily verified by

experimental measurements. The elimination of the transverse contributions caused

by the Goos-Hänchen shift provides a deeper connection to the one-dimensional prob-

lem, as it isolates the longitudinal contributions that are characteristic of tunneling.

By explicitly working out these relationships, we have identified a second possible

mapping between the two problems.
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We have also presented the first predictions for the observable delay in the double-

prism FTIR system that properly incorporate the expected glass propagation time

offset σ. Our predictions are based on a simulation using an existing 4x4 matrix tech-

nique that properly accounts for the anisotropy of the liquid crystal region acting as

our photonic barrier. Scrutiny of these simulation results confirms that they conform

to the conceptual predictions of standard Hartman theory; namely that the total

delay τγ is the same for transmitted and reflected photons, and that the differences

between τγ,meas in transmission and reflection are due to liquid crystal anisotropy.

These predictions have been confirmed by performing the first single-photon time

delay measurements in a double-prism FTIR structure. In addition, these are the

first direct time measurements of FTIR tunneling delay at optical frequencies. Since

the results were obtained with single photons, they should put to rest many of the

“reshaping” arguments that have been suggested as alternative explanations of the

Hartman effect. The reflection results strongly suggest that the cavity interpretation

presented by Winful is correct, and follow-up measurements with a thinner cell to

confirm the model’s transmission predictions should further support this interpreta-

tion.



Chapter 7

Conclusions

In this thesis, we have investigated two systems in which pulse propagation appears

to occur superluminally. However, we have shown that in neither case is it necessary

to ascribe the result to acausal sources, nor is it fair to claim that either system

demonstrates a violation of Einstein causality. The work presented here attributes

the observed pulse advancement to energy exchange or storage effects that differ from

what is seen in normal propagation through a dielectric material, but these effects

still fall well within the limits of causality.

7.1 Recurring themes

During our investigation we have encountered several recurring themes that relate to

the apparent superluminality of these effects.

The first is that the peak of a pulse or wave packet is not the physically meaningful

entity that carries information. The misinterpretation of these effects as “superlumi-

nal” is predicated on the idea that the peak represents something significant, generally

either the position of the particle or the information carried by the particle. However,

the peak of the wave packet is an interference effect that is not bound by causality or

relativity. In any situation where that peak appears to advance acausally, it is simply
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being re-created by interference between the components of the wave packet that were

already present at the new location in spacetime. Once we disabuse ourselves of this

notion of the peak as a physical entity that propagates causally, the vast majority of

misinterpretations lose their substance.

Another recurring theme is that the information encoded in a pulse is contained

in a point of non-analyticity. In that sense, a Gaussian pulse of infinite temporal

extent cannot contain any information. It exists in all space and at all times, and any

particular section contains all of the frequency components necessary to recreate the

entire temporal pulse profile. The only way for such a pulse to contain information is

through its presence or absence, which is impossible given the infinite nature of such

a pulse (and suitably sensitive detectors).

Transmission of information occurs when the transmitter makes a decision and

sends that decision to the receiver. That implies a time at which the pulse is “turned

on” and emitted - a point of non-analyticity in the pulse profile. Generally, this turn-

on point occurs far in advance of the pulse peak and at very low intensity, often below

the detection threshold. However, experiments have shown that when that decision

point is encoded on the higher-intensity portions of the pulse, often as a discontinuity

in the pulse envelope, the discontinuity propagates causally at c [2, 30,73].

From this we see why information propagation is effectively “capped” at c. We

cannot observe energy prior to the causal arrival of the turn-on point. The peak of a

truncated Gaussian pulse may arrive earlier or later than expected based on dispersive

or energy-transfer effects, but it can never arrive earlier than the point of truncation,

which is what would be necessary to violate special relativity.

Finally, we have seen that both of these propagation effects involve the distinction

between energy in the propagating optical field and energy in a stored state, either

an atomic excitation or an optical standing wave. In experiments, we usually only

directly observe the propagating field energy. However, that field energy is intimately

connected to the stored energy in the medium or cavity, which we generally do not
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directly observe. The interaction and exchange of energy between propagating and

stored states is critical to understanding these effects, because without that exchange

the propagation ceases to appear superluminal.

In fact, one could extend this statement to cover most, if not all, propagation

effects. Propagation through vacuum or free-space is merely a special case where no

energy is exchanged with the system. Any other case of slow- or fast-light propagation

can be explained as a time-dependent energy exchange between optical pulse and a

material system or cavity. As a simple example, the delay observed on-resonance in a

Fabry-Perot interferometer is due to the large energy build-up in the cavity standing

wave. The cavity lifetime is very long when tuned to resonance, leading to a large

delay. The opposite effect occurs when tuned between resonances, as destructive

interference reduces the stored energy in the Fabry-Perot and decreases the cavity

lifetime accordingly.

7.2 Specific findings

In conclusion, we have presented theoretical and experimental evidence that these

two apparently superluminal propagation effects can be described by causal, luminal

energy transfer between a propagating wave and a storage medium. We will now

briefly summarize the specific findings of each section of the thesis.

In chapter 3, we investigated negative group velocities in an erbium-doped optical

fiber (EDOF) system. We presented a rate-equation model that predicted pulse

advancement and the presence of a backward-propagating peak within the EDOF,

linking the incident and transmitted peaks at the entrance and exit faces of the fiber.

Experimentally, we have made the first experimental measurements of the pulse

propagation dynamics in this system. Our measurements have confirmed that the

energy velocity in such a system is always positive and thus not equal to the group

velocity. Since the energy flow is in the forward direction, the effect cannot be the
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result of interference between forward- and backward-propagating waves. Instead, it

is due to a time-dependent interaction between a single, forward-propagating wave

and the stored energy in the atomic excitation. We have also made the first direct

observation of the backward-propagating peak predicted by the theoretical models.

These results are consistent with a time-dependent saturation of the erbium gain

material that results in a strong energy exchange between material and optical field.

The EDOF selectively amplifies the leading edge of the pulse, creating the advanced

output peak as well as the backward-propagating peak within the fiber. This time-

dependent energy exchange is responsible for the observed pulse advancement and

the appearance of superluminal propagation.

In chapter 4 we reviewed the one-dimensional finite barrier problem and presented

a cavity interpretation of tunneling based on the dwell time and self-interference

delay. The standing wave in the cavity takes multiple round-trip propagation times

to reach equilibrium, after which the cavity adiabatically responds to a change in input

conditions on the time scale of the cavity lifetime. In this interpretation the observed

delay is simply a cavity lifetime rather than a propagation delay, eliminating any

conflict with the principle of Einstein causality. The misinterpretation of this cavity

lifetime as a propagation delay, and insistence that the observed delay represents a

violation of Einstein causality [4–7], was one of the largest motivating factors behind

our work.

In chapter 5 we investigated a two-dimensional electromagnetic analog to the one-

dimensional finite barrier problem in the form of frustrated total internal reflection

(FTIR). We presented work performed by Steinberg and Chiao [82] in which they

developed a partial mapping of the two-dimensional FTIR problem onto the one-

dimensional finite barrier problem. By decomposing the group delay into dwell time

and self-interference components, we were able to successfully complete the mapping

and find an expression valid for arbitrary particle energy and barrier height (or, in the

language of FTIR, index contrast and incidence angle). This decomposition divides
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the process into a cavity-like delay in the tunneling region and a standing-wave effect

in the region of incidence, and provides deeper insight into the energy dynamics of

the tunneling process.

Finally, in chapter 6 we discussed the influence of input/output geometry on

the measurable delay from a double-prism FTIR system. We have shown that in

a measurement of this type the effects of the Goos-Hänchen shift are identically

suppressed, a detail that has so far been overlooked in the literature. We have also

presented the first accurate theoretical predictions of the delay expected from such

a structure, including geometric effects. These predictions were compared to single-

photon time delay measurements taken in reflection from a liquid-crystal-filled double-

prism structure, and we observed good agreement between theory and experiment.

This marks the first direct time measurement of reflection tunneling delays at optical

frequencies. These results suggest that the cavity interpretation of tunneling delay

is correct and that it is not appropriate to infer a propagation velocity from such a

delay.
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[101] C. Spielmann, R. Szipöcs, A. Stingl, and F. Krausz, “Tunneling of Optical

Pulses through Photonic Band Gaps,” Physical Review Letters 73, 2308–2311

(1994).



BIBLIOGRAPHY 167

[102] S. Longhi, M. Marano, P. Laporta, and M. Belmonte, “Superluminal optical

pulse propagation at 1.5 µm in periodic fiber Bragg gratings,” Physical Review

E 64, 055602 (2001).

[103] M. Mojahedi, E. Schamiloglu, F. Hegeler, and K. Malloy, “Time-domain de-

tection of superluminal group velocity for single microwave pulses,” Physical

Review E 62, 5758–5766 (2000).

[104] M. Mojahedi, K. Malloy, G. Eleftheriades, J. Woodley, and R. Chiao, “Abnor-

mal wave propagation in passive media,” IEEE Journal of Selected Topics in

Quantum Electronics 9, 30–39 (2003).

[105] A. Hache and L. Poirier, “Long-range superluminal pulse propagation in a coax-

ial photonic crystal,” Applied Physics Letters 80, 518 (2002).

[106] M. Reiten, D. Grischkowsky, and R. Cheville, “Optical tunneling of single-cycle

terahertz bandwidth pulses,” Physical Review E 64, 036604 (2001).

[107] S. Yang, J. Page, Z. Liu, M. Cowan, C. Chan, and P. Sheng, “Ultrasound

Tunneling through 3D Phononic Crystals,” Physical Review Letters 88, 104301

(2002).

[108] W. M. Robertson, J. Ash, and J. M. McGaugh, “Breaking the sound barrier:

Tunneling of acoustic waves through the forbidden transmission region of a

one-dimensional acoustic band gap array,” American Journal of Physics 70,

689 (2002).

[109] F. Smith, “Lifetime Matrix in Collision Theory,” Physical Review 118, 349–356

(1960).
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