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Abstract

Parametric down-conversion is a second-order nonlinear optical process in which

a pump photon breaks up into two separate photons known as the signal photon

and the idler photon. The constraints of energy and momentum conservation render

the signal and idler photons entangled in several different variables including time

and energy, position and transverse momentum, and angular position and orbital

angular momentum. Because of these correlations, the down-converted signal and

idler photons can be described adequately only as a single, two-photon system. In

this thesis, we present our theoretical and experimental studies of the coherence

properties of the down-converted, entangled two-photon fields, through two-photon

interference effects in temporal, spatial and angular domains.

First of all, we study the temporal coherence properties of the down-converted

two-photon fields, in the limit in which the frequency bandwidth of the pump field

is much narrower than that of the down-converted field. We present a formalism to

completely characterize temporal two-photon interference effects in terms of the varia-

tions of two length parameters—called the two-photon path length difference and the

two-photon path-asymmetry length difference—which we construct using the six dif-

ferent length parameters that a general two-photon interference experiment involves.

Next, we extend this formalism to describe also the spatial coherence properties of the

two-photon field. By explicitly treating the case of a partially spatially coherent pump

beam of Gaussian Schell-model type, we show that in parametric down-conversion the

spatial coherence properties of the pump field get entirely transferred to the spatial

coherence properties of the down-converted two-photon field. As an important con-

sequence of this study, we find that for two-qubit states that are based on the spatial

correlations of the down-converted photons, the maximum achievable entanglement

is bounded by the degree of spatial coherence of the pump field. In the last part of



viii

this thesis, we study the coherence properties of the entangled two-photon field in the

angular domain, by investigating two-photon angular interference effects in situations

in which the down-converted photons are made to pass through apertures in the form

of double angular-slits.
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Chapter 1

Background

1.1 Introduction

The superposition principle, which underlies all interference effects, is at the heart

of quantum mechanics [1]. Feynman referred to interference as the only mystery of

quantum mechanics. Interference effects have been studied with one-photon fields

[2], with two-photon fields [3, 4, 5, 6, 7, 8, 9, 10], and also with three- [11] and four-

photon fields [12]. In a one-photon interference experiment, a single detector is used

to measure the probability of detecting a photon as a function of time or space. As

this probability depends on the second power of the field and on the detection of

one photon at a time, this is referred to as one-photon or second-order interference.

Interference experiments in which two detectors are used in coincidence to measure

the joint probability of detecting two separate photons are referred to as two-photon

or fourth-order interference experiments, because the joint probability in this case

depends on the fourth power of the field. The study of one-photon interference dates

back to Thomas Young’s classic double-slit experiment in the beginning of the 19th

century, while the study of multi-photon interference effects can be said to have

started with the experiments of Hanbury-Brown and Twiss [13, 14]. Multi-photon

interference became an active field of research after the experiments to test the Bell

1
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inequalities began in the 1960s [15, 16].

In some of the multi-photon interference experiments, the concept of quantum

entanglement is naturally encountered, which has also been described as really the

only quantum mystery and which led Einstein, Podolsky and Rosen to conclude that

the quantum mechanical description of physical reality was incomplete [17]. Multi-

photon interference effects play important roles in many practical applications as

well as in fundamental research. Through two-photon interference experiments, vi-

olations of Bell inequalities [18] have been reported for many degrees of freedom

[7, 8, 9, 19, 20, 21, 22], which have established the incompatibility of the local hidden

variable interpretations [23, 24] of quantum mechanics. Multi-photon interference

effects are also central to many quantum information and quantum computation pro-

tocols including quantum cryptography [25], quantum dense coding [26], quantum

teleportation [27], entanglement swapping [28], and quantum lithography [29]. Semi-

classical descriptions of some of the multi-photon effects were provided by Mandel

and Wolf [30]. However, the complete quantum-mechanical framework to describe

multi-photon effects was worked out by Glauber [31, 32].

This thesis focuses on those two-photon interference effects that involve entangled

two-photon fields produced by parametric down-conversion (PDC). Parametric down-

conversion is the most widely used process for producing entangled two-photon fields;

it is a second-order nonlinear optical process that takes place in non-centrosymmetric

crystals. In parametric down-conversion, a photon of higher frequency interacts with

a nonlinear crystal and gets down-converted into two separate photons of lower fre-

quencies [33]. The photon of higher frequency is called the pump photon and the

photons of lower frequencies are called the signal and idler photons. The constraints

of energy and momentum conservation in PDC render the two photons entangled in

various degrees of freedom. Entanglement of the two photons in a given degree of

freedom manifests itself as two-photon coherence in the corresponding domain. This

thesis studies the coherence properties of the entangled two-photon field produced by
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parametric down-conversion, through two-photon interference effects in the temporal,

spatial and angular domains. There are other processes, such as four-wave mixing

[34, 35] that also produce entangled two-photon fields, but throughout this thesis,

we consider only the entangled two-photon fields that are produced by parametric

down-conversion.

This chapter is organized as follows. Sections 1.2, 1.3, and 1.4 present conceptual

descriptions of one-photon interference in the temporal, spatial and angular domains,

respectively. In Sections 1.5 and 1.6, the nonlinear optical process of parametric

down-conversion is described in detail. The concept of entanglement in light of the

arguments forwarded by Einstein, Podolsky and Rosen is discussed in Section 1.7. In

Section 1.8, brief discussions related to Bell inequalities and entanglement measures

are presented. Section 1.9 discusses the connection between two-photon coherence

and two-photon entanglement and Section 1.10 presents the summary.

1.2 Temporal one-photon interference

The descriptions of one-photon interference presented in this and the next sections

are based on the treatment given by Mandel and Wolf [30]. This section describes

temporal one-photon interference in a Michelson interferometer [Fig. 1.1(a)]. We take

the source to produce a quasi-monochromatic, stationary field of light. By quasi-

monochromatic, we mean that the effective frequency bandwidth ∆ω0 of the field is

small compared with its mean frequency ω0 [2]. The fields produced by most sources,

including continuous-wave lasers, are stationary. In the setup of Fig. 1.1(a), a photon

from the source has two alternative pathways by which it can reach detector DA.

These two alternative pathways are shown in Fig. 1.1(b). In alternative 1, a photon

first gets reflected by the beam splitter and reaches detector DA after getting reflected

back by the upper mirror. In alternative 2, a photon gets transmitted by the beam

splitter and reaches the detector after getting reflected back by the side mirror. These
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two alternative pathways can be represented in an unfolded manner by the one-photon

path diagrams of Fig. 1.1(c), where l1 and l2 denote the optical path lengths traveled

by the photons in alternatives 1 and 2, respectively. ∆l = l1 − l2 is the difference of

the optical path lengths in the two alternatives. The probability amplitudes of these

two alternative pathways add up to produce one-photon interference, as long as the

two alternative pathways are coherent, that is, indistinguishable from each other [36].

To find the condition for coherence between the two alternatives, we calculate

the intensity at detector DA. We denote the times needed to travel through the

alternatives 1 and 2 by t1 = l1/c and t2 = l2/c, respectively, and write the electric

field VA(t) at time t at detector DA as the sum of the electric fields reaching the

detector by the two alternatives pathways:

VA(t) = V1(t− t1) + V2(t− t2). (1.1)

Subscripts 1 and 2 denote the two alternatives, and V1(t− t1) and V2(t− t2) represent

the electric field amplitudes of the source at times t− t1 and t− t2, respectively. The

instantaneous intensity I(t) at a point is defined as I(t) = V ∗(t)V (t) [30]; Therefore,

it follows that the instantaneous intensity IA(t) at detector DA is

IA(t) = I1(t− t1) + I2(t− t2) + V ∗
1 (t− t1)V2(t− t2) + c.c.. (1.2)

The first and second terms are the instantaneous intensities when the electric fields

from only alternative 1 and 2, respectively, are incident. The two other terms are

due to interference, and they appear when both alternatives are simultaneously in-

cident. Instantaneous intensity is usually the intensity from a single realization of

the field. The interference effects observed in the instantaneous intensity distribution

are referred to as the transient interference effects. Such effects have been observed

in several optical experiments in 1950s and 1960s [37, 38]. However, in most exper-

iments, what is observed is not the instantaneous intensity, or the intensity from a
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Source 

l1

∆ l

1

2

(a)

(c)

(b)
1

2

DA

DA

DADA

DA

l2

Figure 1.1: Temporal one-photon interference in a Michelson interferometer
(a) Schematic of a Michelson interferometer. The source produces a quasi-
monochromatic, stationary field of light. (b) 1 and 2 are the two alternative pathways
by which a photon from the source reaches detector DA. (c) Unfolded one-photon
path diagrams representing the two interfering alternatives. Interference occurs be-
cause the probability amplitudes of the two alternatives must be summed. ∆l is the
difference between the optical path lengths l1 and l2. As a function of ∆l, sinusoidal
interference fringes are observed in the intensity at detector DA. The interference
fringes get washed out once ∆l exceeds the coherence length of the field.

single realization of the field, but the intensity averaged over an ensemble of realiza-

tions of the field. For stationary fields, ensemble averages become time-independent,



1.2 Temporal one-photon interference 6

and they can therefore be replaced by the corresponding time-averages. Taking the

time-average of the instantaneous intensity IA(t), we obtain the following expression

for the time-averaged intensity 〈IA(t)〉t at detector DA:

〈IA(t)〉t = 〈I1(t− t1)〉t + 〈I2(t− t2)〉t + 2Re〈V ∗
1 (t− t1)V2(t− t2)〉t, (1.3)

where 〈· · · 〉t represents the time average over a period that is long compared with

1/∆ω0, the reciprocal frequency-bandwidth of the field. Due to the stationarity of the

field, the time-averaged intensities 〈I1(t− t1)〉t and 〈I2(t− t2)〉t become independent

of the time arguments. Therefore, they are replaced by constant intensities: 〈I1(t −
t1)〉t = I1 and 〈I2(t − t2)〉t = I2. The quantity 〈V ∗

1 (t − t1)V2(t − t2)〉t = Γ(t1, t2)

is the temporal coherence function of the field [2], and because of the stationarity

of the field, it depends on the two time arguments only through their difference

t1 − t2. The temporal coherence function Γ(t1 − t2) can be written as Γ(t1 − t2) =
√

I1I2γ(t1− t2)e
iω0(t1−t2), where γ(t1− t2) is the degree of temporal coherence between

the two alternatives. The time-averaged intensity 〈IA(t)〉t at detector DA can then

be written as

〈IA(t)〉t ≡ IA = I1 + I2 + 2Re
√

I1I2γ(t1 − t2)e
iω0(t1−t2), (1.4)

Replacing t1− t2 by ∆l/c, and ω0 by ck0, where k0 is the central vacuum wave-vector

magnitude of the field, we obtain the following expression for the intensity IA at

detector DA:

IA = I1 + I2 + 2
√

I1I2γ(∆l) cos(k0∆l). (1.5)

The rms width of γ(∆l) as a function of ∆l is a measure of the coherence length of

the field and is determined by the frequency bandwidth of the field. Interference is

observed as a function of ∆l and gets washed out once ∆l exceeds the coherence length
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of the field. Therefore, a necessary condition for temporal one-photon interference

is that the optical path length difference ∆l should be smaller than the coherence

length of the field.

In Chapter 2, we develop an analogous formalism to describe temporal two-photon

interference effects and obtain similar necessary conditions for coherence in two-

photon interference. Although the above description using stationary fields captures

all the essential features of temporal one-photon interference, there are other features

that are observed only with non-stationary fields. Non-stationary fields are produced

mostly by pulsed lasers. The coherence properties of the non-stationary fields are

still a subject of research [39, 40, 41]. In this thesis, most of our studies are limited

to stationary fields.

1.3 Spatial one-photon interference

This section reviews the concept of spatial coherence and presents a basic descrip-

tion of spatial one-photon interference using a Young’s double-slit setup shown in

Fig. 1.2(a). The source is quasi monochromatic and is, spatially, a partially coherent

beam with its beam waist located at z = 0. The light from the source falls on the

double-slit plane located at z. There are two alternatives pathways—shown by the

one-photon path diagrams of Fig. 1.2(b)—by which a photon from the source can

reach detector DA. In alternative 1, a photon passes through the upper slit located

at transverse position x1, and in alternative 2, it passes through the lower slit located

at transverse position x2. ∆x = x1 − x2 is the separation between the two slits. The

probability amplitudes of a photon to be in the two alternatives add up to produce

interference effects as long as the fields in the two alternatives are coherent with each

other.

To obtain the necessary condition for coherence, we evaluate the intensity, or the

photon-count rate, at detector DA located at transverse position x. The electric
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DA

zz=0

x1

x2

d1

d2

Source x

zz=0

x1 d1r1

1

2

zz=0

d2r2 x2

DA

DA

(a)

(b)

Figure 1.2: (a) Schematic representation of spatial one-photon interference in a
Young’s double-slit interferometer. The transverse positions of the two slits are de-
noted by x1 and x2 and their distances from the detector by d1 and d2, respectively.
∆x = x1−x2 is the separation between the two slits. (b) Path diagrams representing
alternative pathways 1 and 2 by which a photon from the source can reach detector
DA; r1 and r2 are the distances from the center of the source beam at plane z = 0 to
slits 1 and 2, respectively.



1.3 Spatial one-photon interference 9

field amplitude VA(x) at detector DA is the sum of the field amplitudes reaching the

detector from transverse positions x1 and x2. Thus, VA(x) can be written as

VA(x) = k1V (x1, z)eik0d1 + k2V (x2, z)eik0d2 , (1.6)

where k0 is the vacuum wave-vector magnitude of the field, d1 and d2 are the distances

of the two slits from detector DA, and V (x1, z) and V (x2, z) are the field amplitudes

at positions (x1, z) and (x2, z), respectively. The factors k1 and k2 depend on the

size of the slits and on the geometry of the arrangement. The intensity IA(x) at

detector DA is calculated by taking the ensemble average 〈· · · 〉e of V ∗
A(x)VA(x) over

the different realizations of the source field. Taking the ensemble average, we obtain

〈V ∗
A(x)VA(x)〉e ≡ IA(x) = k2

1S(x1, z) + k2
2S(x2, z)

+ k1k2W (x1, x2, z)e−ik0(d1−d2) + c.c. (1.7)

where S(x1, z) ≡ 〈V ∗(x1, z)V (x1, z)〉e and S(x2, z) ≡ 〈V ∗(x2, z)V (x2, z)〉e are the

spectral densities in alternatives 1 and 2, respectively, and where W (x1, x2, z) ≡
〈V ∗(x1, z)V (x2, z)〉e is the cross-spectral density of the field at plane z. We assume

that the field could be modelled as a Gaussian Schell-model beam (see [30], section

5.6.); the cross-spectral density W (x1, x2, z) can then be written as

W (x1, x2, z) =
√

S(x1, z)S(x2, z)µ(∆x, z)e−ik0(r1−r2), (1.8)

where r1 and r2 are the distances from the center of the beam at z = 0 to slits 1 and

2, respectively; µ(∆x, z) is the degree of spatial coherence of the field at x1 and x2.

The width of µ(∆x, z) as a function of ∆x is a measure of the transverse coherence

length of the field at the double-slit plane. The intensity IA(x) at detector DA can
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now be written as

IA(x) = k2
1S(x1, z) + k2

2S(x2, z) + 2k1k2
√

S(x1, z)S(x2, z)µ(∆x, z) cos(k0∆l), (1.9)

where we have substituted l1 = r1 + d1, l2 = r2 + d2 and ∆l = l1 − l2. Thus, a

necessary condition for interference is that the slit separation ∆x should be smaller

than the transverse coherence length of the field. The transverse coherence length of

the field at plane z depends on the spatial coherence properties of the source at z = 0

[30]. In Chapter 3, we develop an analogous description of spatial interference effects

with the entangled two-photon field.

Spatial coherence properties of fields produced by various primary and secondary

sources have been studied by Wolf [30, 42, 43]. A general treatment of the spa-

tial coherence properties of the Gaussian Schell-model beams is given in Sec. 5.6 of

Ref. [30].

1.4 Angular one-photon interference

It is known that angular position and its conjugate variable, orbital angular momen-

tum (OAM), form Fourier pairs [44, 45, 46]. In the case of a photon field, the Fourier

relationship can be represented as

ψl =
1√
2π

∫ π

−π

dφΨ(φ) exp(−ilφ); (1.10)

Ψ(φ) =
1√
2π

+∞∑

l=−∞
ψl exp(ilφ). (1.11)

Here ψl is the probability amplitude that the photon field is carrying orbital angular

momentum lh̄, while Ψ(φ) is the probability amplitude that the angular position of

the photon is φ. Here we are representing the orbital angular momentum of a photon

in a basis consisting of Laguerre-Gaussian (LG) modes, with azimuthal phase given
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Figure 1.3: (a) Schematic representation of angular one-photon interference. A Gaus-
sian pump field (l = 0) falls on an angular aperture in the form of a double angular-slit.
The angular width of each slit is α, and the angular separation between the slits is β.
The OAM-mode distribution of the field after the aperture is obtained using detector
DA, which is an OAM-mode selector. (b) 1 and 2 are the two alternative pathways
by which a photon can pass though the angular-slits and get detected at detector
DA. The probability amplitudes in the two alternatives add up to produce angular
interference.

by e−ilφ [47, 48]. Laguerre-Gaussian modes are characterized by index l; a photon

in an OAM-mode of order l carries an orbital angular momentum equal to lh̄ [48]

(see Section 4.2 for a detailed description of LG beams). The existence of such a

Fourier relationship gives rise to interesting interference effects in the distribution of

the OAM modes of a photon field when it passes through an angular aperture [49, 50].

We describe angular interference with one-photon fields using the setup shown in

Fig. 1.3(a). A Gaussian beam (l = 0) falls on a double angular-slit. The angular

width of each slit is α and the angular separation between the two slits is β. Detector

DA is an OAM-mode selector; it selects out different OAM-modes and measures their
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intensities. In the scheme of Fig. 1.3(a), there are two alternatives pathways—shown

in Fig. 1.3(b)—by which a photon can pass through the slits and reach detector DA.

In alternative 1, a photon passes through the slit labelled s1, and in alternative 2, it

passes through the slit labelled s2. The probability amplitudes of a photon to be in

these two alternatives add up to produce interference in the distribution of the OAM

modes of the photon. The probability amplitude ψ1l that in alternative 1 a photon

is in an OAM-mode l is given by:

ψ1l =
1√
2π

∫ π

−π

dφΨ1(φ)e−ilφ, (1.12)

where Ψ1(φ) is the amplitude transmission function of the aperture in alternative 1;

Ψ1(φ) is equal to unity for −α/2 < φ < α/2 and to zero, otherwise. Substituting for

Ψ1(φ), we obtain

ψ1l =
α√
2π

sinc

(
lα

2

)
. (1.13)

In a similar manner, we calculate the probability amplitude ψ2l in alternative 2.

The probability amplitude ψ2l differs from the probability amplitude ψ1l by only an

exponential factor: ψ2l = ψ1le
−ilβ. The total probability amplitude ψl that a photon

is in an OAM mode l at detector DA is now given by

ψl =
α√
2π

sinc

(
lα

2

) [
1 + e−ilβ

]
. (1.14)

The intensity IA in mode l at detector DA thus becomes

IA = C |ψl|2 = C
α2

π
sinc2

(
lα

2

)
[1 + cos (lβ)], (1.15)

where C is some constant. The intensity IA shows sinusoidal interference fringes as a

function of the angular separation β and the OAM-mode index l. The sinc-envelope

is due to the diffraction from the individual angular-slits.
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Angular interference effects have been observed in several experiments, thus ver-

ifying the angular Fourier relationship [45, 49, 50]. In Chapter 4, we study angular

interference effects with the entangled two-photon field produced by parametric down-

conversion.

1.5 Basics of nonlinear optics

When an atom is placed in an external electric field, the electrons in the atom experi-

ence a force due to this field. The electrons, which are bound in the Coulomb field of

the nucleus, also experience a restoring force by the nucleus. As a result of these two

competing forces, the electrons get displaced from their equilibrium positions and the

atom acquires a net dipole moment. The dipole moment per unit volume which is

called the polarization depends on the strength of the applied electric field.

In the case of linear optics, that is, when the applied field strength is small, the

restoring force exerted on the electron is proportional to its displacement from the

equilibrium position, and the atom is modelled as a harmonic oscillator. The induced

polarization P (r, t) at position r and time t depends linearly on the applied field

strength E(r, t) and is given by [33]

P (r, t) = ε0χ
(1)E(r, t) (1.16)

where χ(1) is the linear susceptibility and ε0 is the permittivity of the free space.

In the case of nonlinear optics, that is, when the applied field strength is strong,

the restoring force exerted on the electron is no longer proportional to its displace-

ment from the equilibrium position. As a result, the simple linear dependence of

the induced polarization on the applied electric field is no longer valid [51]. The in-

duced polarization P (r, t) gets contributions that are not only linear in electric field
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strength, but also bilinear, trilinear, etc, and is given by [33]

P (r, t) = ε0χ
(1)E(r, t) + ε0χ

(2)E2(r, t) + ε0χ
(3)E3(r, t) + · · · (1.17)

where χ(2) and χ(3) are known as the second-order and third-order nonlinear optical

susceptibilities, respectively. P (2)(r, t) = ε0χ
(2)E2(r, t) is the second-order nonlinear

polarization. The second-order nonliear polarization can occur only in crystals that

are non-centrosymmetric, that is, in crystals that have no inversion symmetry. The

contribution P (2)(r, t) to the energy H(t) of the electromagnetic field is given by

[52, 53]

H(t) =
1

2

∫

V
d3rP (2)(r, t) · E(r, t), (1.18)

where the integration extends over the volume V of the nonlinear medium. In the

next section, we study a specific example of second-order nonlinear optical process.

1.6 Two-photon field produced by parametric down-

conversion

Parametric down-conversion is one of the most important second-order nonlinear

process, in which a photon of higher frequency interacts with a non-centrosmmetric

crystal and breaks up into two separate photons of lower frequencies. The photon

of higher frequency is called the pump photon and the photons of lower frequencies

are called the signal photon and the idler photon. The word parametric refers to

processes in which the initial and final quantum-mechanical states of the system

are identical, as opposed to non-parametric processes in which the final state of the

system is different from its initial state due to the transfer of population from one

real level to another [33]. In a parametric process photon energy is always conserved

and the process can always be described by a real susceptibility. In contrast, in a
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non-parametric process photon energy need not be conserved and the process needs to

be described by a complex susceptibility. Parametric down-conversion in a nonlinear

crystal was first investigated theoretically by Klyshko [54] and experimentally by

Burnham and Weinberg [55], who showed that the down-converted signal and idler

photons appear simultaneously within the resolving time of the detectors and the

associated electronics. For the early work on parametric amplification and down-

conversion, see Refs. [52, 56, 57]. The energy level diagram and the schematic of

parametric down-conversion in a nonlinear crystal is depicted in Fig. 1.4.

The contribution to the energy of the electromagnetic field due to a second-order

nonlinear interaction is given by the general expression in Eq. (1.18). In the case of

parametric down-conversion, this contribution to the energy takes the following form:

H(t) =
ε0

2

∫

V
d3rχ(2)Ep(r, t)Es(r, t)Ei(r, t), (1.19)

where p, s and i stand for the pump, signal and idler, respectively, E(r, t) is the

electric field inside the nonlinear crystal at position r and time t, and V is the volume

of the interacting part of the nonlinear crystal.

When the field is quantized, E(r, t) becomes a Hilbert space operator Ê(r, t),

which can be decomposed into its positive-frequency and negative-frequency parts,

Ê(+)(r, t) and Ê(−)(r, t), respectively. The quantized electric fields can be written in

terms of the plane-wave mode expansion of the form [53]

Ê(+)(r, t) =
∑

k

i

[
h̄ωk

2ε0L3

]1/2

âk(t)ei(k·r−ωt) (1.20)

where L3 is the quantization volume and âk(t) the photon annihilation operator for

the mode k at frequency ωk. We write the energy contribution H(t) of Eq. (1.19)

in terms of the quantized fields, by expressing the pump, signal and idler fields in

terms of their positive- and negative-frequency components. The resulting expres-

sion for the energy contribution H(t) is then the interaction Hamiltonian Ĥ(t) for
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Figure 1.4: Nonlinear optical process of parametric down-conversion. (a) Energy-
level diagrams describing parametric down-conversion. The solid line represents a real
energy level, whereas the dashed lines represent virtual energy levels. In parametric
down-conversion, a pump photon of higher frequency gets destroyed and two photons
of lower frequencies known as the signal photon and the idler photon get produced.
(b) Schematic of down-conversion in a second-order nonlinear crystal. Most of the
pump photons pass through the crystal without interacting with it. One in about 108

pump photon interacts with the crystal and gets down-converted.

the process of parametric down-conversion. It is a sum of eight different terms with

all possible combinations of the three fields. However, there are only two terms,

E
(+)
p E

(−)
s E

(−)
i and E

(−)
p E

(+)
s E

(+)
i , that lead to energy conserving processes and thus

contribute appreciably to the down-conversion process. The contributions due to the

other six terms, such as E
(−)
p E

(−)
s E

(−)
i and E

(+)
p E

(+)
s E

(+)
i , get averaged out when the

interaction Hamiltonian Ĥ(t) is integrated over time. Therefore, we neglect the con-

tributions due to these other terms; neglecting these contributions is equivalent to
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making the rotating-wave approximation as in the case of treating atomic absorption

and emission processes (see Ref. [58], Section 2.3). We note that these approxima-

tions hold only for second-order processes and that for the higher-order processes

the non-energy-conserving terms may lead to important contributions. The effective

interaction Hamiltonian for the process of parametric down-conversion can then be

given by the following simplified form:

Ĥ(t) =
ε0

2

∫

V
d3rχ(2)Êp

(+)
(r, t)Ês

(−)
(r, t)Êi

(−)
(r, t) + H.c. (1.21)

This Hamiltonian is used in chapter 2 and 3 to derive the quantum-mechanical state

of the two-photon field produced by parametric down-conversion.

The constraints of energy and momentum conservation in down-conversion require

that the sum of the energies of the signal and idler photons be equal to the energy of

the pump photon and that the sum of the momenta of the signal and idler photons be

equal to the momentum of the pump photon. These constraints due to conservation

laws render the two photons entangled in their time-energy, position-momentum, and

angular-position–OAM degrees of freedom.

The phase-matching conditions in PDC can be adjusted so that both photons

come out in a direction collinear with the pump, in which case it is known as the

collinear phase-matching. Alternatively, the two photons come out in two separate

directions, in which case it is known as the non-collinear phase-matching. Phase-

matching conditions can also be adjusted so that the polarizations of the two photons

are the same (type-I down-conversion) or orthogonal to each other (type-II down-

conversion).

1.7 Quantum entanglement and EPR paradox

In 1935 A. Einstein, B. Podolsky, and N. Rosen recognized a spooky feature in the

quantum description of physical reality [17]. This feature, now known as entangle-
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ment, was originally called by Schrödinger “Verschränkung,” which implies the exis-

tence of global states of a composite system that cannot be described as a product of

the states of the individual subsystems [59]. For an extensive review of the subject

of quantum entanglement, see the article by Horodecki et al. [60].

According to Einstein, Podolsky and Rosen (EPR) [17]: “In a complete theory

there is an element corresponding to each element of reality. A sufficient condition

for the reality of a physical quantity is the possibility of predicting it with certainty,

without disturbing the system. In quantum mechanics in the case of two physical

quantities described by non-commuting operators, the knowledge of one precludes the

knowledge of the other. Then either (1) the description of reality given by the wave

function in quantum mechanics is not complete or (2) these two quantities cannot have

simultaneous reality. Consideration of the problem of making predictions concerning

a system on the basis of measurements made on another system that had previously

interacted with it leads to the result that if (1) is false then (2) is also false. One is

thus led to conclude that the description of reality as given by a wave function is not

complete.”

Here Einstein, Podolsky and Rosen were explicitly considering a system of two

entangled particles, which had once interacted in the past but had no interactions

thereafter. They showed that in such a system, by measuring either the position

or the momentum of one of the particles, either the position or the momentum of

the other particle can be predicted with complete certainty without in any way dis-

turbing the other particle. But, since position and momentum are non-commuting

observables, they cannot be measured simultaneously and thus cannot be regarded

as simultaneous elements of reality of a system. So they concluded that in entangled

two-particles systems, the reality of position and momentum of the second system

depend upon the process of measurement carried out on the first system, which does

not disturb the second system in any way. On noting this apparent non-locality in the

quantum theory, Einstein, Podolsky and Rosen argued that the quantum-mechanical
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description of physical reality is not complete and that it should be supplemented by

postulating the existence of “hidden variables,” the specifications of which will prede-

termine the result of measuring any observable of the system. EPR’s inherent belief

was that the predictions of quantum mechanics are correct but only as a consequence

of the statistical distribution of hidden variables.

A “hidden variable” interpretation of quantum mechanics was formally constructed

by David Bohm in 1950s [23, 24]. Bohm believed that hidden variable theories lead to

precisely the same results for all physical processes as does the quantum theory, while

providing a precise and continuous description of all physical processes. For quite

some time, there was no conclusive way to test the validity of these two theories.

Then in 1964 John S. Bell came up with his inequalities, an experimental violation of

which would rule out any local hidden variable interpretations of quantum mechanics

[18].

1.8 Bell inequalities and beyond

In 1964 John S. Bell proposed a decisive test to check whether the local hidden variable

interpretations of quantum mechanics were compatible with the statistical predictions

of quantum mechanics or not [18]. Bell formalized EPR’s idea of a deterministic world

in terms of the local hidden variable models. He showed that for a single particle

system local hidden variable models produce all the results correctly; however, in the

case of a system consisting of two particles, the hidden variable models do not correctly

predict all the results, which are predicted correctly by quantum mechanics. He then

constructed an inequality and proved that the quantum-mechanical correlations could

violate his inequality, but the correlations based on hidden variable models must

satisfy it. Bell further showed that for the suggested hidden variable models [23, 24]

to violate Bell’s inequality, they have to be non-local and would have to involve

faster than light propagation as well. In his own words, “in a hidden variable theory



1.8 Bell inequalities and beyond 20

in which parameters are added to quantum mechanics to determine the results of

individual measurements, without changing the statistical predictions, there must be

a mechanism whereby the setting of one measuring device can influence the reading of

another instrument, however remote. Moreover, the signal involved must propagate

instantaneously, so that such a theory could not be Lorentz invariant [18].” A popular

description of the concepts of non-locality and Bell’s inequality has been presented

by Kwiat and Hardy [61, 62].

In their proposed form, Bell’s inequalities were not particularly suitable for exper-

iments. Clauser, Horne, Shimony and Holt (CHSH) generalized Bell’s inequality so

that it could be applied to realizable experiments [63]. The first experiment attempt-

ing to show a violation of Bell inequalities was carried out by Kocher and Commins

[15]. Later, using the generalized CHSH-Bell inequalities, Freedman and Clauser re-

ported an improved experiment providing strong evidence against the local hidden

variable theories [16]. However, the first convincing test of the violations of Bell

inequalities was performed by Aspect et al. [19, 20], using correlated photons pro-

duced in atomic cascade. Since then, using entangled pair of photons produced by

parametric down-conversion, violations of the CHSH forms of Bell’s inequality have

been observed for various degrees of freedom including polarization [64, 65], phase

and momentum [21], time and energy [7, 8, 9], spatial-parity [66], frequency [67] and

OAM [68]. Using hyperentangled states, even simultaneous violations of Bell inequal-

ities for more than one degrees of freedom have been reported [69, 70, 71, 72]. More

recently, Bell inequalities have been constructed even for bipartite quantum systems

of arbitrarily high dimensionality [73]. The first demonstration of a high-dimensional

Bell inequality was reported by Vaziri et al. [22], who showed a violation in three

dimensions by more that 18 standard deviations. The results of these experiments

have strongly confirmed the predictions of quantum mechanics and have provided

very strong evidence against the local hidden variable interpretations of quantum

mechanics.
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Until mid 1990s, studies related to Bell’s inequality and entanglement were mostly

centered at probing the foundations of quantum mechanics. However, in recent years

entanglement is beginning to be seen as a resource that could also be used for many

useful applications. Some of these proposed applications include quantum cryptogra-

phy [25], quantum dense coding [26] quantum teleportation [27], entanglement swap-

ping [28] and quantum lithography [29].

With the increase in the number of applications based on quantum entanglement,

quantifying the amount of entanglement in a system has become a very fundamental

question in quantum information theory. Several different measures to quantify the

amount of entanglement of a bipartite (two party) system have been proposed, includ-

ing relative entropy of entanglement [74], Schmidt number [75], concurrence[76, 77]

and negativity [78]. Although there are a few entanglement measures for multipartite

pure state system [79], quantifying entanglement in multipartite mixed state system

is still an open problem. In this thesis, we use one of the bipartite entanglement

measure, namely, concurrence, in Chapter 3 and 4.

1.9 Two-photon coherence and two-photon entan-

glement

The physics of one-photon interference, discussed in Sections 1.2 through 1.4, is un-

derstood in terms of the famous statement of Dirac that a photon interferes only

with itself [80]. Interference occurs as long as the different one-photon alternatives

are indistinguishable, that is, as long as the one-photon fields in different interfering

alternatives are coherent with each other. The coherence properties of one-photon

fields can be described in terms of either the classical coherence functions [2] or their

quantum counterpart [31, 32]. The physics of two-photon interference, which forms

the subject matter of this thesis, is understood similarly in terms of a two-photon

interfering with itself [1, 6, 81]. Two-photon interference occurs as long as the differ-
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ent two-photon alternatives are indistinguishable, that is, as long as the two-photon

fields in different interfering alternatives are coherent with each other. The coher-

ence properties of two-photon fields can be completely described in terms of only the

quantum-mechanical correlation functions [31, 32].

As pointed out in section 1.6, the “two-photon” nature of the down-converted field

is due to the entanglement of the two photons. It is then evident that two-photon

coherence and two-photon entanglement are interrelated concepts. Two-photon en-

tanglement in a given degree of freedom implies two-photon coherence in the corre-

sponding domain. Two-photon interference experiments are, therefore, used as tools

to verify, explore and quantify two-photon entanglement. In the next three chapters,

we study the coherence properties of the entangled two-photon field in the tempo-

ral, spatial and angular domains, and we establish some general connections between

two-photon coherence and two-photon entanglement.

1.10 Summary

In this chapter, we have reviewed the basics of one-photon interference in the tempo-

ral, spatial and angular domains. We have discussed the nonlinear optical process of

parametric down-conversion, which is a process that produces entangled two-photon

fields. We have also discussed some of the key concepts related to quantum entangle-

ment. In the next three chapters, we present our studies of the coherence properties

of the entangled two-photon field produced by parametric down-conversion. In Chap-

ter 2, we study the temporal coherence properties of the entangled two-photon field

and present a new formalism for describing temporal two-photon interference effects.

We also describe our work related to exploring time-energy entanglement using ge-

ometric phases of the entangled photons. In Chapter 3, we study the effects of the

spatial coherence properties of the pump field on the spatial coherence properties of

the down-converted two-photon field. We establish certain general connections be-
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tween the degree of two-photon coherence and the degree of entanglement of spatial

two-qubit states. In Chapter 4, two-photon interference effects in the angular domain

are studied. By utilizing the angular-position correlations of the down-converted pho-

tons, we describe a new method for preparing entangled two-qubit states. Chapter 5

presents the general conclusions.



Chapter 2

Two-Photon Coherence Effects:

Temporal

2.1 Introduction

In the past few decades, much attention has been devoted to studying the temporal

two-photon interference effects involving the signal and idler photons produced by

parametric down-conversion (PDC) [1, 3, 4, 5, 6, 7, 8, 9, 10, 82, 83]. The Hong-Ou-

Mandel (HOM) effect [3], two-photon fringes in the Franson interferometer [7, 8, 9],

induced coherence without induced emission [4], frustrated two-photon creation [5]

and postponed compensation [6] are some of the very interesting temporal two-photon

interference effects observed among many others.

In this chapter, we study the temporal coherence properties of the entangled two-

photon field in a general two-photon interference scheme. The description of temporal

two-photon interference experiment with the photons produced by PDC involves six

different length parameters, which are the path lengths traveled by the pump, signal

and idler photons in two interfering alternatives. Using these six different length pa-

rameters, we construct two separate length parameters—called the two-photon path-

length difference and the two-photon path-asymmetry-length difference. In terms of

24
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the two constructed parameters, we present a description of temporal two-photon in-

terference, in situations in which the frequency bandwidth of the pump field is much

narrower that that of the down-converted signal and idler fields.

This chapter is organized as follows. In Section 2.2, the derivation of the two-

photon state produced by parametric down-conversion is reviewed. Sections 2.3

through 2.6 present a description of temporal two-photon interference in terms of

the two length parameters constructed in Section 2.3. In Section 2.7, we report a

two-photon interference experiment in which the effects due to the variations of the

two length parameters can be independently studied. Sections 2.8 and 2.9 contain

brief discussions related to time-energy entanglement and Bell inequality for time and

energy, respectively. In Section 2.10, we report our experimental work demonstrating

that the time-energy entanglement of the down-converted signal and idler photons can

be explored by means of their geometric phases. Section 2.11 presents the summary.

2.2 Two-photon state produced by parametric down-

conversion

Figure 2.1 depicts the process of parametric down-conversion. At time t′ = −tint, a

pump photon starts interacting with the nonlinear crystal. The interaction persists

until time t′ = 0 during which the pump photon can get absorbed by the crystal

and down-convert into two separate photons, called the signal photon and the idler

photon. In Chapter 1, the basic physics behind the nonlinear optical process of para-

metric down-conversion was described in detail and an expression for the interaction

Hamiltonian was derived under certain approximations [Eq. (1.21)]. Substituting t′

for t in Eq. (1.21), we write the interaction Hamiltonian Ĥ(t′) as [84, 85]

Ĥ(t′) =
ε0

2

∫

V
d3rχ(2)Êp

(+)
(r, t′)Ês

(−)
(r, t′)Êi

(−)
(r, t′) + H.c. (2.1)



2.2 Two-photon state produced by parametric down-conversion 26

t'=-tint t'=0

laser
Pump

Signal

Idler

Ds

Di

Figure 2.1: Producing two-photon field by parametric down-conversion. The pump
photon starts interacting with the nonlinear crystal at time t′ = −tint. The interaction
persists until t′ = 0 during which a pump photon can down-convert into signal and
idler photons. The measurements on the two-photon field are carried by detecting
the signal and idler photons in coincidence.

Here V is the volume of the interacting part of the nonlinear crystal and χ(2) is the

second-order nonlinear susceptibility. Êj
(+)

(r, t′) and Êj
(−)

(r, t′) are the positive-

and negative-frequency parts of the electric field, where j = p, s and i stand for the

pump, signal and idler, respectively. In order to avoid complexities associated with

refractions of signal and idler modes at the dielectric-air interface, we assume that

the nonlinear crystal is embedded in a passive linear medium of suitable refractive

index [53, 86].

We now derive the state of the two-photon field produced by PDC. The general

form of the interaction Hamiltonian will be used in Chapter 3, where we shall derive

the two-photon state for the most general case. In the present chapter, since we

are considering only the temporal coherence effects, we shall use a simplified form

of the interaction Hamiltonian of Eq. (2.2). We assume the transverse area of the

interacting part of the nonlinear crystal to be very large. We also assume that the

emission directions of the signal and idler fields are fixed such that the transverse

wave-vectors of the pump field (qp) is equal to the sum of the transverse wave-vectors

of the signal (qs) and idler (qi) fields, that is, qp = qs + qi, where kp ≡ (qp, kpz),

ks ≡ (qs, ksz) and ki ≡ (qi, kiz) are the wave-vectors of the pump, signal and idler
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fields, respectively. In a two-photon interference experiment, perfect phase-matching

for the transverse wave-vectors is usually ensured by placing pin-holes in the signal

and idler photon paths. With the above assumptions, the interaction Hamiltonian

Ĥ(t′) for parametric down-conversion takes the following form:

Ĥ(t′) =
ε0

2

∫ 0

−L

dzχ(2)Êp
(+)

(z, t′)Ês
(−)

(z, t′)Êi
(−)

(z, t′) + H.c., (2.2)

where L is the thickness of the nonlinear crystal. The three electric fields are given

as

Êp
(+)

(z, t′) =

∫ ∞

0

ApdωpV (ωp)e
i[kpz(ωp)z−ωpt′]ei(ωpτp+φp), (2.3)

Ês
(−)

(z, t′) =

∫ ∞

0

A∗
sdωsâ

†
s(ωs)e

i[ωst′−ksz(ωs)z], (2.4)

Êi
(−)

(z, t′) =

∫ ∞

0

A∗
i dωiâ

†
i (ωi)e

i[ωit
′−kiz(ωi)z], (2.5)

where kjz is the z-component of wave-vector kj, with j = p, s, i. Aj is a frequency

dependent quantity. However, it varies very slowly within the frequency range of

interest for most down-conversion experiments; and therefore, it can be taken outside

the integral. The pump field has been assumed to be very strong and will be treated

classically. The strength of the pump field at frequency ωp is represented by V (ωp).

τp represents the time taken by the pump photon in travelling the optical path length

lp between the laser and the nonlinear crystal, while φp is the phase other than

the dynamical one accumulated during this travel. In writing Êp
(+)

(r, t′), we have

explicitly included the phase factor ei(ωpτp+φp). This is to take into account those

interference effects in which the pump photon accumulates different phases in two

interfering alternatives [4, 5, 87]. Using Eqs. (2.3), (2.4) and (2.5), we write Eq. (2.2)
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as

Ĥ(t′) =
ApA

∗
sA

∗
i ε0χ

(2)

2

∫ 0

−L

dz

∫∫∫ ∞

0

dωpdωsdωiâ
†
s(ωs)â

†
i (ωi)V (ωp)

× ei[kpz(ωp)−ksz(ωs)−kiz(ωi)]zei(ωs+ωi−ωp)t′ei(ωpτp+φp) + H.c. (2.6)

The second-order nonlinear susceptibility χ(2) has been assumed to be independent

of frequency over the range of interest. The state of the down-converted field at

time t′ = −tint is given by |ψ(−tint)〉 = |vac〉s|vac〉i, which is a vacuum state with no

photons in either the signal or the idler mode. The state |ψ(0)〉 of the two-photon

field at t′ = 0 is then calculated using the Schrödinger equation to be

|ψ(0)〉 = exp

[
1

ih̄

∫ 0

−tint

dt′Ĥ(t′)
]
|ψ(−tint)〉. (2.7)

The parametric interaction is assumed to be very weak so that the state in Eq. (2.7)

can be approximated by the first two terms of a perturbative expansion. The first

term is simply the initial vacuum state. The second term |ψtp〉 is calculated by

substituting from Eq. (2.6) into Eq. (2.7) to be

|ψtp〉 =
ApA

∗
sA

∗
i ε0χ

(2)

2ih̄

∫ 0

−tint

dt′
∫ 0

−L

dz

∫∫∫ ∞

0

dωpdωsdωiV (ωp)

× ei[kpz(ωp)−ksz(ωs)−kiz(ωi)]zei(ωs+ωi−ωp)t′ei(ωpτp+φp)â†s(ωs)â
†
i (ωi)|vac〉s|vac〉i. (2.8)

We note that although the interaction Hamiltonian Ĥ(t′) in Eq. (2.6) contains two

separate terms, including the Hermitian conjugate, the two-photon state |ψtp〉 in

Eq. (2.8) contains only one term. This is due to the fact that the operator âs(ωs)âi(ωi)

in the Hermitian conjugate term adds no contribution to the generated two-photon

state when it acts on the vacuum state |vac〉s|vac〉i.
The interaction time tint is taken to be much longer than the time scale over

which down-conversion takes place. Therefore, both limits of the time integration
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in Eq. (2.8) is extended to infinity [84, 88]. Carrying out the time integration then

yields

|ψtp〉 = A

∫ 0

−L

dz

∫∫∫ ∞

0

dωpdωsdωiV (ωp)δ(ωs + ωi − ωp)e
i[kpz(ωp)−ksz(ωs)−kiz(ωi)]z

× ei(ωpτp+φp)|ωs〉s|ωi〉i. (2.9)

Here, we have absorbed all the constant factors into A. Next, we evaluate the ωi-

integral and obtain

|ψtp〉 = A

∫

−L

dz

∫∫ ∞

0

dωpdωsV (ωp)

× ei[kpz(ωp)−ksz(ωs)−kiz(ωp−ωs)]zei(ωpτp+φp)|ωs〉s|ωp − ωs〉i. (2.10)

By rearranging the above equation, we obtain the following expression for the two-

photon state |ψtp〉 at the exit face of the crystal:

|ψtp〉 = A

∫∫ ∞

0

dωpdωsV (ωp)Φ(ωs, ωp − ωs)e
i(ωpτp+φp)|ωs〉s|ωp − ωs〉i, (2.11)

where

Φ(ωs, ωp − ωs) =

∫ 0

−L

dzei[kpz(ωp)−ksz(ωs)−kiz(ωp−ωs)]z (2.12)

is called the phase-matching function. The exact form of the phase-matching func-

tion Φ(ωs, ωp − ωs) depends on the nonlinear crystal parameters and the type of

down-conversion (type-I or type-II). Appendix A contains a detailed calculation of

the phase-matching function for different types of down-conversion and crystal pa-

rameters.
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2.3 Representing two-photon interference using path

diagrams

In a two-photon interference experiment, the two-photon field is made to go through

two alternative pathways. The fields in the two alternative pathways are then com-

bined, and the interference is observed in the coincidence count rate of two detec-

tors. We begin by representing a general two-photon two-alternative interference

experiment by the two-photon path diagrams of Fig. 2.2. Diagrammatic approaches

have previously also been used to describe two-photon interference effects (see Refs.

[6, 10]). In this chapter, we consider only the polarization-independent, temporal

two-photon interference effects, assuming perfect spatial coherence. We also assume

that the frequency bandwidth of the pump field is much smaller than that of the

signal and idler fields.

In Fig. 2.2, alternatives 1 and 2 are the two pathways by which a pump photon is

down-converted and the down-converted signal and idler photons are detected in co-

incidence at single-photon detectors Ds and Di. Two-photon interference is observed

in the coincidence count rate of detectors Ds and Di as long as the two alternatives

are coherent, i.e., indistinguishable from each other. We adopt the convention that

a signal photon is the one that reaches detector Ds and that an idler photon is the

one that reaches detector Di. In a two-photon interference experiment, these alter-

native pathways can be introduced by using beam splitters [3, 6], by passing the

pump beam twice through a crystal [5], or even by using two different crystals [4].

In Fig. 2.2, l denotes the optical path length traveled by a photon and φ stands for

phases other than the dynamic phase, such as the phase acquired due to reflections,

geometric phase [83, 89], etc. Thus ls1 denotes the path length traveled by the signal

photon in alternative 1, etc. For every optical path length traveled, the corresponding

time elapsed is denoted by τ = l/c. Thus τs1 represents the time taken in traveling

the distance ls1. The various path-lengths and phases are used to define two length
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l1

 2

∆L

lp1 , φp1
 1

l' 2

pump 

lp2 , φp2

ls1 , φs1

li1 , φi1

ls2 , φs2

li2 , φi2

l2

l' 1

Ds

Di

Ds

Di

Figure 2.2: Schematic representation of temporal two-photon interference using two-
photon path diagrams. Alternatives 1 and 2 are the two pathways by which a pump
photon is down-converted and the down-converted signal and idler photons are de-
tected at single-photon detectors Ds and Di in coincidence.

parameters and one phase parameter as follows:

∆L ≡ l1 − l2 =

(
ls1 + li1

2
+ lp1

)
−

(
ls2 + li2

2
+ lp2

)
,

∆L′ ≡ l′1 − l′2 = (ls1 − li1)− (ls2 − li2) ,

∆φ ≡ φ1 − φ2 = (φs1 + φi1 + φp1)− (φs2 + φi2 + φp2) . (2.13)

Here l1(2) and l′1(2) are the two-photon path length and the two-photon path asymmetry-

length for alternative 1(2); they are also referred to as the biphoton path length and

the biphoton path-asymmetry length, respectively [81]. In a particular alternative,

the two-photon path length is defined to be the mean of the optical path lengths

traveled by the signal and idler photons added to the optical path length traveled

by the pump photon. The two-photon path-asymmetry length is defined to be the

difference of the optical path lengths traveled by the signal and idler photons. ∆L is

the difference of the two-photon path lengths l1 and l2 whereas ∆L′ is the difference

of the two-photon path-asymmetry lengths l′1 and l′2. The corresponding times are
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represented by ∆τ and ∆τ ′ respectively. Notice that if either ∆L or ∆L′ is too large,

alternatives 1 and 2 will become distinguishable and will no longer interfere.

2.4 Temporal two-photon interference

The two-photon state |ψtp〉 produced by down-conversion is given by Eq. (2.11). In

a two-photon interference experiment, the complete two-photon state |ψ〉 is given by

the coherent superposition of the two-photon states in alternatives 1 and 2, that is,

|ψ〉 = |ψtp1〉+ |ψtp2〉. (2.14)

By substituting in Eq. (2.11) the relevant parameters corresponding to alternatives

1 and 2, we evaluate the two-photon states at the exit face of the crystal in the two

alternatives. The complete two-photon state |ψ〉 is then given by

|ψ〉 = A

∫∫ ∞

0

dωpdωsV1(ωp)Φ1(ωs, ωp − ωs)e
i(ωpτp1+φp1)|ωs〉s1|ωp − ωs〉i1

+A

∫∫ ∞

0

dωpdωsV2(ωp)Φ2(ωs, ωp − ωs)e
i(ωpτp2+φp2)|ωs〉s2|ωp − ωs〉i2. (2.15)

V1(2)(ωp) is the strength of the pump field at frequency ωp in alternatives 1(2) and

Φ1(2)(ωs, ωp − ωs) is the phase-matching function in alternative 1(2). We denote the

positive-frequency parts of the electric fields at detectors Ds and Di by Ê
(+)
s (t) and

Ê
(+)
i (t), respectively. The field at a detector is equal to the sum of the fields arriving

at that detector by alternatives 1 and 2. Thus,

Ê(+)
s (t) = Ê

(+)
s1 (t− τs1) + Ê

(+)
s2 (t− τs2),

Ê
(+)
i (t) = Ê

(+)
i1 (t− τi1) + Ê

(+)
i2 (t− τi2). (2.16)

Here Ê
(+)
s1 (t− τs1) is the positive-frequency part of the field arriving at detector Ds in

alternative 1, etc. The electric fields Ê
(+)
s (t) and Ê

(+)
i (t), respectively, can be written
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as

Ê(+)
s (t) =

∫ ∞

0

dωfs(ω − ωs0)

× [
cs1âs1(ω)e−i[ω(t−τs1)−φs1] + cs2âs2(ω)e−i[ω(t−τs2)−φs2]

]
(2.17)

and

Ê
(+)
i (t) =

∫ ∞

0

dω′fi(ω
′ − ωi0)

×
[
ci1âi1(ω

′)e−i[ω′(t−τi1)−φi1] + ci2âi2(ω
′)e−i[ω′(t−τi2)−φi2]

]
. (2.18)

Here fs(ω − ωs0) and fi(ω
′ − ωi0) are the amplitude transmission functions of the

filters placed before detectors Ds and Di, respectively. The two filters are centered

at frequencies ωs0 and ωi0. It is assumed that perfect phase-matching is satisfied at

frequencies ω0, ωs0 and ωi0 with ω0 = ωs0 + ωi0. cs1 is the probability amplitude that

the signal photon is detected in alternative 1, etc. Since all the phase information is

already contained in φs1, etc., we take the probability amplitudes to be real quantities.

The probability amplitudes are normalized such that c2
s1 + c2

s2 = c2
i1 + c2

i2 = 1

The coincidence count rate Rsi(t, t + τ), which is the probability per (unit time)2

that a photon is detected at Ds at time t and another at Di at time t+ τ , is given by:

Rsi(t, t + τ) = αsαi|〈0|Ê(+)
i (t + τ)Ê

(+)
s (t)|ψ〉|2 [31], where αs and αi are the quantum

efficiencies of detectors Ds and Di, respectively. By substituting from Eqs. (2.15),

(2.17) and (2.18), the coincidence count rate Rsi(t, t + τ) can be shown to be

Rsi(t, t + τ) = αsαi

∣∣∣〈0|Ê(+)
i (t + τ)Ê(+)

s (t)|ψ〉
∣∣∣
2

= αsαi

∣∣∣〈0|Ê(+)
i1 (t + τ)Ê

(+)
s1 (t)|ψ〉+ 〈0|Ê(+)

i2 (t + τ)Ê
(+)
s2 (t)|ψ〉

∣∣∣
2

, (2.19)
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where

〈0|Ê(+)
i1 (t + τ)Ê

(+)
s1 (t)|ψ〉 = Ac1e

iφ1

∫∫ ∞

0

dωpdωsV1(ωp)Φ1(ωs, ωp − ωs)

× fs(ωs − ωs0)fi(ωp − ωs − ωi0)e
iωs(τ−τi1+τs1)e−iωp(t+τ−τi1−τp1), (2.20)

and

〈0|Ê(+)
i2 (t + τ)Ê

(+)
s2 (t)|ψ〉 = Ac2e

iφ2

∫∫ ∞

0

dωpdωsV2(ωp)Φ2(ωs, ωp − ωs)

× fs(ωs − ωs0)fi(ωp − ωs − ωi0)e
iωs(τ−τi2+τs2)e−iωp(t+τ−τi2−τp2). (2.21)

Here we have substituted c1 = cs1ci1 and c2 = cs2ci2. The two terms inside the

modulus bracket are the two-photon probability amplitudes [90] in alternatives 1 and

2, respectively.

We now evaluate the two-photon probability amplitude 〈0|Ê(+)
i1 (t + τ)Ê

(+)
s1 (t)|ψ〉

in alternative 1. We assume that the pump field V1(ωp) is centered around ωp = ω0

and has a spectral width ∆ωp, which is small enough such that the phase-matching

function and the filter functions do not change appreciably in the frequency range

(ω0−∆ωp/2, ω0 +∆ωp/2). The above assumption regarding the pump spectral width

remains valid for most continuous wave and pulsed lasers. However, this assumption

may not remain valid for very short pulsed pump [88, 91]. Substituting ωs by ω′s +ωs0

and replacing ωp by its central value ω0 in the phase-matching function, we write

〈0|Ê(+)
i1 (t + τ)Ê

(+)
s1 (t)|ψ〉 as a product of two integrals

〈0|Ê(+)
i1 (t + τ)Ê

(+)
s1 (t)|ψ〉 = Ac1e

iφ1eiωd(τ+τ ′1)

∫ ∞

−ω0/2

dω′sΦ1(ω
′
s + ωs0, ω0 − ωs0 − ω′s)

× fs(ω
′
s)fi(−ω′s)e

iω′s(τ+τ ′1)

∫ ∞

0

dωpV1(ωp)e
iω0(τ+τ ′1)/2e−iωp(t+τ−τi1−τp1), (2.22)

where following substitutions have been made: τ1 = (τs1 + τi1)/2 + τp1, τ ′1 = τs1 − τi1

and ωd = (ωs0 − ωi0)/2. We note that when the above assumption regarding the
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pump spectral width is not valid, 〈0|Ê(+)
i1 (t + τ)Ê

(+)
s1 (t)|ψ〉 cannot be written as two

separate integrals, and in that case it would have to be evaluated differently [88, 91].

Eq. (2.22) can be simplified as

〈0|Ê(+)
i1 (t + τ)Ê

(+)
s1 (t)|ψ〉 = Ac1e

iφ1eiωd(τ+τ ′1)

∫ ∞

−ω0/2

dω′sg1(ω
′
s)e

iω′s(τ+τ ′1)

×
∫ ∞

0

dωpV1(ωp)e
iω0(τ+τ ′1)/2e−iωp(t+τ−τi1−τp1), (2.23)

with

g1(ω
′
s) = Φ1(ω

′
s + ωs0, ω0 − ωs0 − ω′s)fs(ω

′
s)fi(−ω′s) (2.24)

being the amplitude of the effective signal-idler field at the displaced frequency ω′s.

We refer to the spectral width ∆ω of function g(ω′s) as the frequency bandwidth of the

signal-idler field; the spectral width of the phase-matching function Φ1(ω
′
s +ωs0, ω0−

ωs0 − ω′s) which depends on the nonlinear-crystal parameters will be referred to as

the down-conversion frequency bandwidth. The signal-idler frequency bandwidth

∆ω depends on the frequency bandwidths of both the phase-matching function and

the filters functions, and it is usually much smaller than the central frequency ωs0.

Therefore, we extend the lower limit of the ω′s integral to −∞. Next, we substitute

ω′p = ωp − ω0 in Eq. (2.23), and assuming the spectral width ∆ωp of the pump field

to be much smaller than its central frequency ω0, we write Eq. (2.23) as

〈0|Ê(+)
i1 (t + τ)Ê

(+)
s1 (t)|ψ〉 =

Ac1e
iφ1eiωd(τ+τ ′1)e−iω0(t+τ/2−τ1)g∗1(τ + τ ′1)v1 (t + τ − τ1 + τ ′1/2) , (2.25)
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where

g∗1(τ) ≡
∫ ∞

−∞
dω′sg1(ω

′
s)e

iω′sτ and (2.26)

v1(t) ≡
∫ ∞

−∞
dω′pV1(ω

′
p + ω0)e

−iω′pt. (2.27)

A similar expression for the two-photon probability amplitude 〈0|Ê(+)
i2 (t+τ)Ê

(+)
s2 (t)|ψ〉

in alternative 2 is obtained. Eq. (2.19) is now written as

Rsi(t, t + τ) = K
∣∣∣ c1g

∗
1(τ + τ ′1)v1 (t + τ − τ1 + τ ′1/2)ei(ω0τ1+ωdτ ′1+φ1)

+ c2g
∗
2(τ + τ ′2)v2 (t + τ − τ2 + τ ′2/2)ei(ω0τ2+ωdτ ′2+φ2)

∣∣∣
2

, (2.28)

where K = |A|2αsαi is a constant. Rsi(t, t + τ) is the expression for the coincidence

count rate in a two-alternative, temporal two-photon interference. Eq. (2.28) can be

easily generalized to take into account those situations in which the signal and idler

photons arrive at the two detectors by more than two alternative pathways, or even

by an infinite number of alternative pathways. In the latter situation, a single sum

in Eq. (2.28) will be replaced by an integral.

2.5 Time-averaged coincidence count rate

In most experiments, one does not measure the coincidence count rate of Eq. (2.28).

Instead, one measures the coincidence count rate averaged with respect to t over

the photon collection time Tcollect and with respect to τ over the coincidence time-

window Tcoinc. We now calculate the time-averaged coincidence count rate from the

coincidence count rate given in Eq. (2.28). Substituting τ1 − τ2 = ∆τ , τ ′1 − τ ′2 = ∆τ ′
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and φ1 − φ2 = ∆φ, we rewrite Eq. (2.28) as

Rsi(t, t + τ) =

K
[
|c1g1(τ + τ ′1)v1 (t + τ − τ1 + τ ′1/2)|2 + |c2g2(τ + τ ′2)v2 (t + τ − τ2 + τ ′2/2)|2

+ c1c2g
∗
1(τ + τ ′1)g2(τ + τ ′2)v1 (t + τ − τ1 + τ ′1/2) v∗2 (t + τ − τ2 + τ ′2/2)

× ei(ω0∆τ+ωd∆τ ′+∆φ) + c.c.
]
. (2.29)

In a two-photon interference experiment, the photon collection time Tcollect is usually

a few seconds whereas the reciprocal of the pump spectral width 1/∆ωp for a typical

laboratory laser source is usually a few microseconds or smaller. Thus Tcollect is always

much longer than 1/∆ωp, and if in addition Tcollect À |τ − τ1 + τ ′1/2|, |τ − τ2 + τ ′2/2|,
the t-averaged pump intensities become independent of time arguments:

〈
|v1 (t + τ − τ1 + τ ′1/2)|2

〉
t
= |v1|2,

〈
|v2 (t + τ − τ2 + τ ′2/2)|2

〉
t
= |v2|2. (2.30)

Thus the time-averaging in Eq. (2.29) with respect to t over the photon collection

time Tcollect yields

Rsi(τ) = 〈Rsi(t, t + τ)〉t
= K

[
|c1g1(τ + τ ′1)v1|2 + |c2g2(τ + τ ′2)v2|2 + c1c2g

∗
1(τ + τ ′1)g2(τ + τ ′2)

× 〈v1 (t− τ1 + τ ′1/2) v∗2 (t− τ2 + τ ′2/2)〉tei(ω0∆τ+ωd∆τ ′+∆φ) + c.c.
]
. (2.31)

The coincidence time window Tcoinc in a two-photon interference experiment is usually

a few nanoseconds whereas the reciprocal of the signal-idler frequency bandwidth,

1/∆ω, is typically a few picoseconds or smaller [3, 90]. Thus Tcoinc is always much

longer than 1/∆ω. If in addition Tcoinc À τ ′1, τ
′
2, we get: 〈|g1(τ + τ ′1)|2〉τ = |g1|2 and

〈|g2(τ + τ ′2)|2〉τ = |g2|2. We now take the time average of Eq. (2.31) with respect to
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τ over the coincidence time window Tcoin, which yields

Rsi = 〈Rsi(τ)〉τ = K
[
|c1g1v1|2 + |c2g2v2|2 + c1c2 〈g∗1(τ + τ ′1)g2(τ + τ ′2)〉τ

× 〈v1 (t− τ1 + τ ′1/2) v∗2 (t− τ2 + τ ′2/2)〉tei(ω0∆τ+ωd∆τ ′+∆φ) + c.c.
]
. (2.32)

In what follows, we take the pump field to be a stationary, continuous-wave field. The

time-averaged pump correlation function 〈v1(t− τ1 + τ ′1/2)v∗2(t− τ2 + τ ′2/2)〉t is then

a real function and depends on the two time arguments only through their difference.

With the assumption of the stationarity of the pump field, the time-averaged pump

correlation function can be written as

〈v1 (t− τ1 + τ ′1/2) v∗2 (t− τ2 + τ ′2/2)〉t =
√
|v1|2|v2|2γ(∆L−∆L′/2), (2.33)

where γ(∆L−∆L′/2) is the time-averaged degree of correlations of the pump field. In

writing Eq. (2.33), we have used the definitions of Eq. (2.13): ∆L = c∆τ = c(τ1− τ2)

and ∆L′ = c∆τ ′ = c(τ ′1 − τ ′2). As we show in Appendix A, for most phase-matching

conditions, the time-averaged signal-idler correlation function 〈g∗1(τ + τ ′1)g2(τ + τ ′2)〉τ
is a real function and depends on the two time arguments only through their difference.

The time-averaged signal-idler correlation function can be written as (see Appendix

A for details.)

〈g∗1(τ + τ ′1)g2(τ + τ ′2)〉τ =
√
|g1|2|g2|2γ′ (∆L′) , (2.34)

where ∆L′ = c∆τ ′ = c(τ ′1 − τ ′2), and where γ′ (∆L′) is the time-averaged degree of

correlation of the signal-idler field. Eq. (2.32) can now be written is a much simpli-

fied form by noting that c1 and c2 are real numbers. Substituting from Eqs. (2.33)

and (2.34) into Eq. (2.32), we obtain the following expression for the time-averaged
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coincidence count rate Rsi:

Rsi = R1 + R2 + 2
√

R1R2γ
′ (∆L′) γ (∆L−∆L′/2) cos(k0∆L + kd∆L′ + ∆φ), (2.35)

where k0 = ω0/c and kd = ωd/c, and where

R1 = K|c1g1v1|2 and (2.36)

R2 = K|c2g2v2|2 (2.37)

are the coincidence count rates when coincidences are collected from only alterna-

tives 1 and 2, respectively. The frequency bandwidth ∆ω of the signal-idler field was

assumed to be much broader than the frequency bandwidth ∆ωp of the pump field.

Therefore, we approximate the product of the two correlation functions γ′ (∆L′) γ (∆L−∆L′/2)

as γ′ (∆L′) γ (∆L) and write Eq. (2.35) as

Rsi = R1 + R2 + 2
√

R1R2γ
′ (∆L′) γ (∆L) cos(k0∆L + kd∆L′ + ∆φ), (2.38)

The product γ′ (∆L′) γ (∆L) is the time-averaged degree of two-photon correlation.

In an interference experiment, two-photon fringes are observed only so long as the

product γ′ (∆L′) γ (∆L) is greater than zero. Two-photon interference gets washed

out once either of the two correlation function becomes much smaller than unity.

From the expression for the coincidence count rate Rsi, it follows that two-photon

interference effects in the temporal domain can be completely described in terms of

the variations of the two length parameters, ∆L and ∆L′. In the special case, when

the down-converted fields are degenerate, that is kd = 0, and R1 = R2 = C, the

expression for the coincidence count rate reduces to

Rsi = C[1 + γ′ (∆L′) γ (∆L) cos(k0∆L + ∆φ)]. (2.39)
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In what follows we use this simplified expression for the coincidence count rate.

Part of the analysis presented so far in this chapter has been reported in Ref. [81].

In the formalism presented here, we have taken the pump field to be a stationary

field. In a separate work, we have extended this formalism to also study the effects

due to a non-stationary pump field [92].

In the next section, we analyze the time-averaged correlation functions for some

simple cases. In the section following that, we report an experiment in which the

effects due to the variations of the two length parameters can be independently con-

trolled and studied.

2.6 The two correlation functions

The time-averaged degree of correlations of the pump and the signal-idler fields de-

pend on the spectrum of the pump and the signal-idler fields, respectively. For the

special case when the pump is a stationary (continuous-wave) field having a Gaussian

spectrum of rms frequency width ∆ωp, the time-averaged degree of correlation of the

pump field can be evaluated using the generalized Wiener-Kintchine theorem (see

Ref. [2], Chapter 3) to be

γ (∆L) = exp

[
−1

2

(
∆L

lpcoh

)2
]
. (2.40)

Here lpcoh = c/∆ωp is the coherence length of the pump field. In Appendix A, we

evaluate the time-averaged degree of correlation γ′(∆L′) of the signal-idler field for

various phase-matching conditions. In situations in which the signal-idler field has

a Gaussian spectrum of width ∆ω, the time-averaged degree of correlation of the

signal-idler field can be written as

γ′ (∆L′) = exp

[
−1

2

(
∆L′

lcoh

)2
]
, (2.41)
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where lcoh = c/∆ω is the rms width of γ′ (∆L′) as a function of ∆L′ and is a measure

of the reciprocal bandwidth of the signal-idler field. It is also taken quite often as a

measure of the coherence length of the signal-idler field [3, 6, 81]. However, we note

that this is strictly true only when the signal-idler field is completely stationary.

We now look at the effects of varying ∆L and ∆L′ on the coincidence count rate

Rsi of Eq. (2.39) by considering two limiting cases.

Case I: For ∆L′ = 0 and ∆φ = 0,

Rsi = C [ 1 + γ (∆L) cos (k0∆L) ]. (2.42)

Interference is observed in the coincidence count rate as ∆L is varied and gets washed

out once ∆L exceeds the pump coherence length. Thus ∆L plays the same role

in two-photon interference as does the optical path-length difference in one-photon

interference. It is because of this analogy that we call ∆L the two-photon path-length

difference [see Eq. (1.5) in Chapter 1 for comparison]. The coincidence fringes seen

in Franson-type interferometers [8, 9] and in the double-pass setup [5] are examples

of effects due to variations in ∆L.

Case II: For ∆L and ∆φ fixed,

Rsi = C [ 1 + Kγ′ (∆L′) ], (2.43)

where K = γ(∆L) cos (k0∆L + ∆φ) is constant. The coincidence count rate can show

a dip when the two alternatives interfere destructively (K < 0), and a hump when

the two alternatives interfere constructively (K > 0), as ∆L′ is varied. These profiles,

with widths equal to lcoh, represent how the coherence between two two-photon alter-

natives changes with a variation in ∆L′. ∆L′ has no one-photon counterpart. Effects

observed in the HOM experiment [3], and in the postponed compensation experiment

[6] are examples of two-photon interference effects due to variations in ∆L′. In the

HOM experiment [3], the effect was seen with ∆L = 0, whereas in the postponed



2.7 Two-photon coherence and the HOM effect 42

compensation experiment [6], the effects were seen in the limit lcoh ¿ ∆L ¿ lpcoh.

2.7 Two-photon coherence and the HOM effect

As illustrated in Fig. 2.3(a), in the Hong-Ou-Mandel (HOM) experiment [3], the

signal and idler photons from PDC are mixed at a beam splitter and the two-photon

interference effect is observed in the coincidence count rate of detectors Ds and Di,

as a function of the beam splitter position x. The experiment can be understood in

terms of the two-photon path diagrams shown in Fig. 2.3(b). In alternative 1, both

the signal and idler photons get reflected by the beam splitter, while in alternative 2,

they both get transmitted by the beam splitter. Using the two-photon path diagrams,

we find that ∆L = 0, ∆L′ = 4x cos θ, and ∆φ = π. The coincidence count rate Rsi is

then calculated using Eq. (2.39) to be

Rsi = C[1− γ′(4x cos θ)] (2.44)

At x = 0, that is, at the balanced position of the beam splitter, the coincidence count

rate Rsi is equal to zero. This implies that at the balanced position of the beam

splitter, both photons always leave through the same output port of the beam splitter.

As a result, a null is observed in the coincidence count rate at the balanced position,

leading to a dip in the coincidence count rate as a function of the beam splitter position

x. An intuitive explanation of this effect can be given in terms of the bunching of

signal and idler photons at a beam splitter [93]. However, the bunching interpretation

is not adequate for the postponed compensation [6] and related experiments [10] in

which HOM-like effects are observed, even when signal and idler photons do not

simultaneously arrive at a beam splitter. As discussed in the previous section, both

HOM and HOM-like effects are consequences of how temporal two-photon coherence

changes as a function of the two-photon path-asymmetry-length difference ∆L′.

The HOM and HOM-like experiments [3, 6, 10] required mixing of signal and idler
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Figure 2.3: (a) Schematic of the Hong-Ou-Mandel (HOM) experiment. (b) Two-
photon path diagrams illustrating two-photon interference in a HOM experiment. In
alternative 1, both the signal and idler photons get reflected by the beam splitter,
while in alternative 2, they both get transmitted.

photons at a beam splitter. In contrast, we next report our experimental observations

of changes in two-photon coherence as a function of ∆L′, in a double pass setup

(shown in Fig. 2.4), which does not involve mixing of signal and idler photons at a

beam splitter. A similar setup was used earlier to demonstrate the frustrated two-

photon creation [5]. In this setup, there are many ways in which ∆L and ∆L′ could

be varied either independently or simultaneously, by displacing the signal (Ms), idler

(Mi) and the pump (Mp) mirrors. In our experiments we change only the signal and

idler mirror positions.

In the balanced position of the setup of Fig. 2.4(a), the distances of the signal, idler

and the pump mirrors from the crystal remain equal. We denote the displacements

of the signal and idler mirrors from the balanced position by xs and xi respectively.

Using the two-photon path diagrams of Fig. 2.4(b), we find that ∆L = xs + xi,
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Figure 2.4: (a) Schematic of the experimental setup. (b) Two-photon path diagrams.
In alternatives 1, the pump photon gets downconverted in the forward pass while in
alternative 2, it gets downconverted in the backward pass. F is an interference filter
with 10-nm bandwidth, centered at 727.6 nm; ID is an iris diaphragm.

∆L′ = 2xs − 2xi and ∆φ = π. Assuming ∆L to be always much smaller than the

pump coherence length lpcoh, which in our experiment is about 5 cm, we calculate the

coincidence count rate Rsi for detectors Ds and Di using Eq. (2.39) to be

Rsi = C{1− γ′(2xs − 2xi) cos [k0(xs + xi)]}. (2.45)

A displacement of either the signal or idler mirror changes both ∆L and ∆L′; there-

fore, the coincidence count rate Rsi will show fringes as a function of the idler mirror

position. However, equal displacements of the signal and idler mirrors in opposite

directions change ∆L′ while keeping ∆L (= xs + xi) fixed; and therefore, the coin-

cidence count rate Rsi will show either a dip or a hump as a function of the joint

displacement, depending on the fixed value of ∆L.

Figure 2.5 shows the results of our experimental investigations. A cw Ar-ion laser
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Figure 2.5: Measured (a) coincidence count rate Rsi, (b) count rate Rs and (c) count
rate Ri as a function of the idler mirror position. Measured (d) coincidence count
rate Rsi, (e) count rate Rs and (f) count rate Ri, as a function of ∆L′ for various
fixed values of ∆L. Solid lines are the theoretical best fits.

operating at λ0 = 363.8 nm was used as a pump to produce degenerate type-I PDC.

The signal and idler photons were collected into multimode fibers and detected using

two avalanche photodiodes. The distance between the crystal and each detector was

about 1.2 m. With the diaphragms set to a size of about 1.2 mm, the effective

bandwidth of the signal-idler field becomes 0.85 nm, resulting in a coherence length
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lcoh of about 100 µm.

The idler mirror was first scanned around the balanced position and as a result

fringes were observed in the coincidence count rate Rsi [Fig. 2.5(a)]. Next, the idler

mirror was placed at different fixed positions corresponding to different values of ∆L,

as shown in Fig. 2.5(a) and in the inset, where m is an integer. Starting from each

idler mirror position, the signal and idler mirrors were displaced equally in opposite

directions. Dip and hump profiles of width 100 µm were observed in the coincidence

count rate Rsi [Fig. 2.5(d)].

In addition, profiles similar to that of the coincidence count rate were also observed

in the single photon count rates Rs and Ri. As a function of the idler mirror position,

fringes were observed in count rates of Rs [Fig. 2.5(b)] and Ri [Fig. 2.5(c)]; and as

a function of the simultaneous displacements of the signal and idler mirrors, dip and

hump profiles of width 100 µm were observed in count rates Rs [Fig. 2.5(e)] and Ri

[Fig. 2.5(f)].

These one-photon effects cannot be described by second-order (in the field) co-

herence theory [2] because the one-photon path-length differences involved in these

experiments are much longer than the coherence lengths of the one-photon fields.

Interference effects in one photon count rates have previously also been observed in

many two-photon experiments including induced coherence [4], frustrated two-photon

creation [5] and interference experiment from separate pulses [82]. Although these

one-photon effects have been interpreted differently, they can all be described entirely

in terms of the sum of two-photon interference profiles. Thus, we represent the one-

photon count rate RX at a detection position X as the sum of the coincidence count

rates RXYi
between X and all the other positions Yi where the twin of the photon

detected at X can go, i.e.,

RX =
∑

i

RXYi
, (2.46)

Summing over the detector positions RYi
in Eq. (2.46) is same as taking the partial

trace over all the possible modes of the twin. The summation turns into an integral
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whenever the twin has finite probabilities of arriving at a continuous set of detection

points. A detailed description of the induced coherence experiment [4] based on

Eq. (2.46) is worked out in Appendix B.

Now, for the setup in Fig. 2.4, the twin of a photon detected at Ds can go only

to Di and vice versa. Therefore, using Eq. (2.46) we find that the one-photon count

rates Rs and Ri are each equal to the coincidence count rate Rsi. Hence, as a function

of either ∆L or ∆L′, the one-photon count rates show profiles similar to that of the

coincidence count rate.

The dip-hump visibilities for Rsi, Rs and Ri were found to be 67%, 18% and

15%, respectively. The overall interference visibilities are low due to imperfect mode

matching of the fields in the two alternatives. The visibilities of one-photon count

rates are much smaller than that of the coincidence count rate, because of the lim-

ited detection efficiency of the system, which affects the one-photon count rate more

strongly than the coincidence count rate. Less than perfect experimental fits are due

to the uncontrollable drifts of translation stages.

We see that both in this experiment, and in the HOM [3] and HOM-like [6, 10]

experiments the same effect, that is, the change in two-photon coherence as a function

of the two-photon path-asymmetry-length difference, is observed. However, in our

experiment—in contrast to the earlier experiments—this effect is observed in a setup

that does not involve mixing of signal and idler photons at a beam splitter. Moreover,

to the best of our knowledge, we have observed for the first time that the changes in

two-photon coherence can manifest itself in the count rates of individual detectors as

dip and hump profiles. These results were reported in Ref. [81].

2.8 Time-energy entanglement

Two-photon coherence and two-photon entanglement are interrelated concepts. Two-

photon coherence in the temporal domain implies entanglement in the time-energy
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degree of freedom of the two photons. In the next three sections, we discuss the time-

energy entanglement of the down-converted two-photon fields. The precise meaning

of time-energy entanglement can be understood in terms of an EPR-type argument

[17], which is that by measuring either the arrival-time or the energy of one of the two

photon, either the arrival-time or the energy, respectively, of the other photon can be

inferred, in principle, with complete certainty [94]. The existence of such simultaneous

correlations in both time and energy is what is meant by time-energy entanglement.

The implication of this interpretation is that for conditional measurements the non-

commuting observables time and energy could be known with more certainty than is

allowed by the uncertainty principle.

Time-energy entanglement is verified through a violation of the Bell inequality for

time and energy, proposed by J. D. Franson [7]. The experimental verification of time-

energy entanglement through a Bell-violation was first attempted by Brendel el al.

[9]; however, it was Kwiat et al. [8] who demonstrated an unambiguous violation [8].

The feasibility of using time-energy entanglement for quantum communication was

suggested by Brendel et al., using a novel interferometric scheme [95]. Generalizing

this scheme, Thew et al. have recently realized time-energy entangled qutrits that

could be utilized in quantum communication based architectures [96].

2.9 Bell inequality for time and energy

In 1989, a Bell inequality for time and energy was suggested by J. D. Franson using

an experimental scheme commonly known as the Franson interferometer [7]. Fran-

son’s scheme for violating a Bell inequality requires changing the phases of the signal

and idler photons in one of the interfering alternatives. A Franson interferometer is

depicted in Fig. 2.6(a). In this interferometer, there are, in principle, four alternative

pathways by which signal and idler photons can pass through the interferometer and

get detected at detector Ds and Di in coincidence. Two of the alternative pathways
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are shown in Fig. 2.6(b). In alternative 1, both the signal and idler photons pass

through the long arms of the interferometer, while in alternative 2, they pass through

the short arms. The other two alternative pathways are: (i) the signal photon passes

through the long arm of the interferometer and the idler through the short arm;

(ii) the signal photon passes through the short arm of the interferometer and the

idler through the long arm. Franson’s scheme relies on the assumption that these

two other alternatives can be filtered out through the detection process. In exper-

iments, this is accomplished by making sure that the coincidence detection-window

is much shorter than the travel-time difference between the long and the short arms.

However, this inherent post-selection in Franson’s scheme allows for the local hidden

variable interpretations of correlations observed in the Franson interferometer [97].

A scheme to avoid this problem was demonstrated by Strekalov et al. [69], who re-

ported a post-selection free violation using pair of photons that were entangled in

both the time-energy and polarization degrees of freedom. Recently, Cabello et al.

have proposed a modified Franson interferometer that does not suffer from the above

mentioned problem [98].

We now describe Franson’s original scheme, using the setup shown in Fig. 2.6(a).

In Fig. 2.6(a), Φs and Φi are the total extra phases acquired by the signal and idler

photons, respectively, in the long arms compared to the phases acquired in the short

arms. The complete two-photon state |ψtp〉 is the coherent sum of the two-photon

states in alternatives 1 and 2, and it can be written as

|ψtp〉 = |ψtp〉1 + e−i(Φs+Φi)|ψtp〉2. (2.47)

Here |ψtp〉1(2) is the two-photon state in alternative 1(2). We assume that ∆L and

∆L′ in the setup are much smaller than the coherence lengths of the pump and the

signal-idler fields, respectively. Using Eq. (2.39), we calculate the coincidence count
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Figure 2.6: (a) The Franson interferometer for violating Bell inequality for time-
energy. (b) 1 and 2 are the two alternative pathways by which the signal and idler
photons can reach the two detectors. In alternative 1, both the signal and idler
photons pass through the long arms of the interferometer, while in alternative 2, they
pass through the short arms.

rate Rsi of detectors Ds and Di to be

Rsi = C[1 + cos(Φs + Φi)] (2.48)

The quantum-mechanical correlation of the above equation leads to a violation of a

Clauser-Horne-Shimony-Holt (CHSH)-Bell inequality [63]. According to the CHSH-

bell inequality, the Bell parameter |S| is always less than or equal to 2 for a local

hidden variable theory, where, in this case,

S = E(Φs, Φi) + E(Φ′
s, Φi) + E(Φs, Φ

′
i)− E(Φ′

s, Φ
′
i) (2.49)
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and E(Φs, Φi) is given by [99]

E(Φs, Φi) =
R(Φs, Φi) + R(Φ⊥

s , Φ⊥
i ) + R(Φs, Φ

⊥
i )−R(Φ⊥

s , Φi)

R(Φs, Φi) + R(Φ⊥
s , Φ⊥

i ) + R(Φs, Φ⊥
i ) + R(Φ⊥

s , Φi)
. (2.50)

For quantum-mechanical correlations, the magnitude of the Bell parameter |S| can

be as high as 2
√

2. For the correlations of Eq. (2.48), the maximum value of |S| is

obtained for the following settings of Φs and Φi: Φs = −22.5◦, Φ⊥
s = 67.5◦, Φ′

s = 22.5◦,

Φ
′⊥
s = 112.5◦; Φi = −45◦ , Φ⊥

i = 45◦, Φ′
i = 0◦, Φ

′⊥
i = 90◦. The magnitude of the

Bell parameter |S| is directly related to the visibility V of the coincidence fringes by

the simple relation |S| = 2
√

2V . Thus an experimental demonstration of sinusoidal

two-photon fringes as a function of Φs, at the four given settings of Φi, with visibilities

more than 70.7% would imply a violation of CHSH-Bell inequality.

In all the experimental realizations of Franson’s scheme so far, the phases of the

signal and idler photons, Φs and Φi, have been changed by adjusting their dynamic

phases, i.e., by adjusting their optical path lengths [8, 9]. Therefore, all these previous

violations can be said to be the dynamic phase-based violations of Bell inequality for

energy and time. In the next section, we show that the Bell inequality for energy and

time can also be violated using geometric phases of the signal and idler photons and

that therefore the time-energy entanglement can be explored using their geometric

phases.

2.10 Exploring time-energy entanglement using ge-

ometric phase

Geometric phase, or Berry’s phase, is the phase acquired by a system when it is

transported around a closed circuit in an abstract space [100]. The manifestation

of this phase in polarization optics is also known as Pancharatnam phase, which

is the phase acquired by a photon field when its polarization is taken through a
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Figure 2.7: (a) Schematic of the experimental setup. Qs1 and Qi1 are quarter-wave
plates with their optic axes oriented at 45◦ from the horizontal polarization direction.
Qs2 and Qi2 are rotatable quarter-wave plates with their optic axes oriented at angles
135◦ + βs and 135◦ + βi from the horizontal polarization direction respectively. F
is an interference filter with 10-nm bandwidth, centered at 727.6 nm; ID is an iris
diaphragm. The signal and idler photons are collected into multimode fibers and
detected using two avalanche photodiodes. A weak lens (f=1 m) focuses the pump
beam onto the pump mirror Mp. (b) Two-photon path diagrams illustrating how the
geometric phases 2βs and 2βi influence the two-photon interference.

closed circuit on the Poincaré sphere [101, 102, 103]. Pancharatnam phase has been

observed both at high light levels [89, 104, 105] and at a single photon level [106].

Effects of Pancharatnam phase in two-photon interference, using the signal and idler

photons produced by parametric downconversion (PDC), have also been studied in

many different situations [83, 107, 108, 109, 110].

In what follows we show that the Bell inequality for time and energy can also

be violated using the geometric phases of the signal and idler photons. Consider

the double-pass setup [5] shown in Fig. 2.7(a). A cw Ar-ion laser operating at 363.8

nm is used as a pump to produce degenerate type-I parametric down-conversion
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(PDC). The pump is vertically polarized and the down-converted photons are both

horizontally polarized. The quarter-wave plates Qs1 and Qi1 are arranged with their

optic axes oriented at angle 45◦ from the horizontal polarization direction, while

the rotatable quarter-wave plates Qs2 and Qi2 are arranged with their optic axes

oriented at angles 135◦ + βs and 135◦ + βi from the horizontal polarization direction,

respectively. In this setup there are two alternative pathways—represented by the

two-photon path diagrams in Fig. 2.7(b)—by which the pump photon gets down-

converted and the down-converted photons get detected at single-photon detectors

Ds and Di. In alternative 1, a pump photon gets down-converted in its forward pass

and the down-converted signal and idler photons reach the two detectors Ds and Di

after passing through the quarter-wave plates and getting reflected from the signal

(Ms) and idler (Mi) mirrors. In alternative 2, a pump photon gets down-converted

after getting reflected from the pump mirror (Mp) and the down-converted photons

directly reach their respective detectors.

In alternative 1, a horizontally polarized signal photon passes through the quarter-

wave plates Qs1 and Qs2, gets reflected back from the signal mirror Ms and retraces its

path through the quarter-wave plates Qs2 and Qs1. It becomes horizontally polarized

after completing the loop but in this process it acquires a geometric phase equal to

2βs, as illustrated in Fig. 2.8. This phase is in addition to the dynamic phase that

the signal photon acquires. Similarly, the idler photon acquires a geometric phase

equal to 2βi in alternative 1. In the balanced position of the setup in Fig. 2.7(a), the

optical path lengths between the crystal and each of the three mirrors are assumed to

be equal, to about 15 cm. The displacements of the signal and idler mirrors from the

balanced position are denoted by xs and xi respectively. The complete two-photon

state |ψtp〉 produced by the double pass setup of Fig. 2.7(a) is the coherent sum of

the two-photon states produced in alternatives 1 and 2, and using the definitions in
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Figure 2.8: (a) The signal photon path ABCDA through the two quarter-wave plates
Qs1 and Qs2, in alternative 1. (b) Poincaré-sphere representation of polarization
states of the signal photon corresponding to path ABCDA. Here, H and V represent
horizontal and vertical polarizations, and RCP and LCP represent right and left
circular polarizations. A signal photon acquires a phase 2βs in going through path
ABCDA, which is equal to half of the solid angle subtended by the closed circuit
ABCDA on the Poincaré sphere.

Eq. (2.13), we write it as

|ψtp〉 = |ψtp〉1 + e−i(k0∆L+∆φ) |ψtp〉2. (2.51)

Here |ψtp〉1(2) is the two-photon state is alternative 1(2); k0 is the mean vacuum

wavevector magnitude of the pump wave and k0∆L + ∆φ is the relative phase of the
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two-photon state in alternative 2 with respect to the two-photon state in alternative

1. Interference is observed in the coincidence count rate Rsi of detectors Ds and Di,

which can be calculated using the general expression given in Eq. (2.39):

Rsi = C[1 + γ(∆L)γ′(∆L′) cos(k0∆L + ∆φ)]. (2.52)

Here C is a constant; γ(∆L) is the time-averaged degree of correlation of the pump

field, with a width equal to lpcoh, the coherence length of the pump, which in our case is

about 5 cm; γ′(∆L′) is the time-averaged degree of correlation of the signal-idler field

with a width equal to lcoh. The signal-idler coherence length lcoh is determined by the

widths of the interference filters and by the sizes of the iris diaphragms, and is equal

to about 100 µm in our case. From the two-photon path diagram [Fig. 2.7(b)] and

using Eq. (2.13), we find that ∆L = xs +xi, ∆L′ = 2xs−2xi and ∆φ = 2βs +2βi +π.

With
∣∣∆L

∣∣ ¿ lpcoh and
∣∣∆L′

∣∣ ¿ lcoh, Eq. (2.52) simplifies to

Rsi = C{1− cos[k0(xs + xi) + 2βs + 2βi]}. (2.53)

When the geometric phase 2βs + 2βi is held fixed, the variation of the coincidence

count rate Rsi with the dynamic phase k0(xs + xi) is of the form shown by Franson

[7] to lead to a violation of a CHSH-Bell inequality. Bell inequality violations based

on dynamic phase have been reported in many experiments [8, 9, 72]. Similarly, we

note that when the dynamic phase k0(xs + xi) is held fixed and the geometric phase

2βs + 2βi is varied, the nature of the variation of the coincidence count rate Rsi is

still of the form to lead to a violation of the CHSH-Bell inequality, but this time

based solely on geometric phase. We next describe our experimental procedure for

establishing a violation of this inequality.

The experimental setup was initially aligned such that the distances of the three

mirrors from the crystal were all equal to within a millimeter, and thus the condition
∣∣∆L

∣∣ =
∣∣xs + xi

∣∣ ¿ lpcoh was satisfied. The idler mirror position was then scanned
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Figure 2.9: Measured number of coincidence counts as a function of 2βs, the geometric
phase of signal photon in alternative 1, for four different fixed values of 2βi, the
geometric phase of idler photon in alternative 1. (a) 2βi=0 and π; (b) 2βi=π/2 and
3π/2. The solid lines are sinusoidal fits. The distance of the dashed line from the
origin is a measure of the fixed value of k0(xs + xi) to within the period 2π.

to observe fringes in the coincidence count rate as a function of xi, and it was fixed

at a position around which the observed fringe visibility was maximum. At this

position, xs and xi were equal to within a few microns and thus the condition
∣∣∆L′

∣∣ =
∣∣2xi − 2xs

∣∣ ¿ lcoh was adequately satisfied. Next, the quarter-wave plate Qi2 was

successively fixed at four different values of 2βi : 0, π/2, π, 3π/2. For each value of

2βi, coincidence counts were measured as a function of 2βs. Figure 2.9 shows the

number of coincidence counts plotted against 2βs for four different values of 2βi.

The fringe visibilities shown in these plots are approximately 77%. An experimen-

tal demonstration of a violation of a CHSH-Bell inequality requires that the visibility
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of coincidence fringes be greater than 70.7% [63, 99]. The value of the Bell parameter

|S| is determined by the visibility of the coincidence fringes [8, 21]. The sinusoidal

coincidence fringes observed in our experiment as functions of 2βs for four given val-

ues of 2βi with visibilities of approximately 77% imply that the magnitude of the Bell

parameter |S| is approximately 2.18 ± 0.04. Therefore, these measurements show a

violation of a Bell inequality by approximately 5 standard deviations. A Bell inequal-

ity acts as an entanglement witness, and its violation verifies entanglement [72, 111].

Thus, these results demonstrate that energy-time entanglement can be explored us-

ing geometric phases of the signal and idler photons. In our experiment, coincidences

were collected for only 5 seconds. Our choice of the coincidence collection time was

limited by the overall stability of the interferometer. By collecting coincidences for

a longer period of time, a violation with an increased number of standard deviations

can be achieved [87].

Although 77% visibility is sufficient to show a Bell inequality violation, certain

quantum information protocols require visibilities closer to 100%. The main reason

for low visibility in our experimental setup is the imperfect overlap of the two inter-

fering two-photon modes. This is caused by the relatively large divergences of the

signal and idler modes in alternative 1 compared to their divergences in alternative

2. This effect could be minimized by using a single spherical mirror, with its center

of curvature located at the crystal, for reflecting the pump, signal and idler modes

[112, 113]. Another reason for low visibility is the unequal coincidence count rates

in the two alternatives. This problem can be taken care of by inserting a variable

neutral density filter into the pump beam path between the crystal and the pump

mirror. The above factors have also been noted to cause low visibilities in energy-time

entanglement experiments based on dynamic phase [8]. We believe that by using cus-

tomized experimental setups, visibilities closer to the theoretical maximum of 100%

should be achievable.

Geometric phase has found many applications in optics [114, 115]. One of the dis-
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tinguishing features of geometric phase is its non-dispersive nature. Dynamic phase is

introduced by changing the optical path length, and it remains inversely proportional

to the wavelength. However, geometric phase is a topological phase and does not

depend directly on the wavelength. The non-dispersive nature of geometric phase has

been demonstrated in white-light interference using achromatic wave plates [114].

For quantum information science, one potential benefit of using geometric phase

could be in exploring the time-energy entanglement of ultrabroadband PDC sources

[116, 117]. For such sources, the signal-idler coherence length lcoh remains so small

that the visibility of two-photon fringes—which is the magnitude of the product

γ(∆L)γ(∆L′)—does not remain constant over the variations of ∆L′ that are of the

order of a wavelength. Therefore, with such sources, dynamic phase is unsuitable

for performing Bell inequality violation experiments. Geometric phase, on the other

hand, is non-dispersive. Changing geometric phase does not change the optical path

lengths. Therefore, the two-photon fringe visibility remains constant as a function

of the phase introduced geometrically, and this makes geometric phase particularly

suitable for exploring the time-energy entanglement of ultrabroadband PDC sources.

Another benefit of using geometric phase lies in the ease of introducing very small

phase shifts. In contrast with dynamic phase, where motorized translation stages are

employed, geometric phase is quite easily manipulated by using rotating wave plates.

These features of geometric phase may also aid in the construction of hyperentangled

states [69, 70, 71, 72] with time-energy as one of the degrees of freedom.

2.11 Summary

The description of temporal two-photon interference with the signal and idler photons

produced by parametric down-conversion involves, in general, six different length pa-

rameters. Using these six length parameters, we have constructed two independent

length parameters—called the two-photon path-length difference and the two-photon
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path-asymmetry length difference. In terms of the two length parameters, we have

studied the temporal coherence properties of the two-photon field, in situations in

which the frequency bandwidth of the pump field remains much narrower than that

of the signal and idler fields. We have shown that temporal two-photon interference

effects can be completely characterized in terms of the two constructed length param-

eters. We have also performed experiments in the double-pass setup where the effects

due to the variations of these two parameters could be independently controlled and

studied. We have reported experimental observations of “HOM-like” effects both

in coincidence and in one-photon count rates, and we have argued that HOM and

HOM-like effects can be best understood as observations of how two-photon coherence

changes with a variation in the two-photon path-asymmetry-length difference.

Finally, we have presented our work related to exploring time-energy entangle-

ment. In particular, we have shown that the time-energy entanglement of the down-

converted signal and idler photons can be explored by means of their geometric phases.

Using a double-pass setup, we have reported experimental observations of a violation

of the Bell inequality for time and energy based purely on the geometric phases of

the entangled signal and idler photons. These results provide an additional means

by which entanglement can be manipulated, and therefore they may have important

practical implications for quantum information science.



Chapter 3

Two-Photon Coherence Effects:

Spatial

3.1 Introduction

The spatial coherence properties of the two-photon field produced by parametric

down-conversion are affected by the crystal parameters as well as by the pump field

parameters and have been studied in various different contexts [53, 86, 118, 119, 120,

121, 122]. In particular, it has been shown that the angular spectrum of the pump

field gets completely transferred to the down-converted two-photon field [86]. Using

the down-converted photons, several spatial two-photon interference effects have also

been observed [123, 124, 125, 126, 127, 128, 129, 130]. In all these previous studies,

the pump field has been taken to be spatially coherent, and the effects due to the

limited spatial coherence of the pump field have so far not been investigated. In this

chapter, the formalism developed in Chapter 2 for studying the temporal coherence

effects is extended to include the spatial coherence effects. We study how the spatial

coherence properties of the down-converted two-photon field get affected when the

pump field is, spatially, a partially coherent beam.

This chapter is organized as follows. Section 3.2 presents a derivation of the two-

60
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photon state produced by parametric down-conversion for the general case. In Section

3.3, we present a conceptual description of spatial two-photon interference in terms

of two displacement parameters, which we construct using the transverse position

vectors of the signal and idler photons in two interfering alternatives. In Sections

3.4 and 3.5, taking the pump field to be a partially coherent, Gaussian Schell-model

beam [2, 30, 42], we show in terms of the two displacement parameters that the spatial

coherence properties of the pump field get entirely transferred to the down-converted

two-photon field. In Section 3.6, we discuss position-momentum entanglement and in

Section 3.7, we study the connection between spatial two-photon coherence and the

degree of entanglement of two-qubit states that are based on spatial correlations. We

show that the entanglement of the spatial two-qubit states is directly related to the

degree of spatial two-photon-coherence, and thus to the coherence properties of the

pump field. Section 3.8 presents the summary.

3.2 Two-photon state produced by parametric down-

conversion

The interaction Hamiltonian Ĥ(t′) for parametric down-conversion is given by [see

Eq. (1.21)]

Ĥ(t′) =
ε0

2

∫

V
d3rχ(2)Êp

(+)
(r, t′)Ês

(−)
(r, t′)Êi

(−)(r, t′) + H.c., (3.1)

where V is the volume of the interacting part of the nonlinear crystal; χ(2) is the

second-order nonlinear susceptibility; Êj
(+)

(r, t′) and Êj
(−)

(r, t′) are the positive-

and negative-frequency parts of the field, where j = p, s, i stands for the pump, signal

and idler, respectively. We assume that the nonlinear crystal is embedded in a passive

linear medium of suitable refractive index and that χ(2) is independent of frequency
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over the range of interest. [53, 86]. The three electric fields are written as

Êp
(+)

(r, t′) =

∫ ∞

0

Apd
3kpV (kp)e

i(kp.r−ωpt′), (3.2)

Ês
(−)

(r, t′) =

∫ ∞

0

A∗
sd

3ksâ
†
s(ks)e

i(ωst′−ks.r), (3.3)

Êi
(−)

(r, t′) =

∫ ∞

0

A∗
i d

3kiâ
†
i (ki)e

i(ωit
′−ki.r). (3.4)

Here r = (ρ, z) and kj = (qj, kjz). Aj is a frequency dependent quantity, and

as it varies very slowly within the frequency range of interest for most two-photon

interference experiments, it is taken outside the integral. The pump field has been

assumed to be very strong, and it will be treated classically. The strength of the

pump field at (ωp, qp) is represented by V (ωp, qp). Using the expressions for the three

fields above, we write Eq. (3.1) as

Ĥ(t′) =
ApA

∗
sA

∗
i ε0χ

(2)

2

∫

V

d3r

∫∫∫ ∞

0

d3kpd
3ksd

3kiV (kp)â
†
s(ks)â

†
i (ki)

× ei(kp−ks−ki).rei(ωs+ωi−ωp)t′ + H.c. (3.5)

The state |ψ(0)〉 of the down-converted field at t′ = 0 is given by Eq. (2.7)

|ψ(0)〉 = exp

[
1

ih̄

∫ 0

−tint

dt′Ĥ(t′)
]
|ψ(−tint)〉, (3.6)

Here |ψ(−tint)〉 = |vac〉s|vac〉i is the state of the down-converted field at t′ = −tint

which is a vacuum state with no photons in either the signal or the idler mode.

The parametric interaction is assumed to be very weak and the state in Eq. (3.6)

is approximated by the first two terms of a perturbative expansion. The first term

is the initial vacuum state. The second term |ψ〉 is calculated by substituting from
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Eq. (3.5) into Eq. (3.6), which yields

|ψ〉 =
ApA

∗
sA

∗
i ε0χ

(2)

2ih̄

∫ 0

−tint

dt′
∫

V
d3r

∫∫∫ ∞

0

dωpdωsdωi

×
∫∫∫

dqpdqsdqiV (ωp, qp)e
i[(qp−qs−qi).ρ+(kpz−ksz−kiz)z]

× ei(ωs+ωi−ωp)t′ â†s(ωs, qs)â
†
i (ωi, qi)|vac〉s|vac〉i. (3.7)

The interaction time tint is assumed to be much longer than the time scale over which

down-conversion takes place and much smaller than the time interval between two

consecutive down-conversion events. The limits of time integration in Eq. (3.7) are

therefore extended to ±∞ [84, 88]. We evaluate the time integral, which yields the

delta function δ(ωp − ωs − ωi). Integrating over ωi, we obtain

|ψ〉 = A

∫∫ ∞

0

dωpdωs

∫∫∫
dqpdqsdqiV (ωp, qp)

× Φ(ωp, ωs, qp, qs, qi)|ωs, qs〉s|ωp − ωs, qi〉i, (3.8)

where

Φ(ωp, ωs, qp, qs, qi) =

∫

V
d3rei[(qp−qs−qi).ρ+(kpz−ksz−kiz)z] (3.9)

is the phase-matching function. All the constant factors have been absorbed into A.

To keep our analysis simpler, we restrict ourselves to the collinear phase-matching

conditions and work within the paraxial approximations:

kjz = kj −
q2
j

2kj

; qj = |qj|, kj = |kj(ωj)|, (3.10)

where j = p, s, i. The space integral of Eq. (3.9) can be written as two separate

integrals,
∫

d3r → ∫
d2ρ

∫
dz. Substituting ∆k = kp − ks − ki and ∆q = q2

p/2kp −
q2
s/2ks−q2

i /2ki and assuming that the area of the nonlinear crystal illuminated by the
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pump beam is sufficiently large [86, 118], we evaluate the phase-matching function

Φ(ωp, ωs, qp, qs, qi) to be

Φ(ωp, ωs, qp, qs, qi) =

∫
d2ρei(qp−qs−qi).ρ

∫ 0

−L

dzei(∆q+∆k)z

= δ(qp − qs − qi)Lei(∆q+∆k)L/2 sinc[(∆q + ∆k)L/2]. (3.11)

Here L is the thickness of the nonlinear crystal. Substituting the above expression

into Eq. (3.8) and carrying out the dqp integral, we obtain

|ψ〉 = A

∫∫ ∞

0

dωpdωs

∫∫
dqsdqiV (ωp, qs + qi)e

i(∆q+∆k)L/2

× sinc [(∆q + ∆k)L/2] |ωs, qs〉s|ωp − ωs, qi〉i. (3.12)

This is the general expression for the state of the two-photon field produced by down-

conversion. We have absorbed the constant factors into A. In what follows we assume,

without any loss of generality, that the signal, idler and pump fields are monochro-

matic, with frequencies given by ω0, ωs and ωi, respectively. The two-photon state

can then be written as

|ψ〉 = Aei∆kL/2

∫∫
dqsdqiV (qs + qi)e

i∆qL/2sinc (∆qL/2) |qs〉s|qi〉i. (3.13)

From now on, we shall not show the frequency arguments. The two-photon state

given in Eq. (3.13) is a pure state from a single realization of the pump field. When

the average is taken over an ensemble of different realizations of the pump field, the

state of the down-converted two-photon field is given by the following density matrix

ρtp:

ρtp = |A|2
∫∫∫∫

dqsdqidq′
sdq′

i〈V (qs + qi)V
∗(q′

s + q′
i)〉e

ei(∆q−∆q′)L/2sinc(∆qL/2)sinc(∆q′L/2)|qs〉|qi〉〈q′
i|〈q′

s|. (3.14)
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The ensemble average 〈V (qs+qi)V
∗(q′

s+q′
i)〉e is recognized as the angular correlation

function of the pump field [131], with qs+qi = qp and q′
s+q′

i = q′
p being the transverse

wave-vectors of the pump field. In the following sections, we use the above density

matrix to calculate the correlation functions for the two-photon field.

3.3 Spatial two-photon interference: conceptual de-

scription

Figure 3.1 represents a generic situation for studying the spatial coherence prop-

erties of the two-photon field. The signal and idler photons produced by PDC go

through a pair of double-holes located at plane z. They are detected in coincidence

by detectors Ds and Di located at positions rs and ri, respectively. There are two

alternative pathways, by which signal and idler photons can reach detectors Ds and

Di. In alternative 1, the signal and idler photons go through the pair of holes located

at rs1(ρs1, z) and ri1(ρi1, z), and in alternative 2, they go through those located at

rs2(ρs2, z) and ri2(ρi2, z). In principle, there are two more alternative pathways:

one in which the signal and idler photons go through the pair of holes located at

rs1(ρs1, z) and ri2(ρi2, z), and the second in which they go through those located at

rs2(ρs2, z) and ri1(ρi1, z). In what follows we explicitly assume that the phase match-

ing condition is such that the probability amplitudes of these two other alternatives

are negligibly small.

In Fig. 3.1, subscripts p, s, and i stand for pump, signal, and idler, respectively.

The distance travelled by a photon from the crystal to a hole is denoted by r. The

distance travelled from a hole to the corresponding detector is denoted by d and

the associated time elapsed by t = d/c. The transverse position vector of a photon

is denoted by ρ. Thus ρs1 represents the transverse position vector of the signal

photon in alternative 1, etc. We define two displacement parameters in terms of the
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Figure 3.1: (a) Schematic laboratory setup that could be used to study the spatial
coherence properties of the two-photon field produced by PDC using a partially co-
herent pump beam. (b) 1 and 2 represent two alternative pathways by which the
down-converted signal and idler photons can pass through the holes and get detected
in coincidence at detectors Ds and Di. In alternative 1, the signal and idler photons
go through the pair of holes located at rs1(ρs1, z) and ri1(ρi1, z), and in alternative
2, they go through those located at rs2(ρs2, z) and ri2(ρi2, z).
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transverse position vectors of the signal and idler photons in the two alternatives as:

∆ρ = ρ1 − ρ2 ≡ ρs1 + ρi1

2
− ρs2 + ρi2

2
,

∆ρ′ = ρ′1 − ρ′2 ≡ (ρs1 − ρi1)− (ρs2 − ρi2). (3.15)

Here ρ1(2) and ρ′1(2) are the two-photon transverse position vector and the two-photon

position-asymmetry vector in alternative 1(2). For either alternative, the two-photon

transverse position vector is defined to be the average of the transverse position

vectors of the signal and idler photons, and the two-photon position-asymmetry vector

is defined to be the difference of the transverse position vectors of the signal and idler

photons.

We denote the positive-frequency parts of the electric fields at detectors Ds and

Di by Ê
(+)
s (rs, t) and Ê

(+)
i (ri, t), respectively. Ê

(+)
s (rs, t) and Ê

(+)
i (ri, t) are equal to

the sum of the signal and idler fields arriving at detectors Ds and Di by alternatives

1 and 2, i.e.,

Ê(+)
s (rs, t) = ks1Ê

(+)
s1 (rs1)e

−iωs(t−ts1) + ks2Ê
(+)
s2 (rs2)e

−iωs(t−ts2), (3.16)

Ê
(+)
i (ri, t) = ki1Ê

(+)
i1 (ri1)e

−iωi(t−ti1) + ki2Ê
(+)
i2 (ri2)e

−iωi(t−ti2). (3.17)

Here Ê
(+)
i1 (rs1) is the positive-frequency part of the signal field at position rs1, etc.

The constant factor ks1 depends on the size of the hole at rs1 and the geometry of the

arrangement, etc. The coincidence count rate Rsi(rs, ri), which is the probability per

(unit time)2 that a photon is detected at position rs at time t and another at position

ri at time t+τ , is given by Rsi(rs, ri) = αsαitr{ρtpÊ
(−)
s (rs)Ê

(−)
i (ri)Ê

(+)
i (ri)Ê

(+)
s (rs)}

[31], where the symbol tr stands for the trace, αs and αi denote the quantum effi-

ciencies of detectors Ds and Di, respectively, and ρtp is the density matrix of the

two-photon field produced by PDC. By substituting from Eqs. (3.16) and (3.17), we



3.3 Spatial two-photon interference: conceptual description 68

write the coincidence count rate Rsi(rs, ri) as

Rsi(rs, ri) = k2
1S

(2)(ρs1,ρi1, z) + k2
2S

(2)(ρs2,ρi2, z)

+ k1k2W
(2)(ρs1, ρi1,ρs2, ρi2, z)ei[ωs(ts1−ts2)+ωi(ti1−ti2)] + c.c. (3.18a)

where k1 =
√

αsαiks1ki1, k2 =
√

αsαiks2ki2,

W (2)(ρs1,ρi1,ρs2,ρi2, z) = tr{ρtpÊ
(−)(rs1)Ê

(−)(ri1)Ê
(+)(ri2)Ê

(+)(rs2)} (3.18b)

and

S(2)(ρs1,ρi1, z) = W (2)(ρs1,ρi1,ρs1,ρi1, z). (3.18c)

Equation (3.18a) is the interference law for the two-photon field. The first and second

terms of Eq. (3.18a) are the coincidence count rates when coincidences are collected

from only alternatives 1 and 2, respectively. These terms are recognized as the two-

photon analogs of the spectral density functions of the second-order coherence theory.

S(2)(ρs1,ρi1, z) will be referred to as the two-photon spectral density in alternative 1,

etc. The interference term W (2)(ρs1,ρi1,ρs2,ρi2, z), which appears when coincidences

are collected from both the alternatives, is a four-point fourth-order (in the field)

correlation function. It satisfies four Wolf Equations [2, 31, 122] and is recognized as

the two-photon analog of the cross-spectral density function. W (2)(ρs1,ρi1,ρs2,ρi2, z)

will be referred to as the two-photon cross-spectral density function. To keep the

notations simpler, we do not show the frequency arguments in the definitions of the

two-photon spectral density and the two-photon cross-spectral density functions.
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3.4 Spatial coherence properties of the two-photon

field: the degenerate case

We evaluate the two-photon cross-spectral density function W (2)(ρs1,ρi1,ρs2,ρi2, z),

and thereby the coincidence count rate Rsi(rs, ri), in terms of the two displacement

parameters defined in Eq. (3.15). This section presents our calculations for the case

of degenerate down-conversion only; the non-degenerate case is presented in the next

section. So, in this section, we take ωs = ωi = ω0/2 and, within the paraxial approx-

imations, take ks ≈ ki ≈ k0/2, where k0 is the cental wave-vector magnitude of the

pump field. We take the down-conversion crystal to be very thin, that is L = 0. The

general expression for the state of the two-photon field produced by PDC is given by

the density matrix ρtp in Eq. (3.14). With the thin crystal approximation, Eq. (3.14)

becomes

ρtp = |A|2
∫∫∫∫

dqsdqidq′
sdq′

i〈V (qs + qi)V
∗(q′

s + q′
i)〉e|qs〉|qi〉〈q′

i|〈q′
s| (3.19)

where 〈· · · 〉e represents the ensemble average over the different realizations of the

pump field, and where qs and qi are the transverse wave-vectors of the signal and

idler fields. As mentioned, 〈V (qs +qi)V
∗(q′

s +q′
i)〉e is the angular correlation function

of the pump field [131]. The electric field operators Ê
(+)
s1 (rs1) and Ê

(+)
i1 (ri1), within

the paraxial approximation, can be written as [53, 86, 118]:

Ê
(+)
s1 (rs1) = eik0z/2

∫
dqâs(q)ei(q·ρs1−q2z/k0), (3.20)

Ê
(+)
i1 (ri1) = eik0z/2

∫
dq′âi(q

′)ei(q′·ρi1−q′2z/k0), (3.21)
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where q2 = |q|2, q′2 = |q′|2 and k0 = |k0(ω0)|. Substituting Eqs. (3.19), (3.20) and

(3.21) into Eq. (3.18b), we write the two-photon cross-spectral density as

W (2)(ρs1,ρi1,ρs2,ρi2, z) =

|A|2
∫∫∫∫

dqsdq′
sdqidq′

i〈V (qs + qi)V
∗(q′

s + q′
i)〉e

× ei[qs·ρs1+qi·ρi1−q′
s·ρs2−q′

i·ρi2]e−i(z/k0)[(q2
s+q2

i )−(q′2s+q′2i )], (3.22)

The two-photon cross-spectral density function W (2)(ρs1,ρi1,ρs2,ρi2, z) is an inte-

gral of the angular correlation function of the pump field; and therefore, the spatial

coherence properties of the pump field get transferred to the two-photon field. We

calculate the analytical expression for the two-photon cross-spectral density, for the

special case of a partially coherent pump field of Gaussian Schell-model type [42].

A Gaussian Schell-model beam is characterized by its beam waist width σs at

z = 0 and its transverse coherence width σµ at z = 0, which is the distance scale over

which the pump field at z = 0 remains spatially coherent. The angular correlation

function for the Gaussian Schell-model pump field is given by (see Ref. [30], Section

5.6.4):

〈V (qs + qi)V
∗(q′

s + q′
i)〉e → 〈V (qp)V

∗(q′
p)〉e =

(Apσsδ/2π)2 exp
[− α(qp)

2 − α(q′
p)

2 + 2βqp · q′
p

]
, (3.23a)

where

α = σ2
s

(
σ2

µ + 2σ2
s

)
/(σ2

µ + 4σ2
s), (3.23b)

β = 2σ4
s/(σ

2
µ + 4σ2

s), (3.23c)

δ2 = 4σ2
sσ

2
µ/(σ

2
µ + 4σ2

s), (3.23d)

and Ap is a constant. The far-field expression of the cross-spectral density function
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W (ρp1,ρp2, z) of the pump field at positions rp1 ≡ (ρp1, z) and rp2 ≡ (ρp2, z) along

the pump beam path is then given by (see Ref. [30], Section 5.6.4):

W (ρp1, ρp2, z) = eik0(rp1−rp2)
√

S(ρp1, z)S(ρp2, z)µ(∆ρp, z), (3.24a)

where rp1 = |rp1|, rp2 = |rp2|, and ∆ρp = ρp1 − ρp2.

S(ρp1, z) = (Apσsδk0/z)2 exp
{−(1/2) [ρp1/σs(z)]2

}
(3.24b)

is the spectral density of the pump field at position rp1, with

σs(z) = z
√

σ2
µ + 4σ2

s/2k0σsσµ (3.24c)

being the rms beam radius of the pump field at plane z in the far field; and

µ(∆ρp, z) = exp
{−(1/2) [∆ρp/σµ(z)]2

}
, (3.24d)

is the degree of spatial coherence of the pump field, with

σµ(z) = z
√

σ2
µ + 4σ2

s/2k0σ
2
s (3.24e)

being the rms spatial coherence width of the pump field at plane z in the far field.

Figure 3.2(a) illustrates the beam radius σs(z) and spatial coherence width σµ(z) of

a partially coherent pump beam.

We now substitute Eq. (3.23) into Eq. (3.22) and calculate the far-field expression

of the two-photon cross-spectral density W (2)(ρs1,ρi1,ρs2,ρi2, z). After a very long
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Figure 3.2: Schematic representation of a partially spatially coherent pump beam;
σs(z) is the rms beam radius of the pump field at plane z and σµ(z) is the rms spatial
coherence width of the pump field at plane z. ρp1 and ρp2 are the transverse position
vectors of the two points within the pump beam.

but straightforward calculation, we find that

W (2)(ρs1,ρi1,ρs2,ρi2, z) = C exp
[
(ik0/4z)

(
ρ2

s1 + ρ2
i1 − ρ2

s2 − ρ2
i2

)]

× exp
{
− (αk2

0/4z
2)[(ρs1 + ρi1)

2 + (ρs2 + ρi2)
2]

+ (βk2
0/2z

2)[(ρs1 + ρi1) · (ρs2 + ρi2)]
}

, (3.25)

where C = |A|2[(Apπσsδk
2
0)/(2z

2)]2; ρs1 = |ρs1| is the distance from the z-axis of

the hole located at rs1, etc. Since the distances of the holes from the z-axis were

assumed to be much smaller than their distances from the crystal, we make the

approximation rs1 ≈ z + ρ2
s1/2z, etc. and write (1/2z)(ρ2

s1 + ρ2
i1 − ρ2

s2 − ρ2
i2) ≈

(rs1 + ri1 − rs2 − ri2). Next, we substitute r1 = (rs1 + ri1)/2 and r2 = (rs2 + ri2)/2

and write down W (2)(ρs1,ρi1,ρs2,ρi2) in terms of the two-photon transverse position

vectors defined in Eq. (3.15). We then obtain

W (2)(ρs1,ρi1,ρs2,ρi2, z) → W (2)(ρ1, ρ2, z)

= eik0(r1−r2)
√

S(2)(ρ1, z)S(2)(ρ2, z)µ(2)(∆ρ, z) (3.26a)
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where

S(2)(ρ1, z) = C exp
{
−(1/2)

[
ρ1/σ

(2)
s (z)

]2
}

(3.26b)

is the two-photon spectral density in alternative 1, or the coincidence count rate in

alternative 1, with

σ(2)
s (z) = z

√
σ2

µ + 4σ2
s/2k0σsσµ (3.26c)

being the rms correlation width of the two-photon field at plane z; and where

µ(2)(∆ρ, z) = exp
{
−(1/2)

[
∆ρ/σ(2)

µ (z)
]2

}
, (3.26d)

is the degree of spatial two-photon coherence, with

σ(2)
µ (z) = z

√
σ2

µ + 4σ2
s/2k0σ

2
s (3.26e)

being the rms spatial coherence width of the two-photon field at plane z. Comparing

Eqs. (3.24) and (3.26), we at once find that in terms of the two-photon transverse

position vectors, the two-photon cross-spectral density function assumes the same

functional form as does the pump cross-spectral density function, in terms of the

pump transverse position vectors. Thus, the spatial coherence properties of the pump

field get entirely transferred to the spatial coherence properties of the down-converted

two-photon field. We note that the functional forms of the two-photon correlation

width σ
(2)
s (z) and the two-photon transverse coherence width σ

(2)
µ (z) are the same

as those of the pump beam radius σs(z) and the pump transverse coherence width

σµ(z), respectively. Thus, the two-photon field seems to propagate as if it were the

pump beam with its transverse position vectors given by the two-photon transverse

position vectors. Figure 3.3 illustrates the physical interpretation of the two-photon

correlation width and the two-photon transverse coherence width.
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Figure 3.3: Physical interpretation of the two-photon correlation width σ
(2)
s (z) and the

two-photon transverse coherence width σ
(2)
µ (z) in terms of the two-photon transverse

position vectors. (a) The two-photon correlation width σ
(2)
s (z) is equal to the pump

beam radius σs(z). As a result, when an idler photon is detected at position ρi1,
the corresponding signal photon has an appreciable probability of being detected
anywhere inside an area whose center is at −ρi1 and whose radius is twice the pump
beam radius σs(z). (b) The two-photon spatial coherence width σ

(2)
µ (z) is equal to

the spatial coherence width of the pump field σµ(z); thus, for alternatives 1 and 2 of
Fig. 3.1 to remain mutually coherent, |∆ρ| = |ρ1−ρ2| has to be less than the spatial
coherence width σµ(z) of the pump field.

The coincidence count rate Rsi(rs, ri) of Eq. (3.18a) can now be written as

Rsi(rs, ri) = k2
1S

(2)(ρ1, z) + k2
2S

(2)(ρ2, z)

+ 2k1k2

√
S(2)(ρ1, z)S(2)(ρ2, z)µ(2)(∆ρ, z) cos(k0∆L), (3.27)
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where we have replaced ω0ts1 by k0ds1, etc. and substituted l1 = r1 + (ds1 + di1)/2,

l2 = r2 + (ds2 + di2)/2 and ∆L = l1 − l2. Here l1(2) is the two-photon path-length in

alternative 1(2) [81]. The visibility V of the two-photon interference fringes is given

by

V =
2k1k2

√
S(2)(ρ1, z)S(2)(ρ2, z)

k2
1S

(2)(ρ1, z) + k2
2S

(2)(ρ2, z)
µ(2)(∆ρ, z). (3.28)

We note that the two-photon cross-spectral density function W (2)(ρs1,ρi1,ρs2,ρi2, z)

and the coincidence count rate Rsi(rs, ri) depend on only one displacement parame-

ter, the two-photon transverse position vector, and remain independent of the other

displacement parameter, the two-photon position-asymmetry vector. This is a special

feature of the degenerate two-photon field. However, in the case of non-degenerate

two-photon fields, the two-photon cross-spectral density depends on both the dis-

placement parameters, as we show in the next section.

3.5 Spatial coherence properties of the two-photon

field: the general case

In this section, we re-derive the expressions for the two-photon cross-spectral density

function W (2)(ρs1,ρi1,ρs2,ρi2, z) and the coincidence count rate Rsi(rs, ri) for the

general case. We take down-conversion to be non-degenerate and the thickness of the

crystal to be finite. The state of the two-photon field produced by PDC in this case

is given by the density matrix ρtp of Eq. (3.14)

ρtp = |A|2
∫∫∫∫

dqsdqidq′
sdq′

i〈V (qs + qi)V
∗(q′

s + q′
i)〉e

ei(∆q−∆q′)L/2sinc(∆qL/2)sinc(∆q′L/2)|qs〉|qi〉〈q′
i|〈q′

s|. (3.29)
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In writing the above density matrix, we have assumed, as in the last section, that the

pump, signal and idler fields are nearly monochromatic. The electric field operators

Ê
(+)
s1 (rs1) and Ê

(+)
i1 (ri1) are given as:

Ê
(+)
s1 (rs1) = eiksz

∫
dqâs(q)ei(q·ρs1−q2z/2ks), (3.30)

Ê
(+)
i1 (ri1) = eikiz

∫
dq′âi(q

′)ei(q′·ρi1−q′2z/2ki), (3.31)

where ωs and ωi are the frequencies of the signal and idler fields, respectively. Using

Eqs. (3.29), (3.30), and (3.31), we write the two-photon cross-spectral density of

Eq. (3.18b) as:

W (2)(ρs1,ρi1,ρs2,ρi2, z) =

|A|2
∫∫∫∫

dqsdq′
sdqidq′

i〈V (qs + qi)V
∗(q′

s + q′
i)〉e

× ei(∆q−∆q′)L/2sinc(∆qL/2)sinc(∆q′L/2)ei(qs·ρs1−q2
sz/2ks+qi·ρi1−q2

i z/2ki)

× e−i(q′
s·ρs2−q2

s′z/2ks+q′
i·ρi2−q2

i′z/2ki). (3.32)

The sinc functions are approximated by Gaussian functions using the following for-

mula: if ∆q < 0, sinc(∆qL/2) ≈ exp[−c0

√
|∆q|2L/2], where c0 = 0.455 [132]. In

replacing the sinc functions by their Gaussian approximations, we note that ∆q =

q2
p/2kp−q2

s/2ks−q2
i /2ki and ∆q′ = q′2p/2kp−q′2s/2ks−q′2i /2ki are negative quantities.

We now evaluate the two-photon cross-spectral density function, which after a very
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long but straightforward calculation can be shown to be

W (2)(ρs1,ρi1,ρs2,ρi2, z) =
|A|2 (4πApσsδkski)

2

[(2z + L)2 + c2
0L

2]
[
z2 + 4k2

p(α
2 − β2)

]

× exp

{
− 2αkp − iz

2kp[z2 + 4k2
p(α

2 − β2)]
(ksρs1 + kiρi1)

2

}

× exp

{
ikski

kp

(2z + L + ic0L)

[(2z + L)2 + c2
0L2]

(ρs1 − ρi1)
2

}

× exp

{
− 2αkp + iz

2kp[z2 + 4k2
p(α

2 − β2)]
(ksρs2 + kiρi2)

2

}

× exp

{
−ikski

kp

(2z + L− ic0L)

[(2z + L)2 + c2
0L2]

(ρs2 − ρi2)
2

}

× exp

{
2β

[z2 + 4k2
p(α

2 − β2)]
(ksρs1 + kiρi1) · (ksρs2 + kiρi2)

}
. (3.33)

We restrict ourselves to the far field and use the following far-field approximations:

z2/4k2
p À (α2 − β2) and z À L. The first of the two approximation is the standard

Fraunhofer approximation [133]. Equation (3.33) now reduces to a much simplified

form

W (2)(ρs1,ρi1,ρs2,ρi2, z) =

|A|2 (
2πApσsδkski/z

2
)2

exp
[
(i/2z)

(
ksρ

2
s1 + kiρ

2
i1 − ksρ

2
s2 − kiρ

2
i2

)]

× exp
{− (α/z2)

[
(ksρs1 + kiρi1)

2 + (ksρs2 + kiρi2)
2
]

+ (2β/z2) [(ksρs1 + kiρi1) · (ksρs2 + kiρi2)]

− [kskic0L/(4kpz
2)][(ρs1 − ρi1)

2 + (ρs2 − ρi2)
2]

}
. (3.34)

We substitute k0 = (ks + ki) and kd = (ks − ki)/2, and writing rs1 ≈ z + ρ2
s1/2z, etc.,

we substitute r′1 = rs1 − ri1 and r′2 = rs2 − ri2. Next, substituting for α and β from

Eq. (3.23), we write Eq. (3.34) in terms of the two displacement parameters defined
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in Eq. (3.15):

W (2)(ρ1, ρ
′
1,ρ2,ρ

′
2, z) = ei[k0(r1−r2)+kd(r′1−r′2)]

×
√

S(2)(ρ1,ρ′1, z)S(2)(ρ2,ρ′2, z)µ(2)(∆ρ, ∆ρ′, z) (3.35a)

where

S(2)(ρ1, ρ
′
1, z) =

C1 exp
{−[2σ2

sσ
2
µ/z

2(σ2
µ + 4σ2

s)](k0ρ1 + kdρ
′
1)

2 − [(k2
0 − 4k2

d)c0L/(8k0z
2)](ρ′1)

2
}

(3.35b)

is the two-photon spectral density in alternative 1 with C1 = |A|2{[Apπσsδ(k
2
0 −

4k2
d)]/(2z

2)}2, and where

µ(2)(∆ρ, ∆ρ′, z) = exp
{−[2σ4

s/z
2(σ2

µ + 4σ2
s)](k0∆ρ + kd∆ρ′)2

}
(3.35c)

is the degree of spatial two-photon-coherence. The coincidence count rate Rsi(rs, ri)

of Eq. (3.18a) can now be shown to be

Rsi(rs, ri) = k2
1S

(2)(ρ1, ρ
′
1, z) + k2

2S
(2)(ρ2,ρ

′
2, z)

+ 2k1k2

√
S(2)(ρ1,ρ′1, z)S(2)(ρ2,ρ′2, z)µ(2)(∆ρ, ∆ρ′, z) cos(k0∆L + kd∆L′), (3.36)

where we have substituted ω0 = (ωs + ωi) and ωd = (ωs − ωi)/2, and have replaced

ω0ts1 by k0ds1 and ωdts1 by kdds1, etc. We have also substituted l1 = r1 +(ds1 +di1)/2,

l2 = r2 + (ds2 + di2)/2; l′1 = r′1 + (ds1 − di1), l′2 = r′2 + (ds2 − di2); and ∆L = l1 − l2

and ∆L′ = l′1− l′2. Here l′1(2) is the two-photon path-asymmetry length in alternative

1(2) [81]. We note that the finite thickness of the crystal affects only the two-photon

spectral densities in the two alternatives and has no affect on the degree of spatial

two-photon-coherence, which has the same functional form as that of the degree of
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spatial coherence of the pump field. The visibility V of two-photon interference fringes

is given by

V =
2k1k2

√
S(2)(ρ1,ρ′1, z)S(2)(ρ2,ρ′2, z)

k2
1S

(2)(ρ1, ρ′1, z) + k2
2S

(2)(ρ2,ρ′2, z)
µ(2)(∆ρ, ∆ρ′, z). (3.37)

3.6 Position-momentum entanglement

Two-photon coherence in the spatial domain in interrelated with entanglement in the

position-momentum degree of freedom. The simple meaning of position-momentum

entanglement is that the two photons become simultaneously correlated in their po-

sitions and momenta. As a consequence, by measuring either the position or the

momentum of one of the two photon, either the position or the momentum, respec-

tively, of the other photon can be inferred, in principle, with complete certainty [94].

This fact that the non-commuting observables, position and momentum, could be

known with more certainty than is allowed by the uncertainty principle forms the

core of the EPR paradox [17].

Position-momentum entanglement in the original EPR sense was demonstrated

by Howell et al. in 2004 [94]. Using the signal and idler photons produced by type-II

parametric down-conversion, Howell et al. measured the position and momentum

correlations by making measurement in the near and far fields of the emitted pho-

tons. The measured two-photon position-momentum variance product was shown to

violate the bound for the EPR and the separability criteria [134]. The first conclu-

sive verification of position-momentum entanglement through the violation of a Bell

inequality was reported by Yarnall et al. [66]. In their experiment, Yarnall et al.

mapped the infinite dimensional Hilbert space of transverse momentum onto a two-

dimensional space of spatial parity, thereby making an entangled two-qubit state in

spatial-parity space. A violation of CHSH-Bell inequality was then demonstrated in

this spatial-parity space.
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Position-momentum entanglement of the down-converted photons has been ex-

ploited for preparing entangled states that could be used in quantum information

based applications [25, 26, 27]. Utilizing either the position or the momentum corre-

lations of the down-converted photons, several research groups have reported exper-

imental demonstrations of entangled two-qudit states. Neves et al. [135, 136, 137]

have used the position correlations to prepare entangled two-qudit states with d = 4

and 8. In their scheme, they employed apertures with d-slits to define the qudit

space and placed them along the paths of the signal and idler photons. O’Sullivan

et al. [138] have demonstrated another scheme, utilizing also the position correla-

tions, to prepare two-qudit states with d = 3 and 6. In their scheme, each of the

down-converted photons is mapped onto a set of discrete regions of space, which they

refer to as ‘pixels’. These pixels, which are defined by the input facets of multi-mode

optical fibers, form the qudit space for each photon.

3.7 Spatial two-photon coherence and entanglement

of spatial two-qubit states

In the pervious sections, we discussed how the spatial coherence properties of the two-

photon field propagate and how they depend on the spatial coherence properties of

the pump field. In this section, we study the connection between the degree of spatial

two-photon-coherence and the degree of entanglement of two-qubit states that are

based on the spatial correlations of the position-momentum entangled photons. We

limit our analysis in this section to the case of degenerate down-conversion only.

Two-qubit states are very important for quantum information technology, as they

are the necessary ingredients for many quantum information based applications, such

as quantum cryptography [25], quantum dense coding [26], and quantum teleporta-

tion [27]. Position-momentum entanglement of the down-converted photons has been

exploited in several ways for preparing entangled two-qubit states (two-qudit states



3.7 Spatial two-photon coherence and entanglement of spatial two-qubit states 81

z

PDC

rs

ri

ρi1

ρs2

ρi2

ρs1

z=0 z

Ds

x

y

Di

Figure 3.4: A generic scheme to prepare spatial two-qubit states. The phase-matching
conditions and the coherence properties of the pump field are adjusted in such a way
that there are only two alternative pathways, with nonzero probabilities, by which
the signal and idler photons can reach detectors Ds and Di. The state of the two
photons after the double-hole aperture is then represented by the density matrix ρqubit

of Eq. (3.38).

in general) [136, 138, 139, 140], by utilizing either the position or the momentum

correlations of the entangled photons. When position correlations are used for the

purpose, the prepared qubit states are referred to as spatial two-qubit states. Entan-

glement of the spatial two-qubit states are quite often quantified by an entanglement

measure called concurrence [76, 77]. In what follow we establish a precise relationship

between the degree of spatial two-photon-coherence and the entanglement of spatial

two-qubit states. We derive an explicit relationship showing how the entanglement

of a spatial two-qubit state gets affected by the spatial coherence properties of the

two-photon field, and in turn by the spatial coherence properties of the pump field.

We restrict our analysis to the class of two-qubit states that can be represented by a

density matrix having only two non-zero diagonal elements.

A generic scheme for preparing spatial two-qubit states is depicted in Fig. 3.4.

The states prepared by both Neves et al. [135, 136] and O’Sullivan et al. [138] can

be analyzed using this generic scheme. In this scheme, position-momentum entan-

gled photons are each made to pass through a double-hole. Thus {|s1〉, |s2〉} and
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{|i1〉, |i2〉} form the two-dimensional orthonormal bases for the signal and idler pho-

tons, respectively, where |s1〉 represents the state of the signal photon passing through

the hole located at transverse position ρs1, etc. The four-dimensional basis set for the

two-qubit state can then be represented by {|s1〉|i1〉, |s1〉|i2〉, |s2〉|i1〉, |s2〉|i2〉}, where

|s1〉|i1〉 represents the joint state of the signal and idler photons when the signal pho-

ton passes through the hole located at ρs1 and the idler photon passes through the

hole located at ρi1, etc.

We now make an explicit assumption that the probabilities of finding the sig-

nal and idler photons in states |s1〉|i2〉 and |s2〉|i1〉 are negligibly small. In an

experiment, this can be ensured by keeping the separations between the two sig-

nal and the two idler holes to be much bigger than the two-photon correlation

width so that the two-photon spectral densities for the pairs of transverse positions

(ρs1,ρi2) and (ρs2, ρi1) are negligibly small. With the above assumption, the den-

sity matrix ρqubit of the two-qubit state thus prepared can be written in the basis

{|s1〉|i1〉, |s1〉|i2〉, |s2〉|i1〉, |s2〉|i2〉} as:

ρqubit =




a 0 0 c

0 0 0 0

0 0 0 0

d 0 0 b




. (3.38)

where a and b are the probabilities that the signal and idler photons are detected in

states |s1〉|i1〉 and |s2〉|i2〉, respectively, with a + b = 1; the probabilities that the

signal and idler photons are detected in states |s1〉|i2〉 and |s2〉|i1〉 are zero. The

off-diagonal term c is a measure of coherence between states |s1〉|i1〉 and |s2〉|i2〉,
with c = d∗. From our studies in Sections 3.4 and 3.5, we find that the probability

a of detecting the signal and idler photons in state |s1〉|i1〉 is proportional to the

two-photon spectral density S(2)(ρ1, z), where ρ1 = (ρs1 + ρi1)/2 is the two-photon

transverse position vector for the pair of points ρs1 and ρi1. Similarly, the probability



3.7 Spatial two-photon coherence and entanglement of spatial two-qubit states 83

b of detecting the signal and idler photons in state |s2〉|i2〉 is proportional to the

two-photon spectral density S(2)(ρ2, z), where ρ2 = (ρs2 + ρi2)/2 is the two-photon

transverse position vector for the pair of points ρs2 and ρi2. Thus, we write

a = ηk2
1S

(2)(ρ1, z) and (3.39)

b = ηk2
2S

(2)(ρ2, z), (3.40)

where η = 1/[k2
1S

(2)(ρ1, z)+k2
2S

(2)(ρ2, z)] is the constant of proportionality. Further,

we find that the off-diagonal term c, which is a measure of coherence between the two-

photon states |s1〉|i1〉 and |s2〉|i2〉, is proportional to the two-photon cross-spectral

density W (2)(ρ1,ρ2, z) ≡ W (2)(ρs1,ρi1,ρs2,ρi2, z) at the two pairs of transverse posi-

tions (ρs1,ρi1) and (ρs2,ρi2), that is,

c = d∗ = ηk1k2W
(2)(ρ1,ρ2, z). (3.41)

We now quantify the entanglement of the two-qubit state represented by the den-

sity matrix ρqubit. The entanglement of a general two-qubit state can be characterized

in terms of Wootters’s concurrence [76, 77], which ranges from 0 to 1, with 1 cor-

responding to the maximally-entangled two-qubit state and 0 to a non-entangled

state. For a given two-qubit density matrix ρ, the concurrence C(ρ) is given by

C(ρ) = max{0,√λ1 −
√

λ2 −
√

λ3 −
√

λ4}. Here the λis are the eigenvalues, in de-

scending order, of matrix ζ = ρ(σy ⊗ σy)ρ
∗(σy ⊗ σy), with σy = (

0 −i

i 0
) being the

usual Pauli operator and ρ∗ the complex conjugate of ρ. For the density matrix ρqubit,
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the matrix ζ becomes

ζ =




ab + cd 0 0 2ac

0 0 0 0

0 0 0 0

2bd 0 0 ab + cd




. (3.42)

The eigenvalues of ζ in descending order are:

λ1 = (
√

ab +
√

cd)2,

λ2 = (
√

ab−
√

cd)2,

λ3 = 0 and

λ4 = 0. (3.43)

As c = d∗, the eigenvalues of ζ can be written as

λ1 = (
√

ab + |c|)2,

λ2 = (
√

ab− |c|)2,

λ3 = 0 and

λ4 = 0. (3.44)

Thus, the concurrence C(ρqubit) = max{0,√λ1 −
√

λ2 −
√

λ3 −
√

λ4} is given by

C(ρqubit) = 2|c| = 2k1k2|W (2)(ρ1, ρ2, z)|
k2

1S
(2)(ρ1, z) + k2

2S
(2)(ρ2, z)

. (3.45)

We thus find that for a spatial two-qubit state, concurrence is proportional to the

magnitude of the two-photon cross-spectral density at the two pairs of transverse

positions that define the two-qubit state. Using Eq. (3.26a), we rewrite the above
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expression as

C(ρqubit) =
2k1k2

√
S(2)(ρ1, z)S(2)(ρ2, z)

k2
1S

(2)(ρ1, z) + k2
2S

(2)(ρ2, z)
µ(2)(∆ρ, z). (3.46)

Comparing the above equation with Eq. (3.28), we at once see that the quantity on

the right hand side of the above equation is the far-field visibility V of two-photon

interference fringes produced by the pair of double holes. This implies that for a

two-qubit state that has only two non-zero diagonal elements, entanglement can be

characterized using a single experimentally measurable quantity. In the special case

in which S(2)(ρ1, z) = S(2)(ρ2, z) and k1 = k2, we get

C(ρqubit) = µ(2)(∆ρ, z); (3.47)

that is, when the two-photon spectral densities at ρ1 and ρ2 are equal and when the

diffracted intensities in the two alternatives are also equal, concurrence becomes equal

to the degree of spatial two-photon-coherence. Since the degree of spatial two-photon-

coherence depends on the degree of spatial coherence of the pump field, we find that

the maximum achievable entanglement of a spatial two-qubit state is bounded by the

degree of spatial coherence of the pump field. The results presented in this chapter

are reported in Ref. [141].

3.8 Summary

In summary, we have studied the spatial coherence properties of the two-photon

field produced by parametric down-conversion when the pump field producing PDC

is, spatially, a partially coherent beam of Gaussian Schell-model type. We have

constructed two displacement parameters using the transverse position vectors of the

signal and idler photons in two interfering alternatives. In terms of these parameters,

we have described two-alternative spatial two-photon interference and have shown
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that in PDC the spatial coherence properties of the pump field get entirely transferred

to the spatial coherence properties of the down-converted two-photon field. We have

then analyzed the connection between the degree of spatial two-photon-coherence

and entanglement of two-qubit states that are based on the spatial correlations of

the position-momentum entangled photons. We have shown that the concurrence of

a spatial two-qubit state is proportional to the magnitude of the two-photon cross-

spectral density at the two pairs of transverse positions that define the two-qubit state.

Further, we have shown that for such states the maximum achievable entanglement is

bounded by the degree of spatial coherence of the pump field and that it can therefore

be tailored by controlling the spatial coherence properties of the pump field.

It has been recently shown that spatially partially coherent beams are less affected

by atmospheric turbulence than are spatially fully coherent beams [142, 143, 144]. In

light of the results presented in this chapter, it then follows, at least intuitively, that

the entangled two-photon field produced by using a partially coherent pump beam

will be less susceptible to atmospheric turbulence than will the entangled two-photon

field produced by using a fully coherent pump beam. This may have important

implications for many quantum-information based real-world applications.



Chapter 4

Two-Photon Coherence Effects:

Angular

4.1 Introduction

In recent years, much attention has been devoted to studying the orbital angular

momentum (OAM) of light beams [44, 45, 48, 49, 50, 145], and to studying and

characterizing the OAM-entanglement of the down-converted two-photon fields [22,

146, 147, 148, 149, 150, 151, 152]. In particular, it has been shown that angular

position and orbital angular momentum form Fourier pairs [44, 45, 46]. The existence

of such a Fourier relationship gives rise to angular interference—interference in the

distribution of OAM modes of a photon field when it passes through an angular

aperture [45, 49, 50]. The angular Fourier relationship in the context of angular-

position–OAM entanglement leads to what is known as the angular EPR paradox

[153].

Entanglement in angular-position–OAM degree of freedom gives rise to two-photon

interference in the angular domain, which is the subject of the present chapter. In

this chapter, we also report experimental demonstrations of two-qubit states that are

based on the angular-position correlations of entangled photons. Entangled two-qubit

87
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states are the essential ingredient for many quantum information based applications,

such as quantum cryptography [25], quantum dense coding [26], and quantum tele-

portation [27].

The chapter is organized as follows. Section 4.2 describes beams that carry well-

defined orbital angular momentum. The angular Fourier relationship is described in

Section 4.3. Sections 4.4 and 4.5 discuss, respectively, the conservation of orbital

angular momentum in parametric down-conversion and the angular-position–OAM

entanglement of the down-converted photons. In Sections 4.6 and 4.7, we describe

our studies of angular two-photon interference and present a new method of preparing

entangled two-qubit states. Section 4.8 contains the summary.

4.2 Orbital angular momentum of light

In 1936 Beth [154] made the first observation of the spin angular momentum of

photons. In his experiment, a right circularly polarized light was passed through a

birefringence plate that transformed it into a left circularly polarized light. A 2h̄

of spin angular momentum per photon was found to have been transferred to the

birefringence plate. In 1992, Allen et al. showed that a light beam with a Laguerre-

Gaussian amplitude distribution carries a well-defined orbital angular momentum

[48]. The field amplitude ψpl(ρ, φ, z) of a Laguerre-Gaussian mode is given by

ψpl(ρ, φ, z) =
C

(1 + z2/z2
R)1/2

exp

[
i(2p + l + 1)tan−1

(
z

zR

)][
ρ/2

w(z)

]l

Ll
p

[
2ρ2

w2(z)

]

× exp

[
− ρ2

w2(z)

]
exp

[
− ik2ρ2z

2(z2 + z2
R)

]
e−ilφ, (4.1)

where C is a constant, k the wave-vector magnitude of the field, ZR the Rayleigh

range, and w(z) the radius of the beam at z = 0. Ll
p is the associated Laguerre
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Figure 4.1: The intensity and phase patterns of the first three Laguerre-Gaussian
modes: LG0, LG1, and LG2. The scales on the intensity plots are arbitraty, whereas
the scales on the phase plots go from 0 to 2π, as shown.

polynomial given by

Ll
p(x) =

p∑
m=0

(−1)mCp+l
p−m

xm

m!
, (4.2)

with Cn
k =

n!

k!(n− k)!
. The amplitude of a Laguerre-Gaussian (LG) mode has an

azimuthal phase dependence e−ilφ, where l is called the azimuthal mode index. Allen

et al. showed that a Laguerre-Gaussian mode with index l possesses an orbital angular

momentum of lh̄ per photon. Although Laguerre-Guassian modes are, in general,

characterized using two indices, l and p, in what follows we consider only those LG
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Figure 4.2: Schematic of the method used to generate Laguerre-Gaussian (LG) beams
using a computer generated hologram. The phase pattern of the computer generated
hologram contains a phase grating and an azimuthal phase e−ilφ, with l = 1. When a
Gaussian beam (LG0) falls on such a hologram, it gets diffracted into many different
orders. In the 0th diffraction order, a beam with original phase and intensity structure
is obtained. In the ±1 diffraction order, LG±1 beam is obtained. Similarly in ±2
diffraction order, LG±2 beam is obtained, and so on.

modes that have p = 0. So in the rest of this chapter, we shall drop the index p while

writing LG modes and show the index l alone. Figure 4.1 shows the intensity and

phase patterns of the first three LG modes: LG0, LG1 and LG2.

Light beams carrying orbital angular momentum are now routinely produced.

There are many methods that are currently being employed to produce such beams.

One method is based on using the so-called spiral-phase plates [47], and the other is
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based on using the computer generated holograms [147]. Both these methods have

their own advantages. Whereas the spiral-phase-plate method is more efficient, the

computer generated holograms are easier to implement in experiments. One other

method is using stress birefringence [155]. Figure 4.2 depicts the schematic of a

method used to generate LG beams using computer generated holograms.

4.3 Angular Fourier relationship

Just as position and linear momentum of a photon form Fourier pairs, a photon’s

angular position and orbital angular momentum (OAM) form Fourier pairs [44, 45,

46]. The Fourier relationship is

ψl =
1√
2π

∫ π

−π

dφΨ(φ) exp(−ilφ), (4.3)

Ψ(φ) =
1√
2π

+∞∑

l=−∞
ψl exp(ilφ). (4.4)

Here ψl, which represent the field amplitude of an LG mode of azimuthal index l, is

the probability amplitude that the photon field is carrying orbital angular momentum

lh̄, while Ψ(φ) is the probability amplitude that the angular position of the photon

is angle φ. The form of this angular Fourier relationship is different from what one

obtains for position and linear momentum. This is because of the fact that both po-

sition and linear momentum are unbounded and continuous variables, whereas angle

is 2π periodic and orbital angular momentum unbounded and discrete. Nevertheless,

because of the angular Fourier relationship, interference effects are observed in the

distribution of the OAM-mode distribution of a photon field when it passes through

an angular aperture [49, 50].

Angular Fourier relationship has been verified in several experiments [49, 50].

More recently, we have demonstrated angular Fourier relationship using the down-

converted signal and idler photons [50]. In our experiments, we have demonstrated
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that an angular aperture placed in the signal photon-path causes angular interference

in the OAM-mode distribution of the idler photons.

4.4 Conservation of orbital angular momentum in

down-conversion

The homogeneity in time, or the time translational invariance, leads to conservation

of energy. Similarly, the homogeneity in space, or the space translational invari-

ance, leads to the conservation of linear momentum [156]. In the same way, the

rotational invariance leads to the conservation of orbital angular momentum. In the

context of parametric down-conversion, energy and momentum conservation laws are

always valid. However, due to the anisotropy of the nonlinear crystal involved in

parametric down-conversion, there has been a debate as to whether in PDC orbital

angular momentum remains conserved or not. Most workers have pointed out that

orbital angular momentum remains conserved in PDC [22, 148, 149, 152, 157], and

they have attributed the conservation either to the phase-matching in the nonlinear

crystal [148] or to the transfer of the plane-wave spectrum from the pump beam to

the down-converted field [149]. However, there are others who hold contrary views

[146, 158]. A recent paper by Feng and Kumar [159] has tried to settle the controversy.

It is now generally believed that in type-I down-conversion with nearly collinear con-

figurations, OAM is conserved, whereas in type-II down-conversion, orbital angular

is not completely conserved.

The first experimental demonstration of the conservation of orbital angular mo-

mentum was reported by Mair et al. [147]. In their experiment, the down-converted

photons were produced with type-I phase-matching condition. Pump beams with

different orbital angular momenta (h̄lp) were used, and for each h̄lp, orbital angular

momenta of the signal (h̄ls) and idler (h̄li) photons were measured using computer

generated holograms. It was found that for every set of measured values of lp, ls and
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li, the OAM of the pump photon was equal to the sum of the OAMs of the signal

and idler photons, that is, h̄lp = h̄ls + h̄li. Thus the conservation of orbital angular

momentum in PDC was confirmed.

4.5 Angular-position–orbital-angular-momentum en-

tanglement

The conservation of orbital angular momentum in parametric down-conversion leads

to entanglement of the signal and idler photons in angular-position–OAM degree of

freedom. An EPR-type interpretation of angular-position–OAM entanglement was

presented by Götte et al. in their work entitled “angular EPR paradox [153].”

Angular-position–OAM entanglement of the down-converted photons have been

verified in many experiments. The first such demonstration was reported by Vaziri

et al. [22], who showed a violation of a generalized CHSH-type Bell inequality [73]

in three dimensions by more that 18 standard deviations. More recently, Leach et

al. [68] have demonstrated OAM entanglement through violations of CHSH-Bell

inequalities in a number of two-dimensional subspaces. Using non-integer spiral phase

plates, Oemrawsingh et al. have also demonstrated OAM entanglement, although not

through a Bell-inequality violation [151, 160].

The angular-position–OAM entanglement of the down-converted photons has also

been exploited for preparing entangled two-qudit states for use in quantum informa-

tion protocols. In 2004, Langford et al. demonstrated an entangled two-qutrit state

that was based on the OAM correlations of down-converted photons [161]. Leach et

al. have also utilized the OAM correlations of down-converted photons to prepare

entangled two-qubit states [68]. Recently, we reported experimental demonstrations

of two-qubit states that was based on the angular-position correlations of down-

converted photons [162]. In our experiment, the two-qubit state was prepared by

using apertures in the form of double angular-slits, and the state was characterized
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through separate measurements in the angular position and orbital angular momen-

tum bases. The degree of entanglement of the state was quantified by evaluating its

concurrence.

4.6 Angular two-qubit states and two-photon an-

gular interference

Two-qubit states are, in general, prepared by exploiting correlations of the entangled

photons in one of the variables. Such states have been realized by exploring corre-

lations in several variables: polarization [99, 163], time-bin [95, 164], frequency [67],

position [135, 136], transverse momentum [21, 138], and OAM [22, 68, 161]; however,

to date, the angular-position correlations of the entangled photons have not been

utilized for preparing entangled two-qubit states. In this and the next sections, we

describe our studies related to angular two-photon interference and our experimental

demonstrations of angular two-qubit states.

Let us consider the situation shown in Fig. 4.3(a). A Gaussian pump beam pro-

duces signal and idler photons by type-I degenerate PDC with non-collinear phase

matching. The state |ψtp〉 of the down-converted two-photon field is given by [148,

149]:

|ψtp〉 =
∞∑

l=−∞
cl|l〉s| − l〉i. (4.5)

Here s and i stand for signal and idler respectively; and |l〉 represents an OAM eigen-

mode of order l, corresponding to an azimuthal phase e−ilφ. |cl|2 is the probability

that the signal and idler photons are generated in modes of order l and −l, respec-

tively. The width of the mode probability distribution is referred to as the spiral

bandwidth of the two-photon field, which depends on the nonlinear crystal and pump

beam parameters [152]. In an experimental situation, the observed bandwidth also
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depends on, and is often limited by, the finite numerical aperture of the detection

system.

The signal and idler photons are made to pass through double angular-slits [as

shown in Fig. 4.3(a)] located in the image planes of the crystal. The amplitude

transmission functions of the individual angular-slits are given by

Aja(φj) =





1 if −α/2 < φj < α/2,

0 otherwise;

(4.6)

Ajb(φj) =





1 if β − α/2 < φj < β + α/2,

0 otherwise,

(4.7)

where j = s, i. There are in principle four alternative pathways—represented by the

two-photon path diagrams [81] of Fig. 4.3(c)—by which the down-converted photons

can pass through the apertures and get detected in coincidence at detectors Ds and Di.

In alternative 1(4), the signal photon passes through slit Asa(Asb) and the idler photon

passes through slit Aia(Aib). In alternative 2(3), the signal photons passes through

slit Asa(Asb) and the idler photon passes through slit Aib(Aia). We represent the

states of the signal and idler photons in alternatives 1, 2, 3 and 4 by |sa〉|ia〉, |sa〉|ib〉,
|sb〉|ia〉 and |sb〉|ib〉, respectively. Due to the strong position correlations of the down-

converted photons in the image planes of the crystal, only two of the alternatives,

alternatives 1 and 4, have appreciable probabilities whereas the other two alternatives,

alternatives 2 and 3, have almost negligible probabilities. The state |ψ2〉 of the two

qubits thus prepared can ideally be given by |ψqubit〉 = 1/
√

2 [|sa〉|ia〉+ |sb〉|ib〉]. In

physical situations, however, quantum states are never completely pure; and there-

fore, they have to be represented by density matrices. The density matrix ρqubit

of the two-qubit state thus prepared can be written in the angular-position basis
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Figure 4.3: (a) Schematic of the experimental setup. The pump is a frequency-tripled,
mode-locked, Nd-YAG laser (Excyte) with a pulse repetition frequency of 100 MHz
and an average power of 150 mW at 355 nm. SLM denotes a spatial light modulator
from Hamamatsu, SMF a single mode fiber, and F an interference filter centered
at 710 nm. (b) A typical design of the SLM-phase pattern. (c) Two-photon path
diagrams showing four alternative pathways by which signal and idler photons can
pass through the angular-slits and be detected in coincidence at detectors Ds and Di.
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{|sa〉|ia〉, |sa〉|ib〉, |sb〉|ia〉, |sb〉|ib〉} as:

ρqubit = ρ11|sa〉|ia〉〈ia|〈sa|+ ρ14|sa〉|ia〉〈ib|〈sb|
+ ρ41|sb〉|ib〉〈ia|〈sa|+ ρ44|sb〉|ib〉〈ib|〈sb|, (4.8)

where ρ11 and ρ44 are the probabilities that the signal and idler photons are detected

in alternatives 1 and 4, respectively, with ρ11 + ρ44 = 1. The off-diagonal term ρ14 is

a measure of coherence between alternatives 1 and 4, with ρ14 = ρ∗41; it is in general

a complex number and can be written as ρ14 =
√

ρ11ρ44 µeiθ, where µ is the degree

of coherence and eiθ the complex part of ρ14. In writing Eq. (4.8), we have explicitly

assumed that the probabilities ρ22 and ρ33 of finding the signal and idler photons in

alternatives 2 and 3 are negligibly small.

We now write the density matrix ρqubit in the OAM basis. By taking the Fourier

transforms of the amplitude transmission functions Asa(φs) and Aia(φi) [44, 45], cor-

responding to each OAM mode in the summation of Eq. (4.5), we write |sa〉|ia〉 in

the OAM basis as

|sa〉|ia〉 = A
∑

l

cl

∑

l′

1√
2π

∫ π

−π

dφsAsa(φs)e
−i(l′−l)φs|l′〉s

×
∑

l′′

1√
2π

∫ π

−π

dφiAia(φi)e
−i(l′′+l)φi|l′′〉i, (4.9)

where A is the normalization constant to ensure that 〈ia|〈sa|sa〉|ia〉 = 1. Substituting

for As1(φs) and Ai1(φi) from Eqs. (4.6), we evaluate the state to be

|s1〉|i1〉 =
Aα2

2π

∑

l

∑

l′

∑

l′′
cl sinc

[
(l′ − l)

α

2

]
sinc

[
(l′′ + l)

α

2

]
|l′〉s|l′′〉i. (4.10)

Because of the angular Fourier relationship, the OAM of the photon gets distributed

among an envelope of OAM modes. In a similar manner, we evaluate |s2〉|i2〉 by
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substituting from Eq. (4.7) to be

|s2〉|i2〉 =
Aα2

2π

∑

l

∑

l′

∑

l′′
cl sinc

[
(l′ − l)

α

2

]
sinc

[
(l′′ + l)

α

2

]
e−i(l′+l′′)β|l′〉s|l′′〉i.

(4.11)

The coincidence count rate Rsi of detectors Ds and Di, which is the probability per

(unit time)2 that a photon is detected at detector Ds in mode ls and another at

detector Di in mode li is given by Rsi = i〈li|s〈ls|ρ|ls〉s|li〉i. Using Eqs. (4.6) through

(4.11), we find that

Rsi =
A2α4

4π2

∣∣∣
∑

l

cl sinc
[
(ls − l)

α

2

]
sinc

[
(li + l)

α

2

] ∣∣∣
2

× {1 + 2
√

ρ11ρ44 µ cos [(ls + li)β + θ]}, (4.12)

The interference between the two alternatives manifests itself in the periodic de-

pendence on the angular separation β and on the sum of the OAMs ls + li. From

Eq. (4.12), ignoring the effects due to diffraction envelopes, the visibility V of the

coincidence fringes can be seen to be

V = 2
√

ρ11ρ44 µ. (4.13)

The entanglement of a general two-qubit state can be characterized in terms of

Wootters’s concurrence [76, 77], which ranges from 0 to 1, with 1 corresponding

to the maximally-entangled two-qubit state and 0 to a non-entangled state. For a

given two-qubit density matrix ρ, the concurrence C(ρ) is then given by C(ρ) =

max{0,√λ1 −
√

λ2 −
√

λ3 −
√

λ4}. Here the λis are the eigenvalues, in descending

order, of the matrix ζ = ρ(σy ⊗ σy)ρ
∗(σy ⊗ σy), with σy = (

0 −i

i 0
) being the usual

Pauli matrix, and where ρ∗ is the complex conjugate of ρ.

To calculate the concurrence of our two-qubit state, we write the density matrix
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ρqubit in the full 4×4 form, which is given as

ρqubit =




ρ11 0 0 ρ14

0 0 0 0

0 0 0 0

ρ41 0 0 ρ44




, (4.14)

Now, we evaluate the matrix ζ = ρ(σy ⊗ σy)ρ
∗(σy ⊗ σy), which is given by:

ζ =




ρ11 0 0 ρ14

0 0 0 0

0 0 0 0

ρ41 0 0 ρ44



·




0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0



·




ρ11 0 0 ρ41

0 0 0 0

0 0 0 0

ρ14 0 0 ρ44




·




0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0




(4.15)

Carrying out the above multiplication, we obtain

ζ =




ρ11ρ44 + ρ14ρ41 0 0 2ρ11ρ14

0 0 0 0

0 0 0 0

2ρ44ρ41 0 0 ρ11ρ44 + ρ14ρ41




. (4.16)
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The four eigenvalues of ζ, in the descending order, are:

λ1 = (
√

ρ11ρ44 +
√

ρ14ρ41)
2,

λ2 = (
√

ρ11ρ44 −√ρ14ρ41)
2,

λ3 = 0 and

λ4 = 0. (4.17)

Since we have ρ14 = ρ∗41, the four eigenvalues can be written as

λ1 = (
√

ρ11ρ44 + |ρ14|)2,

λ2 = (
√

ρ11ρ44 − |ρ14|)2,

λ3 = 0 and

λ4 = 0. (4.18)

Thus, for the density matrix of Eq. (4.14), which has only two non-zero diagonal

elements, the concurrence C(ρqubit) = max{0,√λ1 −
√

λ2 −
√

λ3 −
√

λ4} is

C(ρqubit) = 2|ρ14| = 2
√

ρ11ρ44µ. (4.19)

By comparing Eqs. (4.13) and (4.19), we see that the concurrence is equal to the

visibility of the angular two-photon interference fringes

C(ρqubit) = V. (4.20)

Thus, for a two-qubit state that can be represented by a density matrix having only

two non-zero diagonal elements, the entanglement can be characterized using a single

experimentally measurable quantity.
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4.7 Experimental realization of an angular two-

qubit state

In the setup of Fig. 4.3, the pump is a frequency-tripled, mode-locked, Nd-YAG laser

(Excyte) with a pulse repetition frequency of 100 MHz and an average power of 150

mW at 355 nm. SLM denotes a spatial light modulator from Hamamatsu, SMF a

single mode fiber, and F an interference filter centered at 710 nm. The beam waist

width of the Gaussian pump beam at the PDC crystal plane was approximately

400 µm. The crystal plane was imaged, with a magnification of about 5, onto the

SLM planes, which were then imaged onto the input facets of the SMFs with a

demagnification of about 380. The SLMs were used for two purposes as illustrated in

Fig. 4.3(b). One, they were used for selecting out OAM modes [147]; and two, they

were used for simulating amplitude apertures [165] described by Eqs. (4.6) and (4.7).

First of all, without any apertures, the mode probabilities |cl|2 were measured.

Figure 4.4 shows the measured coincidence counts plotted against l, with signal and

idler photons being detected in modes of order l and −l, respectively. The mode

probabilities |cl|2 were calculated by normalizing the counts of Fig. 4.4.

Secondly, we verify the preparation of the two-qubit state as represented by

Eq. (4.8). Coincidence counts were measured with only one of the signal and one

of the idler slits, with α = π/10 and β = π/4, being displayed on the SLMs and with

both signal and idler photons being detected in modes of order 0. Figure 4.5 shows

the measured coincidence detection probabilities of the signal and idler photons in

the four different alternatives. We find that the probabilities ρ22 and ρ33 are negli-

gibly small and that only the two probabilities, ρ11 and ρ44, are appreciably greater

than zero. Therefore, as shown by Eq. (4.20), the entanglement of the prepared two-

qubit state can be characterized by measuring the visibility of two-photon interference

fringes in the OAM basis.

Next, measurements were made in the OAM basis. Both signal and idler slits,
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Figure 4.4: Measurements of the OAM-mode probabilities, with no patterns being
displayed on the SLMs. Measured coincidence counts are given as a function of l, the
OAM-mode order of the detected signal photon, with −l being the OAM-mode order
of the idler photon. The width of this distribution is known as the spiral bandwidth,
which is limited by the finite numerical aperture of the detection system.
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Figure 4.5: Measurements in the angular position basis. Measured coincidence detec-
tion probabilities ρ11, ρ22, ρ33 and ρ44 of the signal and idler photons in alternatives
1, 2, 3 and 4, respectively, are shown. The probabilities ρ22 and ρ33 are negligibly
small, showing that the two-qubit state prepared in our experiment resembles the
state represented by Eq. (4.8) to an excellent approximation.

with α = π/10 and β = π/4, were displayed on the SLMs. SLMi was adjusted to

successively select out two different idler OAM modes: li = 2 and li = −2. For each
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Figure 4.6: Measurements in the OAM basis. Measured coincidence counts are given
as functions of ls for two different values of li, with α = π/10 and β = π/4. The dotted
lines are measured random coincidences for the 25-ns coincidence detection-window.
The solid lines are theoretical fits obtained from Eq. (4.12). The high visibility of
angular two-photon interference fringes shows that the prepared two-qubit state is
highly entangled.

selected idler mode li, coincidence counts were measured as a function of the signal

OAM mode ls. Figure 4.6 shows the coincidence counts plotted against ls for two

different values of li. The dotted lines are measured random coincidences for the 25-ns

coincidence detection-window. The solid lines are theoretical fits based on Eq. (4.12),

using the values of |cl|2 calculated from Fig. 4.4. The visibility of the two-photon

fringes is about 83%, without subtracting random coincidences, and about 90%, with

random coincidences subtracted. Thus, using Eq. (4.20), we find that the concurrence

of the prepared two-qubit state, which is equal to the visibility of angular two-photon

fringes, is 0.83 (0.90, with random coincidences subtracted). The reason for less
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than unit concurrence is mostly imperfect experimental alignment. We note that

the angular-position correlations as observed in Fig. 4.5 and the angular two-photon

interference effects as observed in Fig. 4.6 can be produced simultaneously only by

angular-position–OAM entangled sources. A non-entangled source can produce one

but not both set of correlations. The results presented in this chapter have been

reported in Ref. [162].

4.8 Summary

In this chapter, we have described a two-alternative angular two-photon interfer-

ence using the entangled photons produced by parametric down-conversion. We

have reported experimental demonstrations of an entangled two-qubit state based

on the angular-position correlations of the down-converted two-photon field. The

state was prepared by using apertures in the form of double angular-slits, and it was

characterized through separate measurements in angular position and OAM bases.

We have quantified the entanglement of the state by evaluating the concurrence.

A demonstration of an angular-position-based entangled two-qubit state not only

provides an additional resource for quantum information science but also has sig-

nificance in the discussions related to the angular uncertainty relation and angular

EPR paradox. We believe that our method of preparing entangled two-qubit states

can be easily generalized to preparing entangled two-qudit states |ψd〉 of the form:

|ψd〉 = 1/
√

d [|s1〉|i1〉+ |s2〉|i2〉 · · ·+ |sd〉|id〉], using apertures with d angular-slits.

The description of angular two-photon interference presented in this chapter only

considers a particular interference scenario; the present description does not account

for situations in which the angular slits are not located in the image planes of the

crystals. The present description also does not explicitly treat the effects due to the

limited spatial coherence of the pump field. These and similar other questions will

form the topic of further research on the subject.



Chapter 5

Conclusions and Discussion

Parametric down-conversion is the most widely used process for generating entangled

two-photon fields. It is a second-order nonlinear optical process in which a pump pho-

ton interacts with a nonlinear crystal and breaks up into two separate photons known

as the signal photon and the idler photon. The constraints of energy and momen-

tum conservation in parametric down-conversion render the two photons entangled

in several different variables including time and energy, position and momentum, and

angular position and orbital angular momentum. In this thesis, we have developed a

theoretical formalism to study the coherence properties of the entangled two-photon

field produced by down-conversion. We have also carried out several experiments to

study, explore and quantify entanglement of the down-converted two-photon field,

and have used our theoretical formalism to analyze these experiments successfully.

In the first part of this thesis, the temporal coherence properties of the down-

converted two-photon field were studied. The description of temporal two-photon

interference with the down-converted signal and idler photons involves, in general,

six different length parameters, which are the path lengths traveled by the pump,

signal and idler photons in two interfering alternatives. In terms of these six length

parameters, two separate length parameters—called the two-photon path length dif-

ference and the two-photon path-asymmetry length difference—were constructed. A

105
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theoretical formalism was developed in terms of the two constructed length parame-

ters to describe temporal two-photon interference, in situations in which the frequency

bandwidth of the pump field is much narrower than that of the down-converted sig-

nal and idler fields. It was shown that temporal two-photon interference effects,

including one-photon interference effects observed in certain two-photon interference

experiments, can be completely characterized in terms of the variations of these two

parameters. A two-photon interference experiment was performed in a double-pass

setup, in which the variations of the two length parameters could be independently

controlled and studied. In the setup, which did not involve mixing of signal and idler

photons at a beam splitter, experimental observations of Hong-Ou-Mandel- (HOM-

)like effects were reported both in coincidence and in one-photon count rates. These

results were then used to argue that HOM and HOM-like effects are best described as

observations of how two-photon coherence changes with a variation in the two-photon

path-asymmetry-length difference.

As part of the temporal coherence studies, an alternative way to explore time-

energy entanglement was investigated; the common way to exploit time-energy en-

tanglement of the down-converted photons is by means of the dynamic phases of the

signal and idler photons. Through an experimental observation of a purely-geometric-

phase-based violation of Bell inequality for time and energy, it was shown that the

time-energy entanglement of the down-converted photons can also be explored us-

ing the geometric phases of the signal and idler photons. This result provides an

additional means by which time-energy entanglement, which is a resource to many

quantum information protocols, can be manipulated.

In the second part of the thesis, the spatial coherence properties of the down-

converted two-photon field were investigated, in situations in which the pump field

is, spatially, a partially coherent beam of Gaussian Schell-model type. A description

of spatial two-photon interference was presented in terms of two displacement pa-

rameters, which were constructed using the transverse position vectors of the signal
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and idler photons in two interfering alternatives. In terms of the two displacement

parameters, it was shown that in parametric down-conversion the spatial coherence

properties of the pump field get entirely transferred to the spatial coherence properties

of the down-converted two-photon field. Next, the connection between the degree of

spatial two-photon-coherence and the entanglement of two-qubit states that are based

on the spatial correlations of down-converted photons was investigated. It was found

that the entanglement of a spatial two-qubit state, as quantified by concurrence, is

proportional to the magnitude of the two-photon cross-spectral density at the two

pairs of transverse positions that define the two-qubit state. In the special case for

which the two-photon spectral densities at the two pairs of transverse positions are

equal, concurrence of the state becomes equal to the degree of spatial two-photon-

coherence. Since the degree of spatial two-photon-coherence depends on the degree of

spatial coherence of the pump field, it then follows that the maximum achievable en-

tanglement of a spatial two-qubit state is bounded by the degree of spatial coherence

of the pump field.

In the last part of the thesis, two-photon-coherence effects in the angular domain

were studied. An entangled two-qubit state that is based on the angular-position

correlations of the down-converted photons was experimentally demonstrated. The

qubit-state was prepared by using apertures in the form of double angular-slits, and

it was characterized by making separate measurements in the angular position and

orbital angular momentum bases. The entanglement of the prepared angular two-

qubit state was quantified by evaluating its concurrence. This result is important

as it shows that the angular-position basis can be usefully exploited for applications

in quantum information science. The method used in this experiment can be easily

generalized for preparing entangled two-qudit states, using apertures with d angular-

slits.

In this thesis, the coherence properties of the entangled two-photon field were stud-

ied using four-point correlation functions. An equivalent description of two-photon
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coherence, something that could be pursued as a follow-up work, can also be given in

terms of the two-photon-analogs of the phase-space distribution functions, such as the

Wigner distribution function [166] and the Glauber-Sudarshan P-function [32, 167].

As two-photon coherence and bipartite entanglement are related concepts, studying

the phase-space descriptions of two-photon fields may even lead to a more intuitive

understanding of bipartite entanglement.
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Appendix A

Calculating γ′(∆L′) for various

phase matching conditions

In this appendix, we calculate the time-averaged degree of correlation γ′(∆L′) of

the signal-idler field, for various phase matching conditions. γ′(∆L′) is defined in

Eq. (2.34) as

γ′(∆L′) =
〈g∗1(τ + τ ′1)g2(τ + τ ′2)〉τ√〈|g1(τ + τ ′1)|2〉τ 〈|g2(τ + τ ′2)|2〉τ

. (A.1)

To calculate γ′(∆L′), we first evaluate the phase-matching function given in Eq. (2.12)

and then the function g∗1(τ) given in Eq. (2.26). The phase-matching function defined

in Eq. (2.12) assumes the following form for the phase-matching function Φ1(ω
′
s +

ωs0, ω0 − ωs0 − ω′s) in alternative 1:

Φ1(ω
′
s + ωs0, ω0 − ωs0 − ω′s) =

∫ 0

−L1

dzei[kpz1(ω0)−ksz1(ω′s+ωs0)−kiz1(ω0−ωs0−ω′s)]z. (A.2)

Here L1 is the length of the nonlinear crystal in alternative 1 and ksz1 and kiz1 are the

z-component of the signal and idler wavevectors in alternative 1. These wavevectors
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are expanded in power series around ωs0 and ω0 − ωs0 to give

ksz1(ω
′
s + ωs0) = ksz1(ωs0) + ω′s

d

dω′s
ksz1(ω

′
s + ωs0)

∣∣∣
ω′s=0

+ · · ·

kiz1(ω0 − ωs0 − ω′s) = kiz1(ω0 − ωs0)− ω′s
d

dω′s
kiz1(ω0 − ωs0 − ω′s)

∣∣∣
ω′s=0

+ · · ·
(A.3)

The ellipses represent higher order terms, which can be neglected for most cases except

when degenerate type-I phase-matching is satisfied and the frequency bandwidths of

the filters are much broader than the down-conversion bandwidth. This case will be

treated separately in the next section. We now assume that perfect phase-matching is

satisfied at frequencies ω0, ωs0 and ω0−ωs0 with kpz1(ω0) = ksz1(ωs0)+kiz1(ω0−ωs0).

Thus Eq. (A.2) becomes

Φ1(ω
′
s + ωs0, ω0 − ωs0 − ω′s) =

∫ 0

−L1

dze−iω′sD1z, (A.4)

where

D1 ≡ d

dω′s
ksz1(ω

′
s + ωs0)

∣∣∣
ω′s=0

− d

dω′s
kiz1(ω0 − ωs0 − ω′s)

∣∣∣
ω′s=0

(A.5)

is the group velocity mismatch [90] in alternative 1. Since the signal and idler wave-

vectors ksz1 and kiz1 are polarization-dependent, D1 differs for type-I and type-II

phase-matching conditions. By substituting from Eq. (A.4) into Eq. (2.26), we obtain

the following expression for g∗1(τ):

g∗1(τ) = L1

∫ ∞

−∞
dω′ssinc

(
ω′sD1L1

2

)
fs(ω

′
s)fi(−ω′s)e

iω′s(τ−D1L1/2). (A.6)

The frequency bandwidths of the signal and idler filters are ∆ωs and ∆ωi, respectively;

1/(D1L1) is a measure of the down-conversion frequency-bandwidth in alternative 1.
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A similar expression for g∗s(τ) is obtained:

g∗2(τ) = L2

∫ ∞

−∞
dω′ssinc

(
ω′sD2L2

2

)
fs(ω

′
s)fi(−ω′s)e

iω′s(τ−D2L2/2). (A.7)

where L2 is the length of the crystal in alternative 2 and D2 the group velocity

mismatch in alternative 2; 1/(D2L2) is a measure of the down-conversion frequency-

bandwidth in alternative 2. In two-photon interference experiments in which the same

crystal is involved in both the alternatives, L1 and L2 are equal. The magnitudes of

D1 and D2 are also the same; however, D1 and D2 may have opposite signs.

Using Eqs. (A.6) and (A.7), we evaluate the time-averaged signal-idler correlation

function 〈g∗1(τ + τ ′1)g2(τ + τ ′2)〉τ to be:

〈g∗1(τ + τ ′1)g2(τ + τ ′2)〉τ = 2πL1L2

∫ ∞

−∞
dω′ssinc

(
ω′sD1L1

2

)
sinc

(
ω′sD2L2

2

)

× |fs(ω
′
s)fi(−ω′s)|2 eiω′s(∆L′/c+D1L1/2−D2L2/2). (A.8)

We now evaluate the time-averaged degree of correlation γ′(∆L′) of the signal-idler

field, as defined in Eq. (A.1), for two limiting cases.

A.1 Filter bandwidths much broader than the down-

conversion bandwidth

In this case we have ∆ωs, ∆ωi À 1
D1L1

, 1
D2L2

. The product |fs(ω
′
s)fi(−ω′s)|2 in Eq. (A.8)

remains essentially equal to unity over the frequency-range of interest. The time-

averaged signal-idler correlation function of Eq. (A.8) can therefore be written as

〈g∗1(τ + τ ′1)g2(τ + τ ′2)〉τ = 2πL1L2

∫ ∞

−∞
dω′ssinc

(
ω′sD1L1

2

)
sinc

(
ω′sD2L2

2

)

× eiω′s(∆L′/c+D1L1/2−D2L2/2). (A.9)
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The above integral can be calculated analytically and the time-averaged degree of

correlation γ′(∆L′) of the signal-idler field, of Eq. (A.1), can be shown to be

γ′(∆L′) =
|D1L1|+ |D2L2|
2
√
|D1L1D2L2|

tri

[
D1L1 −D2L2 + ∆L′/c
|D1L1|+ |D2L2|

]
, (A.10)

where the symbol tri stands for the triangle function. We find that γ′(∆L′) is a

triangle function and is, in general, not centered at ∆L′ = 0 [90, 91]. In the special

case when D1L1 = D2L2 = DL, the correlation function simplifies to γ′(∆L′) =

tri [∆L′/(cDL)]. Here 1/DL is a measure of the bandwidth of the signal-idler field,

and thus cDL can be regarded as the coherence length of the signal-idler field in this

case.

The expression for the time-averaged degree of correlation of the signal-idler field

given by Eq. (A.10) holds for all phase-matching conditions other than the degenerate

type-I phase-matching, in which case D1 = D2 = 0 and the approximation used in

Eq. (A.3) is no longer valid. In the case of degenerate type-I phase-matching, the

phase-matching function and thus the time-averaged degree of correlation γ′(∆L′)

of the signal-idler field has to be evaluated by repeating the above calculation while

keeping the higher order terms in Eq. (A.3). The exact calculation is slightly involved

[91]. However, we note that for degenerate type-I phase-matching, the phase-matching

function Φ1(ω
′
s + ωs0, ω0 − ωs0 − ω′s) in Eq. (A.2) remains symmetric with respect to

the signal and idler frequencies. Thus, to a good approximation Φ1(ω
′
s + ωs0, ω0 −

ωs0 − ω′s) can be treated as a Gaussian function and therefore the time-averaged

degree of correlation γ′(∆L′) of the signal-idler field can be written as γ′(∆L′) =

exp
[−(1/2) (∆L′∆ω/c)2], where ∆ω is the effective signal-idler frequency bandwidth.

In most cases, ∆ω is decided by the limiting apertures of the detection system [3].
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A.2 Filter bandwidths much narrower than the

down-conversion bandwidth

In this case we have ∆ωs, ∆ωi ¿ 1/D1L1, 1/D2L2. The product of the sinc functions

in Eq. (A.8) remains essentially equal to unity over the frequency range of interest.

Eq. (A.8) can therefore be written as

〈g∗1(τ + τ ′1)g2(τ + τ ′2)〉τ = 2πL1L2

∫ ∞

−∞
dω′s

× |fs(ω
′
s)fi(−ω′s)|2 eiω′s(∆L′/c+D1L1/2−D2L2/2). (A.11)

We assume Gaussian transmission functions for the two filters, with rms frequency

bandwidths given by ∆ωs and ∆ωi. Eq. (A.8) can now be evaluated analytically and

the time-averaged degree of correlation γ′(∆L′) of the signal-idler field can be shown

to be

γ′(∆L′) = exp

[
−∆ω2

2

(
D1L1

2
− D2L2

2
+

∆L′

c

)2
]
, (A.12)

with 1/∆ω2 = 1/∆ω2
s + 1/∆ω2

i . In the special case when D1L1 = D2L2 the above

equation simplifies to γ′(∆L′) = exp
[−(1/2) (∆L′∆ω/c)2], where ∆ω represents the

bandwidth of the signal-idler field, and thus lcoh = c/∆ω can be referred to as the

coherence length of the signal-idler field.



Appendix B

Induced coherence experiment

In this appendix, we describe Mandel’s famous “induced coherence experiment [4],”

using the formalism developed in Chapter 2 for describing temporal two-photon in-

terference effects. The schematic of the experiment is depicted in Fig. B.1. In this

experiment, two parametric down-converters (PDC1 and PDC2) are pumped coher-

ently. When the paths of the idler photons (i1 and i2) are aligned, one-photon

fringes are observed at detector DA as the beam splitter position x is varied. To

explain this effect, we first calculate the coincidence count rate RAB of detectors DA

and DB. From the two-photon path diagrams shown in Fig. B.1(b), one finds that

that ∆L = x cos θ, ∆L′ = 2x cos θ and ∆φ = π. Substituting these quantities into

Eq. (2.39), we obtain

RAB = C [1− γ′(2x cos θ)γ (x cos θ) cos (k0x cos θ)] . (B.1)

Next, we calculate the coincidence count rate RCB of detectors DC and DB. From

the two-photon path diagrams shown in Fig. B.1(c), we have, ∆L = −x cos θ, ∆L′ =

−2x cos θ and ∆φ = 0. Substituting these quantities into Eq. (2.39), we obtain

RCB = C [1 + γ′(2x cos θ)γ (x cos θ) cos (k0x cos θ)] . (B.2)
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Figure B.1: (a) The schematic setup for the induced-coherence experiment [4]. In
alternative 1, the pump photon gets down-converted in PDC1 while in alternative
2, it gets down-converted in PDC2. (b) Two-photon path diagrams representing the
alternative pathways by which the signal and idler photons can get to detectors DA

and DB. (c) Two-photon path diagrams representing the alternative pathways by
which the signal and idler photons can get to detectors DC and DB.

To calculate the one-photon count rates at detectors DA and DB, we note that the

twin of a photon detected at DA can go only to DB while the twin of a photon

detected at DB can go to both DA and DC . Therefore, using Eqs. (2.46), we find

that the one-photon count rates RA and RB at detectors DA and DB, respectively

are given as:

RA = RAB and (B.3)

RB = RAB + RCB. (B.4)
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Using Eqs. (B.1) and (B.2), we then obtain

RA = C [1− γ′(2x cos θ)γ (x cos θ) cos (k0x cos θ)] , (B.5)

RB = 2C. (B.6)

The one-photon count rate RA at detector DA thus shows interference fringes as a

function of x whereas the one-photon count rate RB at detector DB does not. These

were the results reported in Ref. [4] and explained in terms of ‘induced coherence’.

Here we have shown that they can also be explained in terms of two-photon interfer-

ence effects alone.


