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Abstract

“Slow and fast light” constitute a broad class of science and technology that

can dramatically change the group index of a medium over a certain wavelength

range. This thesis is composed of studies regarding both fundamental aspects and

applications of slow light.

The thesis starts with some discussion on two fundamental questions. The first

one is how much momentum a photon carries within a slow-light medium, and what

kind of force is experienced by a slow-light medium when a photon enters or leaves it.

The second issue is how the noise properties of an optical field change as it propagates

through a slow-light medium.

The second part of the thesis deals with the applications of slow light for tunable

time delays. For such applications, one of the key figures of merit is the maximum

fractional delay that a slow-light element can achieve. I first present a method with

experimental demonstrations for improving the maximum fractional delay using a

multiple-gain-line medium. Second, I present a design with experimental demonstra-

tion for how to achieve simultaneous tunable delay and advancement using slow and

fast light in a single module. I then propose a design of a digitally tunable module

using channelized slow light, which can be useful for optical packet delays, etc.

The third part of the thesis studies the use of slow light to enhance the perfor-

mance of spectroscopic interferometers. I start with the derivation of the spectral

sensitivity of two-beam and multiple-beam interferometers with slow-light media in-

corporated in them. I show both theoretically and experimentally that the spectral

sensitivity is proportional to the group index of the medium inside the interferometers.

Second, I propose and demonstrate experimentally a new type of Fourier-transform

interferometer using tunable slow light. I then analyze the performance of three types

of slow-light media for interferometry applications. Lastly, I present a design of an
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on-chip slow-light spectrometer as well as some studies on slow-light waveguides using

photonic crystal structures.
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Chapter 1

Introduction

1.1 Phase velocity and group velocity of light

The pursuit of understanding the propagation of light can be traced back to the

nineteenth century in the work of Fizeau, Lorentz, Michaelson, etc. One fundamental

question that motivated generations of scientists is “how fast does the light travel?”

Yet when one talks about the velocity of light, it could be ambiguous as to what one

means. There are many different definitions of “the velocity of light” [1], including

the phase velocity and the group velocity.

To understand the different definitions of velocity of light, let us first start from

the mathematical description of the propagation of an electromagnetic field. Consider

a monochromatic electromagnetic plane wave at angular frequency ω propagating in

the z direction, the complex electric field as a function of space and time is given by,

E(z, t) = E0e
ikz−iωt, (1.1)

where E0 is the amplitude of the field, k is the wave number, z is the position in space,

and t is the time. The phase of such a field is defined as φ(z, t) = kz−ωt, and a phase

front is defined by a plane on which the phase is constant, e.g., φ(z, t) = φ0. The

4
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phase velocity of the plane wave is the propagation velocity of this constant phase

front, which is given by

vp =
dz

dt
=

ω

k(ω)
=

ω

n(ω)k0

=
c

n(ω)
, (1.2)

where k0 is the wave number of the field at angular frequency ω in vacuum, and

n(ω) ≡ k/k0 is the refractive index of the medium at angular frequency ω.

While the phase velocity c/n shows the wave property of an electromagnetic field,

it is not easy to measure experimentally because the phase oscillates much faster than

a human eye can perceive. In fact, before the laser and vacuum technologies were

available, all measurements for the speed of light involved somehow turning on and off

a light source, and then measuring how long it took for the “light pulse” to propagate

through a certain distance in air. Such measurements of the velocity of optical pulses

is indeed the group velocity of light in air.

To see this point, we again start from the mathematical description of an optical

pulse propagating in a medium. Consider an electromagnetic pulse propagating in

the z direction, the complex electric field as a function of time at some starting point,

z = 0, is given by

E(z = 0, t) = A(t)e−iω0t, (1.3)

where A(t) and ω0 are the slowly-varying envelope and the carrier (central) angu-

lar frequency of the pulse, respectively. One can also describe such a pulse in the

frequency domain using Fourier analysis as follows:

E(z = 0, t) =
1

2π

∫ ∞

−∞
E(ω)e−iωtdω, (1.4)

where E(ω) is the amplitude of spectral component at frequency ω and is given by
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the inverse Fourier transform relation,

E(z = 0, ω) =

∫ ∞

−∞
A(t)ei(ω−ω0)tdt. (1.5)

Note that each plane wave component propagates at its own phase velocity as

E(z, t) = E0e
ikz−iωt, (1.6)

where k = n(ω)ω/c is the wave number in the medium at angular frequency ω.

Meanwhile, the pulse can be understood as the interference of a span of plane

waves at different frequencies, and the peak is the point at which all the frequency

components constructively interfere. The propagation of this peak indicates that the

relative phase among all frequency components needs to be fixed, i.e.,

∆φ = φ(ω1)− φ(ω2) = [k(ω1)z − ω1t]− [k(ω2)z − ω2t] , (1.7)

or

(k(ω1)− k(ω2))z = (ω1 − ω2)t + ∆φ, (1.8)

for any two different frequencies ω1 and ω2. Since the group velocity vg describes the

velocity of such a plane in the medium, at which the relative phase relations among

different frequency components are maintained, one can derive vg as follows:

vg =
dz(∆φ)

dt(∆φ)
=

k(ω1)− k(ω2)

ω1 − ω2

=
dk

dω
=

d(nω)

cdω

=
n + ω

dn

dω
c

=
ng

c
. (1.9)

Here, ng ≡ n + ωdn/dω is the group index of the medium.
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1.2 Microscopic and macroscopic slow light

The recent surge of interest in controlling the group velocity of light propagation,

which started in the late 1990s, is partly indebted to the latest technologies that

enable the achievement of exotic group indices. Remarkably slow group velocities

of light, 17 m/s and 57 m/s have been experimentally observed in Bose-Einstein

condensates [2] and in room-temperature Ruby crystals [3], respectively. Such a

broad class of science and technologies, that can dramatically change the group index

of a medium within certain wavelength range, is also known as “slow and fast light”

[4, 1] or simply “slow light”.

Many mechanisms have been proposed and demonstrated to achieve slow light.

Generally speaking, these mechanisms fall into one of two general categories, namely,

“microscopic” and “macroscopic” slow light.

Microscopic slow light refers to those processes in which the change of group index

is mainly due to light-matter interactions at the atom/molecule level. A slow-light

medium typically indicates that ng can be very different from n, i.e., the magnitude

of ω(dn/dω) term is an appreciable quantity. Meanwhile, the real and imaginary

parts of the complex refractive index ñ satisfy the Kramers–Kronig (K–K) relations

[5, 6]. Thus, large dispersion of ω(dn/dω) usually occurs in the vicinity of some gain

or absorption resonance features.

One example of a means to achieve slow light is to create a Lorentzian-shaped gain

resonance. The real part of the refractive index and the gain coefficient as functions

of the frequency detuning ν ′ = ν − ν0 from the resonance center ν0 are given by

n(ν ′) = n(0) +
g0

2k0

γν ′

ν ′2 + γ2
, (1.10)

g(ν ′) = g0
γ2

ν ′2 + γ2
, (1.11)

where g0 is the intensity gain coefficient, and γ is the 1/e half width of the resonance.
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The group index is then given by

ng(ν
′) = n + ν0

dn

dν
= n(0) +

g0

2k0

γν ′

ν ′2 + γ2
+

cg0γ

4π

−ν ′2 + γ2

(ν ′2 + γ2)2 . (1.12)

As one can see from Fig. 1.1, one has slow light (ng > n) in the center of the resonance

and fast light (ng < n) in the wings of the resonance.
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Figure 1.1: Gain coefficient g, real part of refractive index n and group index ng as
functions of frequency detuning near a gain resonance with intensity gain of G = e
m−1 and linewidth of γ = 1 MHz.

Other examples of microscopic slow light include electromagnetically induced

transparency (EIT) [2], coherent population oscillations (CPO) [7, 3, 8, 9], natu-

rally occurring resonances [10] or band edges [11], stimulated Brillouin scattering

(SBS) [12, 13], stimulated Raman scattering (SRS) [14], spectral hole burning [15],

parametric amplification [16, 17], and so on.

Macroscopic slow light, on the other hand, indicates that the manipulation of

the “effective group velocity” of light in the medium is achieved through the inter-
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action between light and the structural geometry of an element that is comparable

or larger than the optical wavelength. A macroscopic slow-light element is typically

not spatially homogeneous but has a structural geometry with characteristic feature

size comparable to or much larger than the wavelength. In such cases, the slow-light

effect is best described by the group delay of propagation through the entire element,

or at least one period of the structure if it is periodic, as follows,

τg =
dφ(ω)

dω
, (1.13)

where φ(ω) is the phase of the complex transfer function H̃(ω) = A(ω) exp [iφ(ω)].

Sometimes it is convenient to define the effective refractive index neff and effective

group index ng,eff by assuming that the medium is homogeneous;

neff(ω) =
φ(ω)c

ωL
, (1.14)

ng,eff = neff + ω
dneff

dω
, (1.15)

where c is the speed of light in vacuum, and L is the length of the element or a period

of the element.

Macroscopic slow light includes photonic bandgap structures [18, 19, 20, 21, 22,

23], single and coupled ring resonators [24, 25, 26], fiber or waveguide grating struc-

tures [27], and so on.

Note that the real and imaginary parts of H̃(ω) have to satisfy the K–K relations

due to the constraint of causality, but the amplitude response A(ω) and the phase

response φ(ω) are not necessarily connected through the K–K relation. Therefore, the

design space of macroscopic slow light can be different from microscopic slow light,

which may lead to different design approaches and consequently different performance.



1.3 Applications of slow light and practical considerations 10

1.3 Applications of slow light and practical con-

siderations

Equipped with the ability to control the group index of a slow-light medium, one can

control the time that a pulsed optical signal takes to propagate through the medium.

Such all-optical controllable delay lines can lead to various applications. In fiber

optics telecommunication systems, an all-optical tunable delay element can be used

for all-optical buffering, data-resynchronization, jitter correction, etc. True optical

delay elements are also useful for optical signal processing [28], slow-light laser radar

(SLIDAR), RF photonics [29, 30], etc.

Besides the property of “slowing down” light pulses or optical wave packets, slow

light has other properties that can lead to other applications. One of such properties

is that the refractive index of a slow-light medium is highly frequency dependent [31].

In other words, a small shift in frequency δω will cause a large change in the wave

number δk inside a slow-light medium. This is very important to the spectroscopic

response of interferometric devices, and it is worthwhile to examine in detail how slow

light can enhance the performance of spectroscopic interferometers, both in ideal and

practical cases. Alternatively, fast light can be used to build interferometers that are

insensitive to wavelength drift. Such a “white-light” interferometer [32] can be used

for ultrahigh-precision metrology such as gravitational-wave detection.

As more and more fundamental aspects of slow light are being better understood,

research on slow light is also leading to new areas of applications, such as to increase

the nonlinear interaction between light and matter [33, 34], and so on.

In ideal cases, a pulse can maintain its temporal shape after propagating through

a slow-light element as one controls its group index. However, in practical situations,

the temporal shape of a pulse can change. To understand better this point, we take a

second look on the frequency-domain analysis of pulse propagation through a linear

medium. To take into account more practical situations, we take the refractive index
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of the medium to be complex and frequency dependent.

The time-dependent field at the entrance plane of a slow-light medium can alter-

natively be represented by a span of plane waves at different frequencies through the

following Fourier transform relation:

E(z = 0, t) =

∫ ∞

ω=−∞
E(z = 0, ω)eiωtdω. (1.16)

Each frequency component propagates through the medium of length L as follows:

E(z = L, ω) = E(z = 0, ω)eik′L−k′′L, (1.17)

where k′ and k′′ are the real and imaginary part of the wave number at frequency ω

inside the medium. Furthermore, one can expand k′(ω) using a Taylor series around

the carrier frequency ω0 as follows:

k′(ω) = k′0(ω0) +
dk′

dω

∣∣∣∣
ω0

(ω − ω0) +
1

2!

d2k′

dω2

∣∣∣∣
ω0

(ω − ω0)
2 + · · ·

= k′0(ω0) +
ng(ω0)

c
(ω − ω0) +

1

2!

d2k′

dω2

∣∣∣∣
ω0

(ω − ω0)
2 + · · ·

= k′0(ω0) + β1∆ω +
1

2!
β2∆ω2 + · · · , (1.18)

where

βj ≡ djk′

dωj

∣∣∣∣
ω0

, (1.19)

is the jth order dispersion of the wave propagation constant at center frequency ω0,

and ∆ω = ω − ω0 is the frequency detuning from the center frequency ω0. Thus, the
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time-dependent field at the exit plane of the medium is given by

E(z = L, t) =

∫ ∞

−∞
dωE(z = L, ω)e−iωt,

=

∫ ∞

−∞
dωE(z = 0, ω)eik′z−k′′ze−iωt,

=

∫ ∞

−∞
dωE(z = 0, ω)e−k′′ze−iωt

× exp

{
i

[
k′0(ω0) +

ng(ω0)

c
∆ω +

β2

2!
∆ω2 + · · ·

]
L

}
. (1.20)

In the ideal case in which the second- and higher-order dispersion terms are zero,

i.e., βj = 0 for j ≥ 2, and the imaginary part of the wave vector k′′ = 0, the output

field becomes

E(z = L, t) =

∫ ∞

−∞
dωE(z = 0, ω)eik′0(ω0)L+iβ1(ω−ω0)Le−iωt

= E
(

z = 0, (t− ngL

c
)

)
. (1.21)

One can see that, in this ideal case, the output field has the same temporal shape of

the input pulse, but with a temporal shift equal to the group delay of the medium

∆T = ngL/c.

However, a practical slow-light medium has non-vanishing higher-order dispersions

as well as some associated gain or loss. Thus, there are at least three mechanisms

that will cause the temporal shape of the output pulse to be different from the input

signal.

The first factor is the change in the magnitude of the signal after propagating

through a slow-light medium. In different scenarios, one can see this point either

from the change in the magnitude of the signal spectrum, or from the change in the

peak intensity of the temporal pulse.

The second factor is the frequency-dependent gain/loss of the medium, which

causes reshaping of the signal spectrum and consequently causes pulse distortion.
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This is sometimes referred to as the amplitude distortion [35].

The third factor is the higher order dispersion ( 1
2!
β2(ω−ω0)

2+ 1
3!
β3(ω−ω0)

3+· · · ).
Since higher dispersion changes the relative phase relation among different frequency

components, it also leads to pulse distortion, which is also referred to as the phase

distortion [35].

When all of the above factors are considered, both the shape and the magnitude

of the output pulse will inevitably be more and more different from those of the

input pulse as the delay increases. Therefore, it is important to optimize the complex

refractive index profile of a slow-light media to maximize the performance of a slow-

light delay element. Furthermore, it would also be of practical convenience to design

slow-light based modules that can have other properties, such as a single module

that can provide both tunable delay and advancement at the same time, a module to

provide tunable packet delays, and so on.

Such frequency-dependent gain and group index also put practical limits on the

performance of slow light in other applications, such as interferometry, as well. Thus,

it is worthwhile to investigate the consequences or practical performance for specific

applications.

1.4 Remainder of the thesis

Following the leads of the general interests for “slow light”, my thesis includes studies

regarding some fundamental issues of slow light as well as specific applications. The

remainder of my thesis is organized as follows.

Chapters 2 and 3 deal primarily with two fundamental aspects of slow light. It

includes a study on the momentum of photons inside dispersive media, and a study

on the noise property of slow-light media based on amplifiers/attenuators.

The derivation of the momentum of a photon in a dispersive medium starts with

the long-time debate between the Abraham [36] and Minkowski [37] forms . I then
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study how these different definitions are modified when dispersion needs to be con-

sidered, and what force a slow-light medium is experienced when a photon enters or

leaves it.

Microscopic slow and fast light are typically associated with some gain or absorp-

tion feature. Hence, it is natural to ask the question: “how is the noise property of an

optical signal field modified after propagating through a slow- or fast-light medium?”

I include some study to answer this question under both ideal and more realistic

scenarios using a quantized field approach.

Chapters 4, 5 and 6 focus mainly on applications of using slow light for optical

delay lines and on how to improve the performance of fiber-based tunable delay lines

using, e.g., stimulated Brillouin scattering (SBS). Chapter 4 describes an approach

to increase the maximum fractional delay by optimizing the shape of a gain profile.

The optimization utilizes multiple closely spaced gain lines, and the free parameters

include the frequency separation between neighboring lines and the relative strength

of individual lines. The gain profile is optimized under separate considerations for

single pulses as well as for random data trains, during which different metrics are

used to quantify the signal distortion and to define the relative delay.

In chapter 5, I present an approach to achieve simultaneously delay and advance-

ment using slow and fast light in a single module. The design of such a bi-directionally

tunable temporal adjustment element is based on a reconfigurable gain profile, and

is demonstrated using SBS slow light in a single mode fiber.

In chapter 6, I investigate a more fundamental limit, the Miller limit [38], that is

imposed on the maximum achievable fractional delay that a slow-light element can

achieve. In particular, I propose and demonstrate numerically a realistic design of

a channelized delay device which, by using a finite number of spatially separated

channels, can overcome Miller’s limit. Furthermore, we show that such a device

can achieve discretely tunable optical packet delays without the need of dynamically

controlling the phase of each channel.
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The last part of my thesis, chapters 7–10, explore the use of slow light to enhance

the spectroscopic performance of interferometers. It starts with Chapter 7 in which

I first investigate the role of group index in the spectral response of two-beam and

multiple-beam interferometers. The theoretical prediction is demonstrated experi-

mentally on a slow-light wedged-shear interferometer. Limitations on the enhanced

performance is then analyzed under practical considerations.

In Chapter 8, I present a design to utilize tunable slow light to construct a new

type of Fourier–transform interferometer (FTI). I show that the Fourier transform

of the spectrum of the input signal can be obtained as one continuously changes

the group index of the medium, and therefore that such a SLFTI does not need any

mechanical moving parts and can achieve much higher spectral resolution as compared

to a conventional FTI. Following an experimental demonstration, I also analyze the

performance of such a SL–FTI under practical considerations.

In Chapter 9, I attempts to answer the general question of what types of slow light

processes are suitable for spectroscopic interferometry applications. In specific, three

types of realistic slow-light processes are examined, namely, a Lorentzian-shaped gain

line medium, a double absorption line medium, and an electromagnetically-induced-

transparency (EIT) medium.

While using a slow-light medium can enhance the spectral performance of an

interferometer by a factor equal to the group index, one can also reduce the size of the

interferometer by the same factor without sacrificing the spectral performance. Thus,

I propose in Chapter 10 a design of an integrated spectrometer that can have high

spectral resolution using on-chip slow-light technologies. In specific, I propose a new

flat–band slow–light photonic crystal line defect waveguide that can be incorporated

into the on-chip spectrometer design.



Chapter 2

Photon Momentum in Dispersive

Dielectric Media

2.1 Background

As a particle carries a momentum given by the product of its mass m and its velocity

v, a photon also carries a momentum. In vacuum, the momentum carried by a photon

is simply ~ω/c, but electromagnetic momentum in a dielectric medium is a subject

that have been extensively studied both theoretically and experimentally [39], and

the debate of the correct form of the momentum density of an electromagnetic field

or the momentum carried by a photon still goes on. There are two most favored

forms, the Abraham [36] and Minkowski [37] forms. Over the years, there are a

bewildering array of experimental studies and associated theoretical analyses [40]

to support either Abraham or Minkowski form. However, an aspect of this subject

that has received surprisingly little attention concerns the effects of dispersion on the

Minkowski and Abraham momenta and on the electromagnetic forces on polarizable

particles. This chapter tries to address such effects, which might help to clarify the

physical interpretation of the Abraham and Minkowski momenta and the distinction

between them.

16
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2.2 Photon momentum in non-dispersive media

We first review briefly the Abraham and Minkowski momenta for the situation usu-

ally considered when a dielectric medium is assumed to be dispersionless and non-

absorbing near a frequency ω. The Abraham and Minkowski momentum densities

are given by

PA =
1

c2
E×H, (2.1)

PM = D×B, (2.2)

where the subscript A and M denote Abraham and Minkowski, respectively.

Here we assume that the permeability µ of the medium is equal to that of the

vacuum µ0. For a plane wave, the relation between different components of the

electromagnetic fields is given by

E = Eωe−iωt, (2.3)

H = Hωe−iωt, (2.4)

Dω = εEω = ε0n
2Eω, (2.5)

Bω = µ0Hω, (2.6)

H2
ω = (εµ0)E

2
ω. (2.7)

From D = ε0n
2E it follows that

∂PM

∂t
=

∂PA

∂t
+ fA, (2.8)

where

fA =
1

c2
(n2 − 1)

∂

∂t
(E×H) (2.9)
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is the Abraham force density.

To derive the momentum carried by a single photon, we need to use the quantized

field approach. The standard quantization of the electromagnetic field in a non-

dispersive medium gives the following results:

Ê(r, t) =
1√
V

∑

k

∑
s

(
~ω

2n2ε0

)1/2 [
iâks(0)εkse

i(k·r−ωt) + h.c.
]
, (2.10)

B̂(r, t) =
1√
V

∑

k

∑
s

(
~

2ωn2ε0

)1/2 [
iâks(0) (k× εks) ei(k·r−ωt) + h.c.

]
, (2.11)

where V is the quantization volume, k is the wave vector, and s is the polariza-

tion. Using such quantized field approach, one can obtain the expressions for the

magnitudes of the Abraham and Minkowski momenta for single photons as follows:

pA =
1

n

~ω
c

, (2.12)

pM = n
~ω
c

, (2.13)

where n is the refractive index of the medium at frequency ω. For single-photon fields,

the momentum pA associated with the Abraham force is given by

pA =
(n2 − 1)

n

~ω
c

, (2.14)

and the relation between the Abraham and Minkowski momenta of a single photon

becomes

pM = pA + pA. (2.15)
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2.3 Photon momentum in dispersive media

We first recall the expression for the total cycle-averaged energy density when a plane-

wave monochromatic field propagates in a dispersive dielectric at a frequency ω at

which absorption is negligible [41] (see also Sec 2.8):

u =
1

4

[
d

dω
(εω)E2

ω + µ0H
2
ω

]
, (2.16)

or equivalently, in terms of Eω and the group index ng = d(nω)/dω,

u =
1

2
ε0nngE

2
ω. (2.17)

When the field is quantized in a volume V , u is in effect replaced by q~ω/V ,

where q is the expectation value of the photon number in the volume V . Therefore,

from Eq. (2.17), E2
ω is effectively equal to 2~ω/(ε0nngV ) per photon. Thus, for single

photons, the Abraham momentum defined by Eq. (2.1) becomes

pA =
n

c

1

2
ε0

2~ω
ε0nngV

V =
1

ng

~ω
c

. (2.18)

Similarly, the Minkowski momentum becomes

pM =
n2

ng

~ω
c

, (2.19)

which follows from the definition in Eq. (2.1) and the relation D = ε0n
2E. We

now have the following relation between the Abraham and Minkowski momenta in a

dispersive medium:

pM = n2pA. (2.20)

These same expressions for pA and pM can be obtained more formally by quantizing
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the fields E, D, H, and B in a dispersive medium [42].

Two examples serve to clarify the differences among the momenta involved in

the momentum exchange between light and matter. The first example is based on

an argument of Fermi’s that the Doppler effect is a consequence of this momentum

exchange [43], as follows.

Consider an atom of mass M inside a host dielectric medium with refractive index

n(ω). The atom has a sharply defined transition frequency ω0 and is initially moving

with velocity v away from a source of light of frequency ω. Because the light in the

atom’s reference frame has a Doppler-shifted frequency ω(1 − nv/c) determined by

the phase velocity (c/n) of light in the medium, the atom can absorb a photon if

ω(1− nv/c) = ω0, or if

ω ∼= ω0(1 + nv/c). (2.21)

We denote the momentum associated with a photon in the medium by ℘ and consider

the implications of (nonrelativistic) energy and momentum conservation. The initial

energy is Ei = ~ω + 1
2
Mv2, and the final energy, after the atom has absorbed a

photon, is 1
2
Mv′2 + ~ω0, where v′ is the velocity of the atom after absorption. The

initial momentum is ℘ + Mv, and the final momentum is just Mv′. Therefore

1

2
M(v′2 − v2) ∼= Mv(v′ − v) = Mv(℘/M) = ~(ω − ω0), (2.22)

or ω ∼= ω0 + ℘v/~. From Eq. (2.21) and ω ∼= ω0 we conclude that

℘ = n
~ω
c

. (2.23)

Thus, once we accept the fact that the Doppler shift depends on the refractive index of

the medium according to Eq. (2.21), we are led by energy and momentum conservation

to conclude that an atom in the medium must recoil with momentum Eq. (2.23) when
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it absorbs (or emits) a photon of energy ~ω. Momentum conservation in this example

is discussed in more detail below.

In our second example we consider, following Balazs [44], a rigid block of mass M ,

refractive index n, and length a, initially sitting at rest on a frictionless surface. A

single-photon pulse of frequency ω passes through the block, which is assumed to be

non-absorbing at frequency ω and to have anti-reflection coatings on its front and back

surfaces. The length a of the block is presumed to be much larger than the length of

the pulse. If the photon momentum is ℘in inside the block and ℘out outside, the block

picks up a momentum MV = ℘out−℘in when the pulse enters. If the space outside the

block is vacuum, ℘out = mc, where m = E/c2 = ~ω/c2. Similarly ℘in = mvp, where vp

is the velocity of light in the block. Without dispersion, vp = c/n and the momentum

of the photon in the block is evidently ℘in = mc/n = ~ω/nc. The effect of dispersion

is to replace vp = c/n by vg = c/ng and ℘in = ~ω/nc by ℘in = ~ω/ngc. With or

without dispersion, this example suggests that the photon momentum in the medium

has the Abraham form. Note that the essential feature of Balazs’s argument is simply

that the velocity of light in the medium is vp (or, more generally, vg). This, together

with momentum conservation, is what leads him to conclude that the momentum of

the field has the Abraham form.

This prediction can in principle be tested experimentally. Conservation of mo-

mentum requires, according to Balazs’s argument, that MV = m(c − vg). When

the pulse exits the block, the block recoils and comes to rest, and is left with a net

displacement

∆x = V ∆t =
m

M
(c− vg)

a

vg

=
~ω

Mc2
(ng − 1)a (2.24)

as a result of the light having passed through it. This is the prediction for the

net displacement based on the momentum pA given in Eq. (2.18). If the photon

momentum inside the block were assumed to have the Minkowski form n2~ω/cng

given in Eq. (2.19), however, the displacement of the block would in similar fashion



2.3 Photon momentum in dispersive media 22

be predicted to be

∆x =
~ω

Mc2
a(ng − n2), (2.25)

and if it were assumed to be n~ω/c, as in Eq. (2.23), the prediction would be that

the net displacement of the block is

∆x =
~ω

Mc2
ang(1− n). (2.26)

These different assumptions about the photon momentum can lead to different predic-

tions not only for the magnitude of the block displacement but also for its direction.

The first (Doppler) example suggests at first thought that the momentum of the

photon is n~ω/c [Eq. (2.23)], while the second (Balazs) example indicates that it is

~ω/ngc. Let us consider more carefully the first example. There is ample experimental

evidence that the Doppler shift is nvω/c regardless of dispersion, as we have assumed,

but does this imply that the momentum of a photon in a dielectric is in fact n~ω/c?

We will show in the following section that the forces exerted by a plane monochromatic

wave on the polarizable particles of a dielectric result in a momentum density of

magnitude

pmed =
ε0

2c
n(nng − 1)E2

ω = (n− 1

ng

)
~ω
c

1

V
; (2.27)

the second equality applies to a single photon, and follows from the replacement of

E2
ω by 2~ω/(εnngV ), as discussed earlier. Now from the fact that the Doppler shift

implies that an absorber (or emitter) inside a dielectric recoils with momentum n~ω/c,

all we can safely conclude from momentum conservation is that a momentum n~ω/c

is taken from (or given to) the combined system of field and dielectric. Given that

the medium has a momentum density Eq. (2.27) due to the force exerted on it by

the propagating field, we can attribute to the field (by conservation of momentum) a
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momentum density

n
~ω
c

1

V
− Pmed =

1

ng

~ω
c

1

V
= pA. (2.28)

That is, the momentum of the field in this interpretation is given by the Abraham

formula, consistent with the conclusion of the Balazs thought experiment. The re-

coil momentum n~ω/c, which in general differs from both the Abraham and the

Minkowski momenta, evidently gives the momentum not of the field as such but of

the combined system of field plus dielectric. It is the momentum density equal to

the total energy density u = ~ω/V for a monochromatic field divided by the phase

velocity c/n of the propagating wave. As already mentioned, experiments on the

recoil of objects immersed in dielectric media have generally indicated that the recoil

momentum is n~ω/c per unit of energy ~ω of the field, just as in the Doppler effect.

But this should not be taken to mean that n~ω/c is the momentum of a “photon”

existing independently of the medium in which the field propagates. Regardless of

how this momentum is apportioned between the field and the medium in which it

propagates, the important thing for the theory, of course, is that it correctly predicts

the observable forces exerted by electromagnetic fields. We next turn our attention

specifically to the forces acting on polarizable particles in an applied electromagnetic

field.

2.4 Momenta and force on polarizable particles

To calculate the force on polarizable particles, We take the electric dipole approxi-

mation and assume that frequency components fof the field is far enough from any

transition resonance center such that the absorption is negligible. Then the induced

electric dipole moment of a particle in a field of frequency ω is

d = α(ω)Eω exp(−iωt), (2.29)
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and the polarizability α(ω) may be taken to be real. With these assumptions we now

consider the forces acting on such particles in applied, quasi-monochromatic fields.

We begin with the Lorentz force on an electric dipole moment d in an electromag-

netic field [45]:

F = (d · ∇)E + ḋ×B

= (d · ∇)E + d× (∇× E) +
∂

∂t
(d×B)

≡ FE + FB, (2.30)

where we define

FE = (d · ∇)E + d× (∇× E), (2.31)

FB =
∂

∂t
(d×B). (2.32)

In writing the second equality in Eq. (2.30) we have used the Maxwell equation

∂B/∂t = −∇×E. The dipole moment of interest here is induced by the electric field.

Writing

E = E0(r, t)e
−iωt = e−iωt

∫ ∞

−∞
d∆Ẽ0(r, ∆)e−i∆t, (2.33)

in which |∂E0/∂t| ¿ ω|E0| for a quasi-monochromatic field, we approximate d as

follows:

d(r, t) =

∫ ∞

−∞
d∆α(ω + ∆)Ẽ0(r, ∆)e−i(ω+∆)t

∼=
∫ ∞

−∞
d∆[α(ω) + ∆α′(ω)]Ẽ0(r, ∆)e−i(ω+∆)t

=

[
α(ω)E0(r, t) + iα′(ω)

∂E0

∂t

]
e−iωt. (2.34)
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Here α′ = dα/dω and we assume that higher-order dispersion is sufficiently weak that

the terms dmα/dωm can be neglected for m ≥ 2. Putting Eq. (2.34) into Eq. (2.31),

we obtain after some straightforward manipulations and cycle-averaging the force

FE = ∇
[
1

4
α(ω)|E|2

]
+

1

4
α′(ω)k

∂

∂t
|E|2, (2.35)

where E and k are defined by writing E0(r, t) = E(r, t)eik·r. Since the refractive

index n of a medium in which local field corrections are negligible is given in terms

of α by n2 − 1 = Nα/ε0, N being the density of dipoles in the dielectric, we have

α′ = (2nε0/N)(dn/dω) and

FE = ∇
[
1

4
α(ω)|E|2

]
+

ε0

2N
kn

dn

dω

∂

∂t
|E|2. (2.36)

The first term is the “dipole force” associated with the energy W = −1
2
α(ω)E2

involved in inducing an electric dipole moment in an electric field:

W = −
∫ E

0

d · dE = −α(ω)

∫ E

0

E · dE = −1

2
α(ω)E2. (2.37)

The second term in Eq. (2.36) is nonvanishing only because of dispersion (dn/dω 6= 0).

It is in the direction of propagation of the field, and implies for a uniform density N

of atoms per unit volume a momentum density of magnitude

PD =
1

2
ε0n

2 dn

dω

ω

c
|E|2 =

1

2

ε0

c
n2(ng − n)|E|2, (2.38)

since k = n(ω)ω/c. This momentum density comes specifically from the dispersion

(dn/dω) of the medium.

The force FB defined by Eq. (2.32), similarly, implies a momentum density PA

imparted to the medium:

PA = Nd×B. (2.39)
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As the notation suggests, this momentum density is associated with the Abraham

force density Eq. (2.9). The result of a straightforward evaluation of PA based on

Eq. (2.34) and ∇× E = −∂B/∂t is

PA =
1

2
ε0(n

2 − 1)
k

ω
|E|2, (2.40)

|PA| = PA =
1

2

ε0

c
n(n2 − 1)|E|2, (2.41)

when we use k · E = 0 and our assumption that |Ė0| ¿ ω|E0|. The magnitude of the

total momentum density in the medium due to the force of the field on the dipoles is

therefore

Pmed = PD + PA =
ε

2c

[
n2(ng − n) + n(n2 − 1)

] |E|2

=
ε0

2c
n(nng − 1)|E|2 (2.42)

in the approximation in which the field is sufficiently uniform that we can ignore the

dipole force ∇[1
4
α|E|2].

The complete momentum density for the field and the medium is obtained by

adding to Eq. (2.42) the Abraham momentum density PA of the field. According to

Eq. (2.1), PA = (ε0/2c)n|E|2, and so the total momentum density is

PA + PD + PA =
ε

2c
[n + n(nng − 1)]|E|2 =

ε

2c
n2ng|E|2 (2.43)

if the dipole force is negligible.

To express these results in terms of single photons, we again replace |E0|2 by

2~ω/(εnngV ); Eq. (2.43) then takes the form

pA + pD + pA = n
~ω
c

1

V
, (2.44)

which is consistent with the discussion in the preceding section. This is the total
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momentum density per photon, assuming that the dipole force is negligible. The

momentum density of the medium per photon follows from Eq. (2.42):

pmed = pD + pA =
ε

2c
n(nng − 1)

2~ω
nngε0V

= (n− 1

ng

)
~ω
c

1

V
, (2.45)

as stated earlier in Eq. (2.27).

Consider the example of spontaneous emission by a guest atom in a host dielectric

medium. The atom loses energy ~ω0, and the quantum (photon in the medium) of

excitation carries away from the atom not only this energy but also a linear momentum

n~ω/c [see Eq. (2.44)]. The atom therefore recoils with momentum n~ω/c [46].

The momentum density of Eq. (2.38) was obtained by Nelson [47] in a rigor-

ous treatment of a deformable dielectric based on a Lagrangian formulation. Here a

dielectric medium is treated as an idealized rigid body. From a microscopic perspec-

tive, this part of the momentum density of the medium is attributable directly to

the second term on the right-hand side of Eq. (2.34), i.e., to the part of the induced

dipole moment that arises from dispersion, which is a general property of induced

dipole moments in applied fields. Consider, for example, a two-level atom driven by

a quasi-monochromatic field with frequency ω far-detuned from the atom’s resonance

frequency ω0. In the standard u, v notation for the off-diagonal components of the

density matrix in the rotating-wave approximation [48],

u(t)− iv(t) ∼= 1

∆
χ(t) +

i

∆2

∂χ

∂t
+ ... , (2.46)

where χ(t) is the Rabi frequency and ∆ is the frequency detuning. The polarizability

is proportional to 1/∆ in this approximation, and therefore Eq. (2.46) is just a special

case of Eq. (2.34).
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2.5 Change of momenta between light and parti-

cles

We next consider the momentum exchange between a plane-wave pulse and a single

polarizable particle. We will assume again that the particle is characterized by a real

polarizability α(ω) and that it is surrounded by a host medium with refractive index

nb(ω). The electric field is assumed to be

E(z, t) = E(t− z/vbg) cos(ωt− kz), (2.47)

with k = nb(ω)ω/c and group velocity vbg = c/nbg, nbg = (d/dω)(ωnb).

The force acting on the particle is FE +FB. By multiplying Eq. (2.41) by a volume

V describing the pulse, replacing n2−1 by Nα/ε0 with NV = 1 for the single particle,

and differentiation with respect to time, FB reduces to 1
2
α(ω)(k/ω)(∂/∂t)|E|2. FE

follows from Eq. (2.35). Then the force acting on the particle is in the z direction

and has the (cycle-averaged) magnitude

F =
1

4
α(ω)

∂

∂z
E2 +

1

4
α′(ω)nb(ω)

ω

c

∂

∂t
E2 +

1

2c
α(ω)nb(ω)

∂

∂t
E2, (2.48)

where now we retain the dipole force, given by the first term on the right-hand side.

The momentum of the particle at z at time T is

p =

∫ T

−∞
Fdt =

1

4
α

∫ T

−∞

∂

∂z
E2(t− z/vbg)dt

+
1

4c
α′nbω

∫ T

−∞

∂

∂t
E2(t− z/vbg)dt +

1

2c
αnb

∫ T

−∞

∂

∂t
E2(t− z/vbg)dt

= −1

4
α

1

vbg

E2 +
nb

4c
α′ωE2 +

1

2
α

nb

c
E2

=
1

4c
[(2nb − nbg)α + nbωα′]E2(T − z/vbg). (2.49)

Hinds and Barnett [40] have considered the force on a two-level atom due to a
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pulse of light in free space. In this case nb = nbg = 1 and Eq. (2.49) reduces to

p =
1

4c
[α + ωα′]E2. (2.50)

Following Hinds and Barnett, we argue that a pulse occupying the volume V in the

neighborhood of the atom in free space corresponds to a number q = 1
2
ε0E2V/~ω of

photons, so that

p =
1

2c
[α + ωα′]

~ω
ε0V

q. (2.51)

We recall that α = ε0(n
2 − 1)/N , where n is the refractive index in the case of N

polarizable particles per unit volume. Then

p =
1

2c

[
ε0(n

2 − 1)

N
+

2ε0n

N
ω

dn

dω

]
~ω
c

q

∼= [n− 1 + ω
dn

dω
]
~ω
c

q ≡ K
~ω
c

q. (2.52)

This is the momentum imparted to the particle, which implies that a change in the

field momentum per photon equal to

~ω
c

[1−K] ∼= ~ω
c

1

1 + K
=
~ω
ngc

(2.53)

if |K| ¿ 1, where ng = (d/dω)(nω). As in the case of a two-level atom considered by

Hinds and Barnett, this corresponds to the Abraham momentum; our result simply

generalizes theirs in replacing n by ng in the expression for the change in photon

momentum.

In the case of a polarizable particle in a host dielectric rather than in free space

we obtain, from Eq. (2.49),

p =
I

2ε0c2
[(2− nbg

nb

)α + ωα′], (2.54)
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where the intensity I = (1/2)cε0nbE2. If dispersion in the medium and in the polar-

izability of the guest particle are negligible, we can set nbg = n and α′ = 0, and then

Eq. (2.54) reduces to a well known expression [e.g., Eq.(2.7) in Ref. [49]]. However,

this momentum can be large in a slow-light medium (nbg large), for example, because

the gradient of the field Eq. (2.47) responsible for the dipole force on the particle is

large [50]; this is a consequence of the spatial compression of a pulse in a slow-light

medium. We discuss this case further in the next Section.

2.6 Force on a dielectric sphere

The expression of Eq. (2.48) for the force on a polarizable particle in a field [Eq. (2.47)]

may be generalized to allow for absorption by the particle simply by taking the

polarizability α(ω) in Eq. (2.34) to be complex. Assuming again that E is slowly

varying in time compared to exp(−iωt), and slowly varying in space compared to

exp(ikz), we obtain

F =
1

4c
[(2nb − nbg)αR + nbωα′R]

∂

∂τ
|E|2 +

1

2
nb

ω

c
αI |E|2, (2.55)

where τ = t−nbgz/c and αR and αI are the real and imaginary parts, respectively, of

the complex polarizability α(ω). If we replace nbg by nb and take α′R ∼= 0, we recover

the results that may be found in many previous works when absorption is assumed

to be negligible [49]. The last term in Eq. (2.55) is the absorptive contribution to

equation (7) of a paper by Chaumet and Nieto-Vesperinas [51] when the field is

assumed to have the form of Eq. (2.47).

The polarizability in the case of a dielectric sphere of radius a much smaller than

the wavelength of the field is given by

α(ω) = 4πεb

(
εs − εb

εs + 2εb

)
a3. (2.56)
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Dispersion affects the force, of the form of Eq. (2.55), through both the group index

(nbg) of the host dielectric medium and the variation of the real part of the sphere’s

polarizability with frequency (α′R). The latter depends on both the intrinsic frequency

dependence of the permittivity of the material of the sphere and the frequency depen-

dence of the refractive index of the host medium. If these dispersive contributions to

the force exceed the remaining two contributions to the force of Eq. (2.56), the total

force becomes

F ∼= 1

4c
[−αRnbg + nbωα′R]

∂

∂τ
|E|2. (2.57)

Using Eq. (2.56) for this case, we obtain

F ∼= −3πε0a
3

c
nbg

n2
sn

4
b

(n2
s + 2n2

b)
2

∂

∂τ
|E|2 (2.58)

if the dispersion of the dielectric material constituting the sphere is much smaller

than that of the host dielectric medium, i.e., if dεs/dω ¿ dεb/dω. (Here ns is the

refractive index at frequency ω of the material of the sphere.) This result implies

that, in the case of a slow-light host medium (nbg À 1), the force on the sphere can

be much larger than would be the case in a “normally dispersive” medium, and is in

the direction opposite to that in which the field propagates.

The simple formula of Eq. (2.58), and similar expressions obtained in other limiting

cases of Eq. (2.55), obviously allow for a wide range of forces when a pulse of radiation

is incident on a dielectric sphere in a host dielectric medium. Here we make only a

few remarks concerning the last term in Eq. (2.55). Although we have associated

this contribution to the force with absorption, such a force appears even if the sphere

does not absorb any radiation of frequency ω. This is because there must be an

imaginary part of the polarizability simply because the sphere scatters radiation and

thereby takes energy out of the incident field. According to the optical theorem in

this case of scattering by a non-absorbing polarizable particle that is small compared
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to the wavelength of the field, the imaginary part of the polarizability is related to

the complete (complex) polarizability as follows [52]:

αI(ω) =
1

4πε0

2ω3

3c3
nb|α(ω)|2. (2.59)

Then the force proportional to αI(ω) in Eq. (2.55) is

Fscat ≡ 1

2
n5

b

ω

c
αI |E|2 =

8π

3

(ω

c

)4 n5
bI

c

(
εs − εb

εs + 2εb

)2

a6, (2.60)

which is just the well known “scattering force” [53] on a dielectric sphere in a medium

with refractive index nb, which may be taken to be real in the approximation in which

the field is far from any absorption resonances of the sphere.

2.7 Conclusions

In this Chapter, we have attempted to better understand the different electromagnetic

momenta and the forces on electrically polarizable particles in dispersive dielectric me-

dia. We have made several simplifications, including the neglect of any surface effects,

the treatment of the medium as a non-deformable body, and the approximation of

plane-wave fields. We have shown that conservation of momentum, even in seemingly

simple examples such as the Doppler effect, generally requires consideration not only

of the Abraham momentum and the Abraham force, but also of a contribution to the

momentum of the medium due specifically to the dispersive nature of the medium.

We have generalized some well known expressions for the forces on particles immersed

in a dielectric medium to include the dispersion effect. While we have presented ar-

guments in favor of the interpretation of the Abraham momentum as the momentum

of the field, our simplified analyses lead to the conclusion that neither the Abraham

nor the Minkowski expressions for photon momentum give the recoil momentum of

a particle in a dispersive dielectric medium. Finally we have shown that the force
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exerted on a particle in a strongly dispersive medium is approximately proportional

to the group index nbg, and can therefore become very large in a slow-light medium.

2.8 Appendix: energy density in dispersive media

To derive the expression of the energy density of a electromagnetic field in a dispersive

dielectric medium, we start from the macroscopic Maxwell Equation and has

∂u

∂t
= E · ∂D

∂t
+ H · ∂B

∂t
. (2.61)

The time-dependent electric field can be expressed using the slowly-varying envelope

approximation as follows:

E(t) = A(t)e−iω0t

=

∫ ∞

−∞
dδÃ(δ)e−i(ω0+δ)t, (2.62)

where Ã(δ) is the spectrum of the field with respect to the center frequency ω0.

Consequently, one has

D(t) = ε0

∫ t

−∞
dt′εr(t− t′)E(t′)

= ε0

∫ ∞

−∞
dδεr(ω0 + δ)Ã(δ)e−i(ω0+δ)t

= ε0

∫ ∞

−∞
dδ

[
εr(ω0) + δ

dε

dω

]
Ã(δ)e−i(ω0+δ)t

= ε0

[
εr(ω0)E(t) + i

dεr

dω
e−iω0t ∂A

∂t

]
. (2.63)
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Using the above expressions, one has

∂D

∂t
= ε0

[
εr(ω0)

∂E

∂t
+ ω0

dεr

dω
e−iω0t ∂A

∂t

]

= ε0εr(ω0)
∂A

∂t
e−iω0t − iε0ω0εr(ω0)Ae−iω0t

+ε0

[
ω0

dεr

dω
e−iω0t ∂A

∂t

]

= ε0

(
εr(ω0) + ω0

dεr

dω

)
∂A

∂t
e−iω0t

−iε0ω0εr(ω0)E. (2.64)

And consequently one has

E · ∂D

∂t
= ε0

(
εr(ω0) + ω0

dεr

dω

)
E

∂A

∂t
e−iω0t

−iε0ω0εr(ω0)E
2. (2.65)

Thus, the time average energy density is given by

u =
1

2
ε0E

2
ω

[
εr +

1

2
ω

dεr

dω

]

=
1

2
ε0E

2
ω

[
n2 + n(ng − n)

]

=
1

2
ε0nngE

2
ω. (2.66)



Chapter 3

Noise Properties of Slow-Light

Media

3.1 Background

Optical amplification, by means of erbium doped fiber amplifiers [54, 55], semicon-

ductor optical amplifiers [56], Raman amplifiers [57], parametric amplifiers, surface

plasmon amplifiers [58], etc., have been analyzed and employed in a wide spectrum

of applications including telecommunications, optical information processing, quan-

tum optics, etc. In many cases, optical amplifiers can also work as attenuators

given appropriate working conditions. Recently, optical amplification and atten-

uation have also attracted much attention for the purpose of slow and fast light

propagation[4, 59, 1, 60, 61]. The most extreme values of the group index often occur

when the signal wavelength is at or near a strong gain or absorption resonance of a

material system. In this chapter, we address the following question: How much noise,

if any, is added to a beam of light as it propagates through a medium with an extreme

value of the group velocity?

In many cases of interest the quantum-mechanical properties of the electromag-

netic field pose a fundamental limit to the noise level of optical beams. An ideal

35
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phase-insensitive optical amplifier has been treated with a quantum beam-splitter

model with two input ports, a signal field and a vacuum field [62]. In such a model,

the amplifier noise can be attributed mainly to the beating between the amplified

signal field and the amplified vacuum fluctuations.

A non-ideal amplifier or attenuator typically puts extra noise into the output

signal, and the properties of such a non-ideal amplifier or attenuator have been tra-

ditionally described by alternating pairs of ideal amplifiers and attenuators, a three-

dimensional quantum beam-splitter model [63], etc. Such treatments require a certain

ordering of the cascaded ideal amplifiers and attenuators, and some of the analytical

expressions lack simplicity or intuition.

Here we present a modified quantum beam-splitter model to describe a non-ideal

linear amplifier or attenuator, beginning with a brief summary of the usual treat-

ments in Sections 3.2 and 3.3. Our model is introduced in Section 3.4 and applied

specifically to several types of practical amplifiers. The noise properties of a slow-light

element based on different types of realistic amplifiers/attenuators are then discussed

in Section 3.5, followed by a summary in Section 3.6.

3.2 A quantum model of an ideal linear amplifier

We first summarize the quantum description of the noise properties of an ideal quan-

tum amplifier [62] for the case of a single-mode input field propagating through an

ideal linear amplifier with intensity gain G0. The photon annihilation operators for

the input and output fields are denoted by â and b̂, respectively. Since photons are

Bosons, we have the following communication relations:

[â, â†] = [b̂, b̂†] = 1. (3.1)

The annihilation operator for the output field is expressed in terms of the annihi-
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lation operator for the input field and a Langevin operator L̂ as follows [62]:

b̂ = g0â + L̂†, (3.2)

where g0 =
√

G0, and L̂ = (G0− 1)1/2ĉ, and where ĉ denotes a second input field and

satisfies the relation [ĉ, ĉ†] = 1. The Langevin operator is assumed to be uncorrelated

from the input operator, i.e.,

[â, L̂†] = [â, L̂] = 0, (3.3)

in which case it follows from Eq. (3.2) that [b̂, b̂†] = 1. For an ideal amplifier, one

generally assumes that the second input field ĉ represents a vacuum state, i.e.,

〈n̂c〉 = 〈ĉ†ĉ〉 = 0. (3.4)

Then the expectation value of the photon number of the output field is

〈n̂b〉 = 〈b̂†b̂〉 = G0〈n̂a〉+ (G0 − 1), (3.5)

where 〈n̂a〉 = 〈â†â〉 is the average photon number of the input field. One sees that, in

addition to the input field being amplified by a factor of G0, (G0 − 1) noise photons

are added to the output field.

From these expressions one obtains the variance of the output photon number:

〈∆n̂2
b〉 ≡ 〈n̂2

b〉 − 〈n̂b〉2

= G2
0〈∆n̂2

a〉+ G0(G0 − 1)(〈n̂a〉+ 1). (3.6)

The first term represents the amplification of the fluctuations present in the input

field, and the second term represents added noise.

The noise properties of an amplifier are often characterized by the noise figure,
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defined as

F ≡ SNRin

SNRout

, (3.7)

where

SNRin ≡ 〈n̂a〉2
〈∆n̂2

a〉
, (3.8)

SNRout ≡ G2
0〈n̂a〉2
〈∆n̂2

b〉
. (3.9)

Note that in SNRout we use G0〈n̂a〉 for the amplified signal field, not the total output

field that includes the noise contributions. For an ideal quantum amplifier, the noise

figure is then found from the expressions above to be

F = 1 +

(
1− 1

G0

) 〈n̂a〉+ 1

〈∆n̂2
a〉

. (3.10)

When the fluctuations of the input field follow Poisson statistics, so that 〈∆n̂2
a〉 =

〈n̂a〉, one sees that the value of the noise figure F of an ideal quantum amplifier

approaches 2 (or 3dB) when G0, 〈n̂a〉 À 1[64].

3.3 A quantum model of an ideal linear attenuator

We now consider the case of a single-mode input field propagating through an ideal

attenuator with intensity transmission T0, which is often modeled as a quantum beam

splitter. In order to preserve the commutation relations for the output field, the anni-

hilation operator for the output field is similarly expressed in terms of the annihilation

operator for the input field â and a Langevin operator L̂ as follows:

b̂ = t0â + L̂, (3.11)
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where t0 =
√

T0, L̂ = (1 − T0)
1/2ĉ, and [ĉ, ĉ†] = 1. The Langevin operator is again

assumed to be uncorrelated from the input operator:

[â, L̂†] = [â, L̂] = 0. (3.12)

For an ideal attenuator, one typically assumes again that ĉ denotes a vacuum-state

input, i.e.,

〈n̂c〉 = 〈ĉ†ĉ〉 = 0. (3.13)

The expected photon number of the output field of such an ideal attenuator is

then

〈n̂b〉 = 〈b̂†b̂〉 = T0〈n̂a〉, (3.14)

where 〈n̂a〉 = 〈â†â〉 is again the average photon number of the input field. Note that

this result agrees with that obtained by a classical treatment.

The intensity fluctuation of the output field is given by

〈∆n̂2
b〉 ≡ 〈n̂2

b〉 − 〈n̂b〉2

= T 2
0 〈∆n̂2

a〉+ T0(1− T0)〈n̂a〉. (3.15)

The first term represents the attenuation of the fluctuations present in the input

beam, and the second term represents noise added due to the random loss of photons

from the signal field.

The noise figure of the ideal attenuator is then found to be

F = 1 +

(
1

T0

− 1

) 〈n̂a〉
〈∆n̂2

a〉
. (3.16)

This noise figure can become arbitrarily large as the transmission of the attenuator
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approaches zero. This increased noise can be attributed to the random loss of photons

from the signal field.

3.4 A generalized model for a non-ideal linear am-

plifier or attenuator

We next propose a new quantum approach to model a non-ideal amplifier or attenu-

ator. For the case of an amplifier, we use a single quantum amplifying beam-splitter

model with intensity gain G for the signal. In contrast to the ideal amplifier model

described in Section 3.2, we assume that the second input field ĉ for the amplifying

beam splitter is not a vacuum field, but a completely incoherent noise field with av-

erage photon number 〈n̂c〉. As in Section 3.2, the output field operator is related to

the input field operator by

b̂ = gâ + L̂†, (3.17)

where g =
√

G is the amplitude gain coefficient, and L̂ = (G− 1)1/2ĉ is the Langevin

operator corresponding to the amplified noise source. In this more general case,

however, the average photon number of the output field b̂ is given by

〈n̂b〉 = G〈n̂a〉+ (G− 1)(〈n̂c〉+ 1), (3.18)

and its variance by

〈∆n̂2
b〉 = G2〈∆n̂2

a〉+ (G− 1)2〈∆n̂2
c〉

+G(G− 1)[〈n̂a〉〈n̂c〉+ (〈n̂a〉+ 1)(〈n̂c〉+ 1)]

= G2〈∆n̂2
a〉+ G(G− 1)〈n̂a〉(2〈n̂c〉+ 1)

+(G− 1)(〈n̂c〉+ 1) + (G− 1)2(〈n̂c〉+ 1)2. (3.19)
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Consistent with our assumption of incoherent noise, the variance of the noise field

is assumed to obey Bose-Einstein statistics, and, in particular, 〈∆n̂2
c〉 = 〈n̂c〉 + 〈n̂c〉2

[56].
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Figure 3.1: One can describe a realistic amplifier using (a) a series of alternating ideal
amplifiers and attenuators, or (b) a general quantum beam splitter model.

For a non-ideal attenuator, similarly, we use the quantum beam-splitter model

with a noise input ĉ assumed to be a (non-vacuum) incoherent field with its fluctua-

tions obeying Bose-Einstein statistics. In this case, the annihilation operator for the

output field is

b̂ = T 1/2â + (1− T )1/2ĉ, (3.20)

where T is the intensity transmission of the attenuator. The expectation value of the

photon number of the output field is then

〈n̂b〉 = T 〈n̂a〉+ (1− T )〈n̂c〉, (3.21)

and the variance is

〈∆n̂2
b〉 = T 2〈∆n̂2

a〉+ (1− T )2〈∆n̂2
c〉

+T (1− T )(〈n̂a〉+ 1)〈n̂c〉
+T (1− T )(〈n̂c〉+ 1)〈n̂a〉. (3.22)
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We will show in the following that by an appropriate choice for 〈n̂c〉, this model

can describe various types of realistic amplifiers and attenuators.

3.4.1 A not-entirely-inverted laser amplifier

Many practical amplifiers have both amplification and attenuation mechanisms dis-

tributed throughout the device. One such example is a not-entirely-inverted laser

medium in which excited-state population density N2 provides gain, while ground-

state population density N1 provides loss. The net gain coefficient per unit length

g is proportional to N2 − N1. Assuming a uniform gain coefficient through out the

amplifier, the signal gain is G = exp(gL) where L is the total length of the amplifier.

One way to model quantum mechanically such a one-dimensional not-entirely-

inverted laser amplifier is to use a series of alternating ideal sub-amplifiers and sub-

attenuators [see Fig. 3.1(a)], with the gain/loss of each ideal sub-amplifier/attenuator

given by

Gsub ≈ 1 +
N2

N2 −N1

gL

M
,

= 1 + nsp
gL

M
(3.23)

Tsub ≈ 1− N1

N2 −N1

gL

M
,

= 1 + (1− nsp)
gL

M
(3.24)

where M is the number of sub-amplifier-attenuator pairs, and

nsp =
N2

N2 −N1

, (3.25)

is known as the spontaneous emission factor [65], or inversion factor [66]. A large

number of sub-amplifier/attenuator pairs are needed for an amplifier with a weak

input field, a large gain G, or a large spontaneous emission factor nsp.
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Alternatively, one can use our single-step modified quantum amplifier model to

describe such a not-entirely-inverted laser amplifier. Specifically, when one chooses

〈n̂c〉 = nsp − 1, (3.18) and (3.19) become

〈n̂b〉 = G〈n̂a〉+ (G− 1)nsp, (3.26)

and

〈∆n̂2
b〉 = G2〈∆n̂2

a〉+ G(G− 1)〈n̂a〉(2nsp − 1)

+(G− 1)nsp + (G− 1)2n2
sp. (3.27)

In the limiting case when nsp = 1, corresponding to complete population inversion,

the noise input field 〈n̂c〉 = 0 is the vacuum field, and (3.26) and (3.27) reduce to the

results of an ideal amplifier, Eqs. (3.5) and (3.6).
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Figure 3.2: The average photon number and its variance for the output field of a not-
entirely-inverted amplifier using two different models. M is the number of divided
ideal sub-amplifier/attenuator pairs. The average photon number of the input field
is 〈n̂a〉 = 1, the total gain of the amplifier is G = 10, and the spontaneous emission
factor is nsp = 2.

The motivation for the choice 〈n̂c〉 = nsp − 1 can be understood from a simple

semiclassical model in which the noise arises from spontaneous emission of photons
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into the propagating field. The intensity I in this model propagates according to the

equation

dI

dz
= gI + RsponhνN2, (3.28)

where Rspon is the spontaneous emission rate into the single mode of frequency ν, and

I is the intensity. For the model here in which the gain and population densities are

uniform within a volume V , g = (V/c)Rspon(N2−N1), and it follows that the photon

number q at z = L is

q(L) = Gq(0) + (G− 1)nsp, (3.29)

exactly as in Eq. (3.26).

As a numerical example, we calculate the average photon number and the variance

of the output of a not-entirely-inverted laser amplifier modeled by the two approaches

just described. In this example the average photon number of the input field is

〈n̂a〉 = 1, the total gain of the amplifier is G = 10, and the spontaneous emission

factor is nsp = 2. The blue circles represent the results obtained using M pairs of ideal

sub-amplifier/attenuator as the value of M increases. One sees that the calculated

results using cascaded ideal sub-amplifier/attenuator pairs converges to the correct

values [67, 63] after the number of pairs M is greater than 100. On the other hand,

our approach gives the same correct answer using just a single step. For comparison

purposes, we have also calculated the output of M cascaded generalized quantum

beam splitters, each with the same value of nsp and gain Gsub = G1/M . In fact,

it can be shown using our model that the output of two cascaded amplifiers with

the same value of nsp but with different gains G1 and G2 is identical to that of a

single amplifier with nsp and intensity gain G = G1G2. This can also be seen in

Fig. 3.2 that the results obtained using our proposed treatment, indicated by the red

crosses, does not change as M increases. Our model, in contrast to the model based
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on alternating sub-amplifier/attenuator pairs, requires only a single calculation step,

which is computationally efficient.

In this case of an attenuator (N1 > N2), one can use our modified quantum beam

splitter model, i.e., Eqs. (3.21) and (3.22), with 〈n̂c〉 = −nsp and intensity attenuation

T = egL; of course g is negative for an attenuator. The average value and the variance

of the output photon number are

〈n̂b〉 = T 〈n̂a〉+ nsp(T − 1), (3.30)

and

〈∆n̂2
b〉 = T 2〈∆n̂2

a〉+ T (T − 1)〈n̂a〉(2nsp − 1)

+(T − 1)nsp + (1− T )2n2
sp. (3.31)

Note that all four terms in the expression of Eq. (3.31) are positive, as nsp is a negative

number when T < 1. Again, in the limiting case for which nsp = 0, indicating

that all the population is in the ground state, the noise field 〈n̂c〉 = 0 becomes the

vacuum field, and the results (3.30) and (3.31) reduce to those for an ideal attenuator,

Eqs. (3.14) and (3.15).

Note also that the results given by Eqs. (3.30) and (3.31) are actually of the

same form as those of Eqs. (3.26) and (3.27). This indicates that, although we start

from two different mathematical descriptions for amplifiers and attenuators, we have

obtained a consistent description for a non-ideal laser medium which acts as either

an amplifier or an attenuator.

The noise figure of such a not-entirely-inverted laser medium is therefore

F = 1 +
G− 1

G

〈n̂a〉
〈∆n̂2

a〉
(2nsp − 1)

+
G− 1

G2

nsp

〈∆n̂2
a〉

+
(G− 1)2

G2

n2
sp

〈∆n̂2
a〉

. (3.32)
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G can of course have any positive value, while nsp is greater than one for G > 1 and

is negative for G < 1.
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Figure 3.3: Noise figure of a laser medium as a function of intensity gain G and
spontaneous emission factor nsp when it operates as (a) an amplifier and (b) an
attenuator. Here, the average photon number of the input field is 1000.

The noise figure F of a laser medium as a function of intensity gain G and spon-

taneous emission factor nsp when it operates as either an amplifier or an attenuator

is shown in Fig. 3.3. The average photon number of the input field used in the cal-

culation is 〈n̂a〉 = 1000, and we assume its fluctuations obey Poisson statistics. For a

given value of nsp, the noise figure of a laser amplifier increases as the gain becomes

larger, but it also saturates to 2nsp when the input signal is strong compared to nsp.

On the other hand, the noise figure for an attenuator increases without bound as the

transmission decreases. Furthermore, besides the linear term (2nsp− 1)/T , there is a

second-order term proportional to n2
sp/T

2. Thus, the noise figure can be more than

80 dB for an attenuator with T = 10−3 and nsp = 103.
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3.4.2 A stimulated Brillouin scattering amplifier

Stimulated Brillouin scattering (SBS) is a common nonlinear process in fiber optics.

The interaction occurs through the modulation of the refractive index of the medium

induced by the acoustic phonons through electrostriction. A strong pump field can

create a gain resonance with a center frequency downshifted by the Stokes frequency

νB for signals counter-propagating through the fiber. While the signal is amplified,

noise can also be introduced by the amplified spontaneous Brillouin scattering field.

SBS-based slow light is one of the most common and convenient techniques to build

fiber-based delay elements for current telecommunication systems [12, 13].

The excess noise of an SBS amplifier mainly comes from the amplified spontaneous

Brillouin scattering [68, 69]. When the propagation loss of the fiber is negligible and

the pump field is undepleted, the noise property of such an SBS amplifier can be

described by choosing the value of 〈n̂c〉 at temperature T to be

〈n̂c〉 =
1

ehνB/kT − 1
, (3.33)

〈n̂c〉 in this case is directly related to the number of thermally excited phonons per

mode.
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Figure 3.4: The expectation value of photon number in the noise input source 〈n̂c〉 of
a SBS medium as a function of temperature T .

Figure 3.4 shows the expectation value of the photon number of the noise input
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source 〈n̂c〉 as a function of temperature. Here the phonon frequency is assumed to

be 10 GHz. At room temperature (T = 300 K), the value of 〈n̂c〉 is approximately

625, indicating that the noise figure of an SBS amplifier is much larger than that of

a laser amplifier.

3.5 Noise figure of a gain-induced slow-light medium

There is much current interest in exploring the physics and applications involving the

control of the group velocity of light. The Kramers-Kronig relations allow for slow

light to be realized near the vicinity of a gain resonance, and tunable delays can be

achieved by controlling the magnitude of the gain.

In many cases, the gain profile of a slow-light medium is of Lorentzian shape. In

such way, the group index ng and the gain coefficient g0 at the resonance center is

related through the following expression:

n′g = ng − n =
g0c

2γ
, (3.34)

where c is the speed of light in vacuum, and γ is the 1/e half width of the Lorentzian

gain profile. The relative group delay through the medium as compared to a reference

is τg = n′gL/c, and the peak intensity gain through the same medium is G = exp(g0L),

where L is the length of the medium. Thus, one has the following relation between

the group delay and the peak intensity gain:

G = exp(2γτg). (3.35)

In writing this result in this form, we have implicitly assumed that the light pulse

is spectrally sufficiently narrow that pulse distortion due to dispersion of the group

velocity is small. In this case that the time delay is reliably estimated by means of

the group velocity.
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To maintain generality, we still analyze the noise figure F of a slow-light medium

in terms of gain G, and the relation between F and the relative group delay τg can

be consequently obtained using the relation of Eq. (3.35).

For a laser medium, in which the total population in ground and excited states are

assumed to be constant, changing the magnitude of the gain usually involves changing

the population inversion. Assume the maximum intensity gain is Gmax when all the

population is inverted, i.e., nsp = 1. For any given intensity gain G < Gmax, the value

of nsp is given by

nsp =
1

2

(
ln(Gmax)

ln(G)
+ 1

)
. (3.36)

Note that nsp, but not the noise figure, can be divergent near a transmission of unity.

At unity transmission, the value of F can be obtained as follows:

F(T = 1) = 1 + ln(Gmax). (3.37)
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Figure 3.5: (a) The spontaneous emission factor nsp and (b) noise figure F of a laser
medium as functions of the intensity gain for input fields with different values of
average photon number.

As a numerical example of such a laser medium with Gmax = 30 dB, we show in
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Fig. 3.5 the values of nsp and F as functions of the gain of the medium. As expected,

the magnitude of nsp diverges when the transmission is close to unity. However, the

value of the noise figure is always finite, and it increases as G becomes smaller. For

weak input field, the noise figure actually reaches a peak value before the minimum

transmission point. Working at the center of a gain or absorption resonance indicates

slow or fast light, respectively. Therefore, when a laser medium is used as a tunable

slow-light element, the noise is least when maximum delay is achieved, and increases

generally as the delay becomes smaller.
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Figure 3.6: The noise figure F of an SBS medium as a function of the intensity gain
for input fields with different values of average photon number.

For an SBS slow-light medium, tunable delay is achieved by controlling the power

of the pump field. Assuming the pump field is undepleted, the intensity gain G is

independent of the properties of the noise source, which is determined by the acoustic

phonons in the fiber. Thus, the noise figure of an SBS slow-light element is minimum

at zero delay, and it increases monotonically as the gain and delay increases.

At the anti-Stokes resonance of the pump field, the signal field experiences loss,

and the SBS medium becomes a fast-light medium. When it works as an attenuator,

we can ignore the noise contribution from the spontaneous emission from the Stokes

resonance by assuming the frequency component near the Stokes resonance is filtered

out by, e.g., narrow-band filters. The noise figures are plotted in Fig. 3.6. As one sees

from the figure, when such a SBS medium is used as a tunable slow-light element the
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output field has least noise when there is no delay, and the noise increases as either

delay or advancement increases.

3.6 Summary

In this chapter, we have presented a general quantum beam-splitter model for a

realistic amplifier or attenuator. The model has two inputs, the signal field and a

noise field. By choosing appropriately the input noise field, our model can describe

various types of realistic amplifiers and attenuators. Using our model, we analyzed

the noise performance of slow-light elements based on different types of amplifiers.

For laser amplifiers, the smallest noise figure is obtained at largest gain or delay, while

a SBS based delay element has the smallest noise figure at zero delay.



Chapter 4

Increasing the Fractional Delay of

a Slow-Light Delay Element Using

Multiple Gain Lines

4.1 Fractional delay and practical considerations

While the magnitude of the group index of a medium is an important figure of merit

for exploring the fundamentals of slow light, a more practical figure of merit for delay-

line applications is how much time delay a slow-light element can provide as compared

to the temporal duration of a signal pulse or of one data bit.

This thought can be quantified using the maximum fractional delay [70] (also

known as the delay-bandwidth product [71]). One definition for the maximum frac-

tional delay ∆Tmax is given by

∆Tmax ≡ ∆Tmax

∆τ
= 2π∆ν∆Tmax, (4.1)

where ∆Tmax is the maximum achievable absolute delay, ∆τ = 1/(2π∆ν) is the

temporal duration of the pulse, and ∆ν is the signal bandwidth.

52
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In practice, a practical slow-light medium typically has frequency dependent gain

and group index. As analyzed in Section 1.3, these frequency dependences will lead

to pulse distortion and/or power level change [72], which then deteriorate the quality

of transmitted information.

To quantify the impact of pulse distortion and power level change, various criteria

have been used based on different considerations.

One set of criteria is based on the physical origins of the various distortions. The

first criterion is the gain distortion factor, defined as follows [35]:

Dg =
Gmax −Gmin

Gmax + Gmin

, (4.2)

where Gmax / min = max / min{exp(0.5g(ν)L)} is the maximum/minimal frequency-

dependent amplitude gain within the bandwidth experienced in a medium with length

L, and g(ν) is the frequency dependent gain coefficient of the medium.

The second criterion is the phase distortion factor given by [35]

Dp = max
{

(n(ν)− n(ν0)− νng,eff) L/c0

}
, (4.3)

where n(ν) is the frequency dependent refractive index, ν0 is the center frequency and

ng,eff is the effective group index obtained from a linear fit of n(ν) within the signal

bandwidth.

It has been shown [35] that a suitable criterion is to require that both Dg and

Dp be less than 0.05. Since a practical medium cannot provide arbitrarily large

gain to the signal, an additional criterion is that the maximum frequency dependent

amplitude gain within the bandwidth Gmax should be less than 3.5, corresponding to

a maximum power gain of less than 30 dB.

While the above three criteria emphasize the physical origin of the distortion and

provides a intuitive picture of whether a given gain profile is optimum or not, the

magnitude of the two distortion factors are quite difficult to be measured. Thus,
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there are also other distortion factors that is more measurable and can be tested,

such as the change of the full width at half maximum (FWHM) of the temporal

duration of the signal pulse.

Note that when individual pulse delay is studied, the group delay is usually defined

in terms of the peak position of a single Gaussian pulse [35, 73, 74, 75, 76, 77, 78].

In a real telecommunication system, however, data packets are comprised of varying

sequences of “0” and “1” bits in designated time slots, and the peak positions of

individual pulses often experience a pattern-dependent delay [79] due to inter-symbol

interference (ISI) [80], etc. Thus, a better and more practical way to determine the

delay of a data packet through a slow-light medium is to define it in terms of the best-

decision-time (BDT) topt in the eye-diagram when highest data fidelity [i.e., lowest

bit error rate (BER)] is achieved. Note that the eye diagram is also most open at

topt; this thought can be quantified using the eye-opening metric as follows:

E ≡ max
{

P1,min(t)− P0,max(t)
}

, (4.4)

where P1,min(t)/P0,max(t) is the lowest/highest normalized power among all “1”/“0”

bits at time t within the time slot. Consequently, the BDT delay of a data packet can

be determined by comparing the values of topt for propagation through the slow-light

medium and through a reference medium.

In such cases, it makes more sense to quantify the distortion in terms of system

metrics as well. The first criterion is that the maximum continuous wave (CW)

exponential intensity gain within the bandwidth be less than a realistic value of 7

(∼30 dB),

max{2k0= [ñ(ν)] L} < 7; |ν − ν0| < ∆ν, (4.5)

where = [ ] represents the imaginary part, and L is the length of the medium. The
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second criterion is that the eye-opening penalty EOP [81] be less than 1.87 dB,

EOP ≡ −10 log(Eout/Ein) < 1.87 dB, (4.6)

where Ein/out is the eye-opening at input/output of the slow-light device. Note that,

for a system that has a detector-limited signal-to-noise ratio (SNR) of 35 dB, an EOP

of 1.87 dB indicates [81] that with an ideal input, the output BER is still less than

10−12. Note also that EOP is closely related [81] to the Q-factor penalty [79], and

both merits can be cascaded through various elements to describe the overall system

performance.

4.2 Optimization design using multiple gain lines

One practical way for realizing slow light [4] is to use the strong dispersion near a

resonance gain feature of a medium. However, because both the gain coefficient and

group index ng vary significantly in the vicinity of a single resonance gain line, ∆Tmax

is often limited by pulse distortion [79, 82], especially when ∆ν becomes comparable

to or larger than the spectral width of the gain feature.

It has recently been shown that the distortion in such a system can be decreased by

using two closely spaced gain lines instead of a single gain line [35]. Here, the concept

of using three closely spaced gain lines is introduced. Our laboratory implementation

of the triple gain lines does not require more instrumentation than what is required

to produce a double gain line, but the distortion can be reduced significantly. In this

way, a larger ∆Tmax can be achieved at a larger bandwidth.

The complex refractive index for a medium with multiple Lorentzian gain lines is

given by

ñ (ν) = 1 +
∑

j

cgj

4πν0

γ

ν − ν0 − δj + iγ
, (4.7)
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where ν0 is the center frequency of the entire gain feature; gj and δj are the peak

gain coefficient and the shift of the resonance center from ν0 of the jth gain line,

respectively; c is the speed of light in vacuum; and γ is the half-width at half-maximum

linewidth of each gain line. To keep ñ(ν) even-symmetric about ν0, we require that

gj = g−j and δj = −δ−j.

Note that, for a profile containing three closely spaced gain lines, when δ1 = γ

and g0/g1 = 0.5, both the second and third order derivative of (5.2) become zero,

indicating that both the group index and the gain coefficient have a flat top at ν = 0.

Thus, the distortion can be minimized over a large bandwidth range.

To be more general to meet specific sets of distortion metrics, we scan the values of

the relative center frequency δj and relative strength gj of each gain line to maximize

the fractional delay ∆Tmax for different values of the signal bandwidth. For single

pulse optimization, we use Gaussian pulses with temporal shape as follows:

A(t) = exp(−2π2∆ν2(t− tc)
2), (4.8)

where tc is the temporal peak position, and ∆ν is the signal bandwidth.

When system considerations are taken into account, 128-bit random data trains

with return-to-zero modulation are used in both numerical calculation and experi-

ment. A logical “1” bit is represented by a pulse with an input amplitude shape

of

A(t) = exp(−t2/τ 2) for |t| < 2τ, (4.9)

where τ is the time constant and Tslot = 4τ is the length of the time slot. A logical

“0” bit is represented by the absence of such a pulse in the time slot. The signal

bandwidth ∆ν is related to Tslot by

∆ν = 1/2Tslot. (4.10)
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Figure 4.1: Schematic diagram of a SBS-based tunable delay line. TL: tunable laser;
FPC: fiber polarization controller; MZM: Mach-Zehnder modulator; AFG: arbitrary
function generator; SCF: small-core fiber; EDFA: Erbium doped fiber amplifier; VOA:
variable optical attenuator. The inset on the right shows a typical profile of ñ for a
triple-gain-line medium.

4.3 Experimental demonstration

The experiment is performed using single-mode fibers in which the gain features are

produced by the stimulated Brillouin scattering (SBS) process [12, 13].

Multiple gain lines are created by amplitude modulating the pump light with a

Mach-Zehnder modulator (MZM) [83, 74]. For example, when a driving voltage of

the MZM is given by

VMZM = (−Vπ + rV1/2 + V1 cos 2πδt), (4.11)

where Vπ is the half-wave voltage of the MZM, the pump field after modulation has

the form of

Ep,out = Ep,in
V1

2Vπ

(
r + ei2πδt + e−i2πδt

)
, (4.12)

where Ep,in is the input pump amplitude. One sees from the above expression that

the modulated field contains three spectral lines, the carrier frequency ν0, and two

side bands at ν0 + δ and ν0 − δ, respectively.

The final resulting SBS-induced gain profiled is the convolution of the pump spec-
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trum with the intrinsic SBS Lorentzian gain lineshape. Thus, after amplification by

an erbium-doped fiber amplifier (EDFA), such a pump field creates a triple-gain-line

(TGL) feature near its Stokes shift frequency with half separation δ and peak ratio

r = g0/g1 between the center and side gain lines. Once the shape of the gain profile

is achieved, its magnitude can be tuned continuously by changing the amplification

of the EDFA.
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Figure 4.2: Maximum fractional delay for triple and double gain media as bandwidth
increases when single pulse metrics are considered.

For optimization with single pulse considerations, we use standard single mode

fiber (SMF). The FWHM of the SBS gain line of the SMF is measured to be 29 MHz.

Fig. 4.2 shows the numerical prediction and experimental data on the maximum

achievable delay for both double and triple gain media as the bandwidth ∆ν increases.

In both cases, the ∆Tmax is gain limited for small ∆ν, and becomes amplitude-

distortion limited for large ∆ν. By introducing a triple gain line, the distortion

is reduced and therefore the peak value of ∆Tmax is increased and its position is

moved towards larger bandwidth. As compared to the case of a double-gain medium,

the peak value of ∆Tmax is increased about 40% for a triple gain medium, and the

corresponding bandwidth is increased by 70% from 0.75γ to 1.3γ. For ∆ν = 1.3γ,

∆Tmax in the triple gain medium is almost four times the value of ∆Tmax that a

double gain medium can achieve.
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Figure 4.3: (a) Maximum achievable fractional delay ∆Tmax; (b) corresponding eye-
opening penalty EOP; and (c) optimum values of the half separation δopt and peak
ratio ropt as functions of normalized bandwidth for the SGL, DGL and TGL media,
respectively, when system metrics are considered.

The SBS gain medium, used in the experiment to demonstrate the optimizations

based on the system metrics, is 2 km of small-core fiber (SCF). The SBS gain linewidth

γ in the SCF is measured to be 25 MHz. Figures 4.3(a) and (b) show ∆Tmax and

corresponding EOP as functions of the normalized bandwidth for the single-gain-

line (SGL), double-gain-line (DGL) and TGL media, respectively. For a slow-light

medium based on a fixed number of gain lines, One sees that there is a peak bandwidth

∆νpeak at which a largest ∆Tmax can be achieved. For bandwidths less or larger

than ∆νpeak, ∆Tmax is limited mainly by the maximum gain or the EOP criterion,

respectively. As the number of lines incorporated in the gain feature increases, more

degrees of freedom are available to optimize the gain and refractive index profile and

thus minimize the distortion and ISI. Thus, a larger ∆Tmax at a larger ∆νpeak can be

achieved with an optimum design of relative spacing and peak ratio among the gain

lines. As one sees from Fig. 4.3(a), the largest ∆Tmax for a TGL medium is around

1.9, which is about twice the largest value that can be obtained with a SGL medium.
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Figure 4.4: The eye diagram of (a) a theoretical noiseless input; (b) a theoretical
noiseless output; (c) the actual input in the experiment; and (d) the actual output
in the experiment for the optimum design of a TGL medium with ∆T ≈ 1.9 at
∆ν = 1.4γ. The dotted lines indicate the magnitude of the eye-opening E of each
cases.

Moreover, its peak bandwidth ∆νpeak is about 3 times that for a SGL medium. Note

that for both SGL and TGL media, the maximum CW gain within the bandwidth

reaches our assumed limit of 7 in order to achieve the largest ∆Tmax for each case.

Figure 4.4 shows the eye-diagrams of the input and output in a theoretical noise-

free situation [(a) and (b)] and in the experiment [(c) and (d)] for the optimum

design of a TGL medium at ∆ν = 1.4γ with ∆T ≈ 1.9. The optimum parameters are

δ = 1.1γ, r = 0.68, and the peak gain of the data train in the time domain is about 24

dB. One sees that the theoretical prediction and experimental results agree well and

that ISI, not noise, is the main source of the eye closure and the associated reduction

in data fidelity. Under such circumstances, one also sees that the largest deviation

among the peak positions of different “1” bits is almost half a bit slot. Thus, it can

be ambiguous and inaccurate to define the delay in terms of the peak position of any

individual “1” bit.

For a given bandwidth ∆ν, once the optimum gain profile is obtained (e.g., using

the parameters plotted in Fig. 4.3 (c) for a TGL medium), tunable delay can be

achieved by changing the magnitude of the gain profile. Figure 4.5 shows the simu-

lated results of ∆T and EOP as the magnitude of the gain profile (normalized by the

optimum value to achieve ∆Tmax) increases for the optimum designs of TGL media
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Figure 4.5: (a) Simulated results of fractional delay ∆T ; and (b) eye-opening penalty
EOP as functions of gain (normalized by the gain required to achieve ∆Tmax) for
optimum designs of a triple-gain-medium at various bandwidths.

for various bandwidths. One sees that the delay typically increases linearly first as

the gain increases from zero. This is because at small gain the distortion is small so

that the BDT delay is consistent with the peak delay of the “1” pulses. As the gain

becomes larger, the ISI becomes larger and topt starts to deviate from the peak po-

sitions of the “1” pulses, and therefore ∆T is no longer strictly linearly proportional

to gain afterwards but increases faster as gain increases. Meanwhile, the eye-opening

penalty also increases slowly at first (see Fig. 4.5(b)) when the distortion is small.

For ∆ν = 1.4γ [when the overall largest ∆Tmax is achieved; cf. the solid line in Fig.

4.5(b)], in particular, EOP is negligible for the relative gain magnitude less than 0.3.

This shows that a good design of a multi-gain-line medium can actually increase the

delay with negligible loss in data fidelity.

Our study seems to indicate that by increasing the number of gain lines, the

overall gain profile can provide larger fractional delay at larger signal bandwidth.

One remaining question is “Is there an ultimate limit on the maximum fractional

delay as the number of gain lines increases ”? Since the optimal gain profile almost

always has a flat top to reduce the amplitude distortion, the overall gain profile will

resemble more and more likely to a rectangle shaped gain feature. The maximum

achievable delay using different criteria are listed in Table 4.1. Here, Gmax is the

maximum intensity exponential gain.

As shown in Table 4.1, the increase of the fractional delay saturates as the overall
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Table 4.1: Maximum fractional delay for different gain profiles
single gain line double gain line triple gain line rectangle gain line

∆Tmax = 2π∆ν∆Tmax; single pulse consideration
Gmax = 5 0.45 0.9 1.15 1.7
Gmax = 7 0.6 1.2 1.5 2.2

∆Tmax = ∆Tmax/τFWHM; single pulse consideration
Gmax = 5 0.32 0.65 0.83 1.23
Gmax = 7 0.43 0.87 1.08 1.59

∆Tmax = ∆Tmax/(Tslot/2); system consideration
Gmax = 7 0.7 1.0 1.2 2.0

gain profile approaches to a rectangular gain profile. No matter what considera-

tion one adopts during the optimization, the maximum fractional delay that can be

achieved using multiple closely spaced gain lines is always approximately a factor of

two.

4.4 Summary

For delay line applications, fractional delay is a major figure of merit. In practice,

this quantity is limited by the power level change through the slow-light medium as

well as by the distortion introduced on the signal.

A slow-light medium based on multiple, closely spaced gain lines has been studied

as a means to increase the fractional delay as compared to a single-gain-line medium.

The relative spacing and strength among different gain lines has been optimized

under consideration of two sets of criteria, one concentrating on single pulses and

physical origins of the distortion and the other based on system performance and

system metrics. The theoretical optimization predictions have been demonstrated

with a tunable delay line based on SBS slow light in fiber. It has been shown that

the maximum achievable fractional delay can almost be doubled at three times larger

modulation bandwidth for an optimized triple-gain-line medium as compared to a

single-gain-line medium, while high data fidelity is still maintained. Such scheme is
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applicable in a straightforward way to much higher data rate using techniques that

increase the effective linewidth of each gain line [77, 84] or that increase the number

of gain lines [75, 78].



Chapter 5

Continuously Tunable, Positive

and Negative Time Delays with

Optimized Stimulated Brillouin

Scattering Slow and Fast Light

5.1 Background

In a synchronized telecommunication system, each “0” or “1” bit is required to be

centered with respect to a reference time clock or slot. In practice, however, the

temporal positions of each data bit within an optical signal train can experience

random delay or advancement due to various reasons, e.g., jitter from the modulator,

random group delay fluctuation through a long optical fiber, etc. In such cases, the

pulse train needs to be re-centered with respect to the time clock or time slots, and a

tunable slow-light element is a good candidate for these re-timing applications such

as data re-synchronization and jitter correction. For these re-timing applications,

one would naturally desire a single timing element that could provide both positive

and negative temporal adjustment. However, most demonstrated slow-light devices

64
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cannot be reconfigured easily to work in the fast-light regime, and vice-versa. It

has been shown recently [85] that one can achieve tunable delay and advancement

by adjusting the separation between two Lorentzian gain lines. However, in the

process of tuning the separation, both the gain and group index profiles can become

highly frequency dependent over the signal bandwidth. This leads to significant

pulse distortion and degradation of the signal fidelity, which becomes impractical

for real applications. Other fast light has also been investigated in SBS systems

[85, 86, 87, 88]. These fast-light techniques include working at the center of an

absorption (e.g., SBS anti-Stokes) resonance center, using a saturable gain medium,

using self-advancement of SBS pump field, etc. However, most fast-light techniques

reported so far are not optimized and therefore can only have very limited fractional

advancement.

In this chapter, we propose and demonstrate a practical design to realize con-

tinuously tunable slow and fast light module to provide positive and negative time

delays. Furthermore, we use optimized gain profile for both slow- and fast-light op-

erations, which gives a total tuning range of more than one pulse duration with very

well controlled signal distortion.

5.2 Theory of slow and fast light using gain media

To achieve both positive and negative time delays, one needs to achieve both slow

and fast light. For a single-frequency continuous-wave pump field, the SBS-induced

complex refractive index near the Stokes frequency ν0 can be approximated by a

Lorentzian function as follows:

ñ (ν) = nbg +
cg

4πν0

γ

ν − ν0 + iγ
, (5.1)

where nbg is the background index of refraction, c is the speed of light in vacuum,

and g and γ are the peak gain coefficient and the SBS linewidth, respectively. The
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real part of ñ has a large swing in the vicinity of the resonance, resulting in slow and

fast light in the center and wings of the resonance, respectively. The general principle

of switching our module between slow- and fast-light operations is to reshape the

SBS-induced gain profile by modulating the pump field differently, so that the signal

spectrum lies either within the center region of a single gain feature or within the

transparent window between two separated gain features.

In this work, we define the fractional delay as ∆T ≡ ∆T/τp, where ∆T is the

absolute delay of the peak position of the pulse as compared to that of a reference,

and τp is the temporal full width at half maximum (FWHM) of the input pulse.

In practice, ∆Tmax is often limited by the maximum distortion or change in power

level that a signal is allowed to acquire in passing through a slow-light material [72].

To achieve large fractional delay and advancement to reach a total tuning range

larger than a pulse width, we choose two optimized gain profiles with low distortion

for slow- and fast-light operation. In this manner, signal distortion is well controlled

through the entire tuning process. Tunable delay and advancement are then achieved

by controlling the pump power.

In the slow light regime, we use multiple closely spaced gain lines for slow-light

operation [74, 73, 89]. The overall complex refractive index profile near the Stokes

resonance is given by

ñtotal (ν) = nbg + ñintrinsic (ν) ∗ Spump (ν) , (5.2)

where ñintrinsic is the SBS-induced refractive index profile given by a CW pump field

with unit power [see Eq. (5.1)], Spump (ν) denotes the gain spectrum of the actual

pump field, and ∗ denotes the convolution operation.

To achieve low-distortion slow light, we optimize the spacing and the relative

strength to form a broad, flat-top gain profile. The desired pump spectrum can be

obtained using amplitude modulation on the pump field [74, 73, 89]. One can also

extend this concept to the use of a continuous pump spectrum to achieve a gain profile
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as broad as tens of gigahertz [90].

For fast-light operation, we use two separated gain features, which leaves a trans-

parent, fast-light window in between. Note that the maximum achievable fractional

advancement of such a separated double gain medium is determined by factors that

can be different from those for a slow-light medium [72]. First, since the signal spec-

trum sits between two gain features, the wing regions of the signal spectrum gets am-

plified more than the center. This leads to spectrum broadening, and consequently the

output pulses become narrower in the time domain. Furthermore, residual frequency

components due to optical noise in the input signal or spontaneous emission from the

gain medium that fall on the two gain peaks get amplified much more strongly than

the main spectrum of the signal. Such amplified noise can form a beating pattern in

the time domain, which leads to pulse distortion and inter-symbol interference [80].

Thus, instead of the maximum pump power the system can provide, this noise con-

straint determines the maximum continuous-wave (CW) gain the system can have at

the two gain peaks, and hence further limits the maximum advancement that such

a fast-light element can produce. Given such a limit, we use two separated, flat-top

gain profiles to further increase the fractional advancement. In specific, each flat-top

gain profile is created using three closely spaced gain lines.

5.3 Experimental demonstration using stimulated

Brillouin scattering

The schematic diagram of our experiment is shown in Fig. 5.1. We start with a stable

laser source (Koshin LS-601A) at a frequency ν0 near 1550 nm, and we modulate the

field using a sinusoidally driven Mach-Zehnder (MZ) intensity modulator (IM 1 in

Fig. 5.1), which is biased for minimum DC transmission. The modulator creates two

frequency sidebands, ν0±ΩB, where ΩB ≈ 10.6 GHz is the SBS Stokes shift frequency

of our single-mode fiber (SMF). The modulated field then propagates through 6 km
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Figure 5.1: Schematic diagram of a bidirectionally tunable optical timing element
using stimulated Brillouin scattering. TL: tunable laser; IM: intensity modulator;
AFG: arbitrary function generator; SMF: single-mode fiber; EDFA: erbium doped
fiber amplifier; VOA: variable optical attenuator.

of SMF with a strong counter-propagating pump field at ν0. The SBS process ampli-

fies the component at the Stokes frequency ν0 − ΩB and attenuates the anti-Stokes

frequency ν0 + ΩB, and the SMF acts like a frequency purifier. The optical field after

this SBS purification stage is checked with an optical spectrum analyzer, and the

power of the Stokes field at ν0 −ΩB is 20 dB higher than those at ν0 and ν0 + ΩB. A

second MZ intensity modulator (IM 2) is then used to carve out a train of Gaussian

pulses with FWHM width τFWHM = 6.5 ns before the signal is sent into the SBS

temporal adjustment module.

IM 1 IM 2

AFG 1 AFG 2

slow-lig
ht 

operation

fast-light operation

*
*

* *

*

Figure 5.2: Schematics of creating multiple gain line profile using dual-stage modu-
lation method. The orange and green arrows indicate the created discrete frequency
side bands with each modulation stage.

A two-stage pump modulation is used to reconfigure the two optimized SBS gain
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profiles between slow- and fast-light operations. We use one sinusoidally driven MZ

intensity modulator (IM 3 in Fig. 5.1) to create three closely spaced frequency lines

which lead to a single flattened gain feature approximately 80 MHz wide [73]. Note

that one can use a more complicated modulation method [78, 91] to create more lines

and to form a broader gain feature. A second MZ intensity modulator (IM 4) is used

to configure the final gain profile for slow- or fast-light operation. The modulator

is always biased at minimum DC transmission, and it is sinusoidally modulated at

frequency fs. This setting splits the gain feature produced by IM 3 into two, separated

by 2fs from each other (see Fig. 5.2). For slow-light operation, the optimum value

of fs is approximately 34 MHz, and the two gain features are partially overlapped

to form a broad, flat-top gain feature [see Fig. 5.3(a)]. For fast-light operation, the

optimum value for fs is approximately 148 MHz. The resulting two flat-top gain

profiles are separated enough to leave a transparent fast-light window in between for

our signal [see Fig. 5.3(c)], but they are also close enough that signal experiences a

significant fast-light effect.
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Figure 5.3: Measured small signal gain and calculated induced refractive index change
as functions of frequency detuning for slow light [(a) and (b)] and fast light [(c) and
(d)] configurations. The black dotted lines in (a) and (c) show the power spectrum
of Gaussian pulses with FWHM of 6.5 ns.

To illustrate the low-distortion advantage of our optimized gain profiles for the

slow- and fast-light operations, we performed a numerical calculation of the width of

the output pulse as the delay is increased by tuning up the pump power. Since the
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temporal shape of the output pulse can be irregular, such as having multiple lobes,

it is more accurate to describe the temporal width of the pulse using its root-mean-

square (RMS) width τrms as follows:

τrms ≡
√
〈t2〉 − 〈t〉2, (5.3)

where

〈t〉 =

∫
t|A(t)|2dt∫ |A(t)|2dt

, (5.4)

〈t2〉 =

∫
t2|A(t)|2dt∫ |A(t)|2dt

, (5.5)

and where A(t) is the amplitude of the pulse. The temporal RMS width of the input

Gaussian pulses is τrms = τFWHM/(2
√

2 log(2)) = 2.76 ns.
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Figure 5.4: Calculated optimized and un-optimized gain profiles as functions of fre-
quency detuning for slow light (a) and fast light (c) configurations, and the RMS
width of the output pulse for different gain profiles as functions of peak delay for slow
light (b) or advancement for fast light (d) configuration.

Figure 5.4 shows the numerically calculated RMS width τrms of the output pulse

propagating through optimized and un-optimized slow-light and fast-light media as
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the delay or advancement increases. For the slow light configuration, the un-optimized

gain profile is a single Lorentzian gain line [see the blue dashed line in Fig. 5.4(a)].

Since the signal spectrum is broader than the width of a single gain line, the pulse

becomes significantly broadened as the delay increases. At the largest delay of 5.29 ns

(a fractional delay of 0.82), the RMS width of the output pulse through our optimized

slow-light medium is approximately 3.6 ns while a single-gain-line medium results in

a RMS width of 11.5 ns. For the fast-light operation, the un-optimized gain profile is

two Lorentzian gain lines separated by 206 MHz [see the red dashed line in Fig. 5.4(c)].

When the advancement is small, the RMS width of the output pulse through the un-

optimized medium is approximately the same as the optimized medium. However, as

the advancement becomes large, the noise amplified by the two gain peaks quickly

distorts the output pulse for the un-optimized medium while the RMS width of the

output pulse through the optimized medium is still well maintained. Note that this

calculation assumes that the input pulse is noiseless. In a real experiment, the noise

components at the two gain peaks can get amplified much faster, which leads to

further distortion of the output pulse.
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Figure 5.5: Measured fractional delay (circles) and advancement (triangles) as func-
tions of the pump power. The error bars are the standard deviations.

The modulated pump profile is amplified using an erbium-doped fiber amplifier

(EDFA 3 in Fig. 5.1) and launched into 4 km of SMF counter-propagating with the

signal field. A variable optical attenuator (VOA) is used right before the output of the
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module [73], and the VOA is set at constant output power mode to keep the output

power at a fixed level. The amount of delay or advancement is adjusted by controlling

the output power level of EDFA 3. Figures. 5.3(a) and (c) show the measured small

signal gain for the fast- and slow- light configurations, respectively. One sees that the

optimized flattened gain feature and the transparent window are adequately broad

for the signal spectrum shown as the dotted lines. Figures. 5.3(b) and (d) show the

corresponding refractive index change calculated according to the Kramers–Kronig

relations. One clearly sees the slow- and fast-light regimes, indicated by positive and

negative slopes of n, in the vicinity of the center frequency for the two respective

configurations. Note that the two chosen gain profiles and their corresponding group

index profiles for slow- and fast-light operations are quite uniform over our signal

bandwidth, and therefore one can achieve large fractional delay and advancement

with very low pulse distortion.
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Figure 5.6: Output pulse as a function of time for reference, slow-light, and fast-light
configurations.

Figure 5.5 shows the measured delay and advancement as functions of the pump

power. Using a maximum pump power of 130 mW, we have achieved a fractional delay

and a fractional advancement of 0.82 and 0.31, respectively, giving a total continuous

tuning range of 1.13 pulse width, or about 7.35 ns for 6.5-ns pulses. Note that our

setup can switch between slow- and fast-light regimes electronically without the need

of rearranging the components. The FWHM of the delayed and advanced pulses are

approximately 8.7 ns and 6.7 ns, respectively (see Fig. 5.6). Note that we do not
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use the RMS width of the experimentally measured pulse because, in the presence

of optical and detector noise, the value of τrms does not converge as the size of the

truncated time window increases, and therefore it no longer reflects accurately the

width of the pulses. The fractional advancement can be further improved if each of

the double gain features is broadened further and the noise level of the input signal

is reduced.

5.4 Summary

In this chapter, we have proposed and demonstrated a single, continuously tunable,

low-distortion module for delaying or advancing optical pulses using stimulated Bril-

louin scattering. The slow- or fast-light operation is realized using dual-stage intensity

modulation, with different optimized modulation functions, on the pump field. We

have continuously tuned the temporal position of 6.5 ns FWHM Gaussian pulses from

a fractional advancement of 0.31 to a fractional delay of 0.82, giving a total tuning

range of more than one pulse width, while the pulse distortion is kept low through out

the entire tuning range. Such a device can be used for bidirectional jitter correction

and data resynchronization.



Chapter 6

Channelized Slow Light For

Discretely Tunable Optical Packet

Delays

6.1 A fundamental limit on maximum achievable

fractional delay of a slow-light element

As discussed in the previous two chapters, a primary figure of merit for the evaluation

of the performance of slow-light delay devices is the maximum achievable fractional

delay [70] (also known as the delay-bandwidth product). In practice, this quantity is

often limited not by the amount by which the velocity can be reduced but rather by

the maximum distortion or change in power level that a signal is allowed to acquire

in passing through such a material [72].

To increase the maximum achievable fractional delay, many schemes [35, 73, 84]

have been proposed for broadening and flattening the intrinsically narrow resonance

structures. Nonetheless, there exist serious more fundamental limits [92, 76, 38] on

the maximum fractional delay that a single-channel slow-light medium can produce.

74
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Of particular interest is the Miller limit, which relates the maximum achievable

fractional delay τg∆ν (τg and ∆ν being the time delay and the signal bandwidth,

respectively) of a device of size L with its average refractive index navg and its max-

imum variation of ∆n over ∆ν near the center wavelength λ0 through the relation

[38]

τg∆ν ≤ navgL∆n/(
√

3λ0). (6.1)

Here we review briefly how one can approach this limit using an ideal, lossless,

distortion-free slow-light medium. The frequency-dependent refractive index of an

ideal slow-light medium near a reference frequency ν0 is given by,

n(ν) = n(ν0) +
n′g
ν0

(ν − ν0), (6.2)

where n′g = ng−n is the relative group index and where ng = n+νdn/dν is the group

index. If this expression is valid for the entire signal bandwidth, than the maximum

change in refractive index is given by

∆nmax =
n′g
ν0

∆ν, (6.3)

where ∆ν is the signal bandwidth. The group delay a signal pulse experienced by

propagating through such a medium is given by

∆T = n′gL/c. (6.4)

Substituting Eq. (6.3) into the above equation, one has the following expression:

∆T =
∆nmaxν0

∆ν
L/c, (6.5)
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or

∆ν∆T = ∆nmaxν0L/c

= ∆nmaxL/λ0. (6.6)

This expression is very similar to Eq. (6.1) except for some numerical constant. The

exact derivation of Eq. (6.1) can be obtained more formerly by following Ref. [38].

6.2 Principle of channelized slow light

Channelized slow light [93, 94, 95, 96, 97] has recently been proposed as a proce-

dure for improving the performance of slow-light devices based on materials with

an intrinsically narrow working bandwidth. The basic idea of channelization is to

create separate narrow-band slow-light spectral channels for different frequency com-

ponents of a broadband signal and subsequently combine these outputs to achieve

large fractional delays of broadband signals. One proposal for channelized slow light

is to create multiple spectral resonances in, e.g., a photorefractive crystal [94] or an

electromagnetically induced transparency medium [96]. While previously reported

works are capable of delaying a pulse train with discrete spectral components, they

typically have serious distortion problems when dealing with signals with a continu-

ous spectrum [94]. Moreover, such methods cannot exceed Miller’s limit since they all

fall into the general category of “one-dimensional” devices. Another type of proposal

uses dispersive elements such as gratings and prisms to form a continuous span of

spatially separated channels [93, 94, 95, 97]. Such a treatment can effectively increase

the working bandwidth, but it cannot increase the maximum fractional delay [95].

This is because the effective group index of the channelized device is reduced by the

same factor as by which the working bandwidth is increased through the use of such

channelization. As a result, none of the proposals of channelized slow light so far can

overcome Miller’s limit for a signal with a continuous spectrum.



6.2 Principle of channelized slow light 77

Here, we propose a new, practical design of a channelized delay device which, by

using finite number of spatially separated channels, can overcome Miller’s limit.

We first review the operation of a linear, single-channel slow-light element. The

transmission through such an element can be described using a frequency-domain

transfer function H(ν) according to the relation

Eout(ν) = Ein(ν)H(ν), (6.7)

where Ein(ν) and Eout(ν) are the complex amplitude spectra of the input and output

fields, respectively. The transfer function H(ν) is given by

H(ν) = A(ν)eiφ(ν) = exp[i2πνñ(ν)L/c], (6.8)

where A(ν) and φ(ν) are the amplitude and phase response functions, respectively,

ñ = nr + ini is the complex refractive index of the medium, L is the length of the

medium, and c is the velocity of light in vacuum.

We consider a slow-light medium to be ideal if it possesses constant group index

and gain over the signal bandwidth. In this situation, the real part of the refractive

index nr is given by (see the dotted line in Fig. 6.1)

nr(ν) = nr(ν0) +
n′g
ν0

(ν − ν0), (6.9)

where ν0 is some center frequency, n′g = ng − nr(ν0) is the reduced group index,

and ng = nr + νdnr/dν is the group index of the medium near ν0. Note that for

any material medium nr(ν) and ni(ν) are related through the Kramers-Kronig (K-K)

relations, and it is thus very difficult to design an ideal slow-light medium with large,

uniform group index ng and uniform ni over a large bandwidth.

Here, we propose a new design for channelized slow light. The input signal is

first spectrally sliced into M spatially separated channels with a frequency spacing of
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Figure 6.1: Refractive index as a function of the detuning from some center frequency
ν0 for an ideal slow-light medium and for a channelized slow-light medium. Here
δn = n′g∆c/ν0 is the maximum refractive index variation for both types of medium
within the frequency interval ∆c.

∆c. The frequency components in each spectral channel then propagate through the

corresponding narrow-band slow-light medium of length L before they are combined

to restore a delayed output signal.

Since such a channelized device is still a linear system with single input and output

ports, the transmission through the device can also be described by means of the

transfer function H(ν) of Eq. (6.8). For the ideal case in which the spectral slicing is

perfect (i.e., the transmission window in each channel is of rectangular shape without

any phase distortion [35]) and the slow-light medium of length L in each channel is

ideal, the transfer function of such a channelized delay device is given by

H(ν) = exp[i2πνñeff(ν)L/c], (6.10)

where ñeff(ν) is the effective complex refractive index of the device and its real part

neff,r(ν) is given by

neff,r(ν) = neff,r(ν0) +
n′g
ν0

(ν − ν0 −m∆c) , (6.11)

for frequency components within the mth channel (i.e., for |ν − ν0 −m∆c| < ∆c/2,

see also the solid line in Fig. 6.1). Because ñeff is not the property of a single uniform

medium but rather is determined by distinct, spatially-separated media for frequencies

within different spectral channels, it is possible to design such a channelized delay
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device for which the effective group index and gain are constant over arbitrarily

large bandwidth. Note that the entire channelized element is still a causal, linear

element. However, because we can use non-minimal phase filters [98] to construct the

spectral slicers, the magnitude and the phase of the total transfer function H(ν) of

such a channelized element do not have to obey the usual Hilbert transform relations

[98, 99]. Note that causality only requires that the real and imaginary part of the

response function obeys K–K relation.

One sees from Eq. (6.11) that the phase response function φ(ν) is discontinuous at

the boundaries of neighboring channels. The difference in the values of φ(ν) between

the two sides of any boundary between adjacent channels is given by

∆φ ≈ k0δneffL = 2πn′g∆cL/c, (6.12)

where δneff = n′g∆c/ν0 is the difference in the values of the effective refractive index

of the device between the two sides of the channel boundary (cf. Fig. 6.1). This phase

jump of ∆φ can lead to distortion and break up of the reconstructed output pulse,

unless the output phase of each channel is actively adjusted by means of some addi-

tional phase shifter [94]. However, the transfer function H(ν) becomes automatically

continuous (that is, there is no need for further phase adjustment) when

∆φ = 2πN, (6.13)

where N is any integer. In such cases, the difference between the transfer function at

one side of a channel boundary and the other is a multiplicative factor of exp(i∆φ) =

1. Therefore, one can achieve a delayed output signal without any distortion. For

a channelized device with a fixed length L and channel spacing ∆c, the condition of

Eq. (6.13) indicates that the reduced group index n′g of each channel needs to satisfy
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Figure 6.2: False-color representation of the amplitude of the output signal propagat-
ing through an ideal channelized delay device as a function of time and of the value
of n′g. Here the input signal is a Gaussian pulse with a half width to the 1/e intensity
value of T0, and the channel spacing ∆c is set equal to 1/(8T0). The time axis is set
so that t = 0 indicates no delay as in the case in which n′g = 0.

the following condition:

n′g(N) =
Nc

L∆c

. (6.14)

Under such conditions, the transmission through the channelized delay device is equiv-

alent to that through an ideal slow-light medium with the same length L and reduced

group index n′g = n′g(N) over the entire signal bandwidth. Thus, a distortion-free

signal can be produced at the output port of the device with a group delay τg(N)

given by

τg(N) =
n′g(N)L

c
=

N

∆c

. (6.15)

Some numerical predictions based on these considerations are displayed graphi-

cally in Fig. 6.2. Here we consider an input signal in the form of a Gaussian pulse and

we calculate the output pulse shape through use of the transfer function of Eq. (6.10).

The amplitude of the output is then plotted against time on the horizontal axis and

the reduced group index n′g on the vertical axis. We see that for specific values of

n′g (see the white dotted line in Fig. 6.2) the output is in the form of a well defined



6.2 Principle of channelized slow light 81

pulse, whereas for other values of n′g pulse breakup occurs. Since the values of n′g

that allow an undistorted output pulse are spaced discretely at integer multiples of

c/(L∆c), the possible time delays are also distributed discretely in integer multiples

of the time interval ∆−1
c .

For an input signal of a bandwidth ∆ν, the number of required channels is M =

∆ν/∆c. Moreover, the maximum variation in the (effective) refractive index of the

channelized device is given by ∆n = n′g∆c/ν0, which is independent of the signal

bandwidth. Thus, the fractional delay can be written terms of ∆n as follows:

τg∆ν =
n′gL∆ν

c
=

∆nν0L∆ν

∆cc
=

M∆nL

λ0

. (6.16)

This equation is of similar form to the expression of Miller’s limit [cf. Eq. (6.1)].

Besides the difference of some numerical constants, our expression has a factor of M

in the numerator. Since M is a free design parameter determined by the channel

spacing relative to the signal bandwidth, the fractional delay of a channelized delay

device is not restricted to Miller’s limit. Indeed, there is no obvious limit to how large

the fractional delay can become in a channelized device.

Note that in our proposed channelized device, frequency components in different

spectral channels also propagates through different physical channels. In such a case,

if one modifies Miller’s limit so the length of device “L” is modified into the sum of the

length of all physical channels, than the maximum achievable delay of our proposed

channelized device is still consistent with Miller’s limit.

Let us next consider not a single pulse but rather a wave train (data packet) in

the form of B pulses, each with a temporal spacing of τb. The duration of this wave

train is then of the order of τp = Bτb. We want to determine the extent to which we

can achieve a large fractional delay of the entire wave train. The ability to perform

such packet delay is important for various applications such as all-optical buffering

and routing. When the condition of Eq. (6.14) is satisfied, the fractional delay of the
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entire data packet is given by

τg(N)

τp

=
n′g(N)L

cBτb

=
N

∆cBτb

. (6.17)

One sees that when the channel spacing ∆c satisfies the following condition:

∆c = 1/(Bτb), (6.18)

the channelized element can achieve discretely tunable delays that are integer mul-

tiples of the time duration of the entire data packet. Crucially, no dynamic control

of the phase of the output of each channel is required to achieve this control of the

signal delay.
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6.3 A numerical example using stimulated Bril-

louin scattering slow light

To illustrate more explicitly the promise of channelized slow-light devices, we next

present a practical design for a channelized slow-light buffer for high speed telecom-

munication systems and we analyze its performance. We consider a signal data rate of

40 Gbps. Each ‘1’ bit is represented by a Gaussian pulse and a ‘0’ bit is represented by

the absence of the pulse. The temporal full width at half maximum (FWHM) of the

‘1’ bit is 12.5 ps, which is consistent with a return-to-zero (RZ) amplitude modulation

format of 40 Gbps with 50% duty cycle. For illustrative purposes we consider a data

packet containing 4 bits. In order to achieve packet delays, the channel bandwidth

is determined, according to Eq. (6.18), to be ∆c = 10 GHz. We choose the total

number of channels to be M = 7 to cover the entire signal spectrum [as indicated by

the dotted line in Fig. 6.4(a)].

As an example, we construct the spectral slicer by cascading a series of flat-top

finite impulse response (FIR) Chebyshev half-band filter with 4 couplers [100] as

shown in Fig. 6.3(a). After the spectral components in each channel are delayed, we

use another spectral splicer in a reverse fashion to combine all the spectral components

to restore the broadband signal. The two spectral slicers are designed to have opposite

dispersions [101] so that the cascaded transfer function of the two slicers has negligible

phase distortion.

We choose stimulated Brillouin scattering (SBS) as the slow-light mechanism [12,

13] to be implemented in each spectral channel. A spool of single mode fiber is

contained in each channel, and the delay is controlled by selecting the appropriate

pump power for each channel. The SBS Stokes shift frequency ΩS of the single mode

fiber at the operating wavelength of 1550 nm is assumed to be a typical value of

12 GHz. The SBS pump-field spectral profile for each signal channel is achieved

by filtering a broadband flat-top pump field (using, e.g., current modulation [102])
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Figure 6.4: (a) Transmission of each of the seven physical signal channels of a chan-
nelized SBS delay element; (b) corresponding pump field spectrum for one particular
signal channel (channel #4); and the SBS-induced (c) gain and (d) refractive index
variation as functions of the detuning for channel #4 (solid line) and for a broadened
gain profile (dashed line), respectively.

through an additional spectral slicer. The schematic diagram of the channelized delay

element is plotted in Fig. 6.3(b). For simplicity, we show the SBS delay line of only

one signal channel. Note that the use of spectral slicers has associated insertion

loss, which is typically frequency-insensitive. Such losses would reduce the signal

power level, which may reduce the signal-to-noise ratio when the signal is detected.

However, SBS is a gain-induced slow-light process, and therefore such losses can be

compensated by the SBS gain or by adding an additional amplifier module after the

channelized device. Moreover, since only the frequency components within the SBS

gain profile (which in our case only covers the signal bandwidth) experience the gain,

the SBS process acts like a bandpass filter and may actually reduce the optical noise

level outside the signal bandwidth and consequently increase the optical signal-to-

noise ratio.

The transmissions windows of the seven signal spectral channels are plotted in
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Figure 6.5: Outputs of a 40 Gbps, RZ data train ‘1010’ after propagating through
a channelized SBS delay element with ∆c of 10 GHz (solid line), a single channel
narrow-band SBS delay element (dash-dotted line) and a single channel broadband
SBS delay element (dashed line), respectively. The dotted line is the reference output.

Fig. 6.4(a). Figure 6.4(b) shows the pump field profile for signal channel #4, and the

resulting gain and refractive index as functions of frequency detuning ν ′ are plotted

in Figs. 6.4 (c) and (d), respectively. One sees that both g and n are very close

to those of an ideal slow-light medium with constant group index and gain over the

entire transmission window of the signal channel (see the gray region in Fig. 6.4).

Next, we numerically model the propagation of a wave packet containing the data

stream of ‘1010’ through the channelized delay element. For comparison, we also

treat the transmission through two other types of single-channel delay elements. One

is an narrow-band delay element which is equivalent to channel #4 of our channelized

device. The other has a flat-top broadband gain profile [see the dashed lines in Fig.

6.4 (c) and (d)] across the entire 70 GHz signal bandwidth, which is equivalent to

the case in which the spectral channels are spatially overlapping. For the second

element, we assume that the anti-Stokes SBS absorption features are compensated

(e.g., using multiple pump fields [103, 104]) and the signal experiences only the 70

GHz broadband gain feature.

The output waveforms for delays of 1, 2 and 3 packet lengths are plotted as the

solid lines in Figs. 6.5(a)-(c), respectively. One sees that our channelized delay element
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Figure 6.6: Eye-openings of three channelized devices as functions of the standard
deviation phase noise level δφ among different spectral channels. The insets show
typical eye-diagrams for (a) an ideal channelized slow-light device; (b) an channelized
device with realistic spectral slicers and ideal slow-light media; and (c) an realistic
channelized SBS slow-light device, respectively. The corresponding eye-openings are
given on top of each eye-diagram, respectively.

can achieve large packet delays with nearly no pulse distortion because it provides

uniform effective group index and gain over the entire 70 GHz signal bandwidth.

The outputs of the other two types of delay elements with the same maximum

(line-center) CW gain are also plotted for comparison. One sees that the narrow-band

single-channel delay element achieves similar amount of delay (see the dash-dotted

lines in Fig. 6.5) because n′g within its working bandwidth is the same as that in our

channelized element. However, because its 12 GHz working bandwidth is much less

than the 70 GHz signal bandwidth, significant pulse broadening occurs at the output

and the data information of ‘1010’ is completely lost.

On the other hand, the broadband delay element possesses enough working band-

width for the signal, but the delay is very limited (see the dashed lines in Fig. 6.5)

because n′g decreases significantly [see the dashed line in Fig. 6.4(d)] as a conse-

quence of the broadening of the gain. Furthermore, the output signal also shows

large distortion because n′g is not uniform over the signal bandwidth.

For practical applications, it is important to evaluate the performance of our chan-
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nelized delay module under the influence of imperfections. In particular, we consider

the influence of relative phase fluctuations among the different spectral channels on

the quality of the restored output signals. Such phase fluctuations can be induced by

e.g., temperature fluctuations of individual slow-light elements (fibers in our case),

etc., which introduce the additional random phase δφ(m) to the phase response func-

tion φm(ν) for the mth spectral channel.

Here we use the metric of eye-opening to quantify the influences of these phase

fluctuations. The eye-opening metric is defined as the maximum opening of the eye-

diagram (see, for example, the insets of Fig. 6.6), and it is closely related to the

Q-factor and the bit-error-rate of the system [80, 81, 79, 73].

We consider three different models of the channelized devices. One is an ideal

device with ideal spectral slicers whose transmission windows are of rectangular shape

and with ideal slow-light media that have uniform group index and zero gain. The

second is a semi-ideal device with realistic spectral slicers composed of cascaded half-

band filters as described above and an ideal slow-light medium in each channel. The

third is the most realistic model using realistic spectral slicers and SBS slow light.

All three devices are set to provide one four-bit-long data packet delay.

For each phase noise level δφ, we add a random phase δφ(m) to the phase re-

sponse of the mth channel, and δφ(m) is uniformly distributed in the interval of
[−√3δφ,

√
3δφ

]
. Note that the standard deviation of such a phase noise distribu-

tions is equal to δφ. We then calculate the eye-openings of the output signal through

each channelized device with an input signal of a 128-bit pseudo-random data train.

The calculation is performed 200 times for each phase noise level and for each device,

and the average eye-openings for the three devices are plotted in Fig. 6.6 as functions

of the phase noise level δφ. One sees that as δφ increases, the eye-opening gradually

becomes smaller. If we require that the decrease of the eye-opening due to phase

fluctuations should be less than 10%, one sees from Fig. 6.6 that the phase noise level

δφ should be less than approximately π/(5
√

12) (i.e., the largest phase fluctuations
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should be less than λ/10) for all three models. Note that since such phase fluctu-

ations are typically slowly-varying in time and independent on the fractional delay

of the device, they can be compensated by e.g., using additional low-speed phase

modulators.

6.4 Summary

In this chapter, we have proposed a new procedure for increasing the fractional delay

of a slow-light system by utilizing spatially separated channels, each of which possesses

a small group velocity over a narrow spectral frequency band. We have shown that

by properly choosing the group index of each channel, one can achieve discretely

tunable delays without the need to adjust the phase of each channel. Furthermore,

we have shown that by using spatially separated channels, such a channelized device

can exceed the fundamental limit of the delay-bandwidth product for a single channel

slow-light device. We have proposed a practical design of such a device using spectral

slicers and SBS slow light, and numerical simulation shows that discretely tunable

packet delay can be achieved with negligible signal distortion.



Chapter 7

Slow Light Interferometry

7.1 Background

While many current applications of slow light focus on taking advantage of ultra-slow

group velocities of optical pulses propagating inside the medium, the impact of the

large dispersion inside a slow-light medium on the phase change of different frequency

components of the optical fields has sometimes been overlooked.

Moreover, interferometers with high spectral sensitivity are becoming more and

more desired in applications such as metrology [105], optical sensing [106], quantum

information processing [107], biomedical engineering [108], etc. A number of schemes

have been proposed to enhance the performance of interferometers, such as using

PhC structures to minimize the size of an on-chip nonlinear electric-optic modulation

devices [31] and EIT to increase the rotation sensitivity of a Sagnac interferometer

[109].

In this chapter, we show how using slow light can benefit various types spectro-

scopic interferometers. We first derive the effect for both two-beam and multiple-

beam interferometers, and use a proof-of-principle experiment to demonstrate the

effect. We further analyze more practical situations when loss/gain of the slow-light

medium is taken into account.

89
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7.2 Two-beam interferometers

First, we consider the case of a Mach-Zehnder (M-Z) interferometer as a typical

example of a two-beam interferometer. A slow-light medium of length L is placed in

one of its arms (see Fig. 7.1), and the two arms are adjusted in such a way that the

optical path difference between the arms is equal to the optical path length through

the slow-light medium. The transmission of such an interferometer, when the slow-

light medium is assumed transparent, is then given by

T =
1

2
(1 + cos ∆φ), (7.1)

where ∆φ is the phase difference between the two arms expressed by

∆φ(ν) =
2πν

c
n(ν)L, (7.2)

and where ν is the frequency of the input field, c is the speed of light in vacuum, and

n(ν) is the refractive index of the slow-light medium.

Beam Splitter #1

Beam Splitter #2

Slow-Light Medium

L
Tunable

 Laser

Detector

Figure 7.1: Schematic diagram of a Mach-Zehnder interferometer containing a slow-
light medium in one arm.

For spectroscopic applications, a change in frequency ω will produce a change

in the phase difference term ∆φ, which will consequently lead to a change in the

transmission intensity which enables the detection of the frequency shift. The spectral

sensitivity of such an M-Z interferometer can be described by the rate at which the

phase difference term ∆φ changes with frequency ν. Taking the derivative of ∆φ with
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respect to frequency ν, one obtains the following expression:

d∆φ

dν
=

d

dν

(
2πνn(ν)L

c

)
=

2πL

c
(n + ν

dn

dν
) =

2πLng

c
, (7.3)

where ng ≡ n + νdn/dν is the group index of the medium.

Thus, one sees that the spectral sensitivity is proportional to the group index

ng of the medium that is inside the interferometer. For common interferometers in

which non-dispersive media (or media with small dispersion) are used, ng equals (or

approximates) the phase index n, and therefore the dependence of spectral sensitivity

on dispersion can often be neglected. However, if a slow-light medium with very large

group index ng is used, the spectral sensitivity of such an interferometer can be

greatly enhanced. Alternatively, for a given required spectral sensitivity, a shorter

path length can be used for a slow-light medium. The resulting reduction in the

device size could be important in applications where space is limited or where high

stability is required.

If one defines the spectral resolution δνmin of a M-Z interferometer to be the

frequency difference between adjacent transmission peaks and valleys, one obtains

the following quantified expression for the spectral resolution:

δνmin =
c

2Lng

. (7.4)

7.3 Multiple-beam interferometers

To investigate the performance of multiple-beam interferometers, we use as a typ-

ical example the Fabry-Perot (F-P) interferometer (see Fig. 7.2). For the case in

which the F-P etalon is a slow-light medium of thickness L, the transmission of the

interferometer as a function of the incidence angle θ within the medium is given by
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[110],

T (θ) ≈ T 2
s TL(θ)

(1−RsTL(θ))2

1

1 + F2 sin2 ∆φ(θ)
, (7.5)

where Ts and Rs are the transmissivity and reflectivity at the air-medium interface,

respectively, TL(θ) ≡ exp(−αL/ cos θ) is the transmissivity of a plane wave at inci-

dence angle θ through the medium, ∆φ = kL cos θ + ψ0 is the phase difference term,

α and k are the absorption coefficient and the wave number of the field inside the

slow-light medium, respectively, ψ0 is the phase change of field due to reflection at

the medium-air interface and F is the finesse defined as

F ≡ 2R
1/2
s TL(θ)

[1−RsTL(θ)]
. (7.6)

L

θ
θ

slow-light etalon

L

detector 

array
input

Fourier lens

2∆ φ

'

Figure 7.2: Left: Schematic diagram of a slow-light Fabry-Perot interferometer.
Right: A close look at the multiple beam interference within the F-P etalon.

The angle between the center of the mth fringe and the normal incidence direction

is given by

θm = cos−1

(
1− (M −m)λ

2Ln

)
, (7.7)

where M ≈ 2Ln/λ is the order of the fringe at normal incidence.
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The spectral sensitivity of the mth order fringe is therefore given by

dθm

dλ
=

M −m

2L sin θm

(
1

n
− λdn

n2dλ

)

=
(M −m)ng

2n2L sin θm

. (7.8)

For the case in which the finesse is high (i.e., small angular spread of the fringes),

the angular spread [full width at half maximum (FWHM)] of the mth order fringe is

determined through the relation δ∆φm = 2/F and is given by

δθm =
λ

πLn sin θmF . (7.9)

Thus, the spectral resolution of the mth order fringe is given by

δλm =
dλ

dθ
δθm =

2nλ

(M −m)ngπF . (7.10)

For a F-P interferometer, one typically has the relation M À m. Thus, one can

obtain the following expression for the spectral resolution of a F-P interferometer:

δλmin ≈ 2nλ

MngπF =
λ2

ngLπF . (7.11)

One sees that when gain or absorption is negligible, the spectral resolution of a slow-

light F-P interferometer is inversely proportional to the group index of the etalon

medium.

Beam profiler

Slow-light medium

Imaging lensθTunable laser

Beam expander
L0

P Cy
z

Figure 7.3: Schematic diagram of a wedged shear interferometer containing a slow-
light medium.



7.3 Multiple-beam interferometers 94

A wedged shear interferometer is another example of a multiple-beam interferom-

eter. As one sees in Fig. 7.3, a collimated beam is normally incident on a wedge plate.

Due to the interference among the light waves bouncing back and forth between the

two surfaces of the wedge plate, tilt fringes occur at the exit surface. When the

wedge angle θ is small (i.e., the change of the thickness of the wedge plate across the

incident area of the beam is much less than its average thickness L0), the intensity

transmission as a function of lateral position y can be written as [110]

T (y) ≈ T 2TL

(1−RTL)2

1

1 + F sin2 ∆φ(y)
, (7.12)

where T and R are the transmissivity and reflectivity at the air-medium interface,

respectively, TL ≡ e−αL0 is the transmissivity through the medium, ∆φ = k(L0 +

θy) + ψ0 is the phase difference term, α and k are the absorption coefficient and the

wave number of the field inside the wedge plate, respectively, ψ0 is the phase change

of field due to reflection at the medium-air interface and F is the finesse defined as

F ≡ 4RT 2
L/(1−RTL)2. The position of the mth-order fringe peak is given by

ym =
(mπ − ψ0)c

nθω
− L0

θ
. (7.13)

If the frequency of the incident field changes slightly, the fringe peak ym will shift

laterally. The rate of movement of the fringes as a function of frequency is given by,

dym

dω
= −(mπ − ψ0)c

θn2ω2
(n + ω

dn

dω
) ≈ −m̄πcng

θn2ω2
, (7.14)

where m̄ ≈ nωL0/(πc) is the approximated order-number of the fringe peak (again,

the small wedge angle condition of L0 À θymax is assumed). One can further normalize

this fringe movement rate with the fringe period Λ = πc/nωθ and obtain the following
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normalized expression for the rate of fringe movement,

1

Λ

dym

dω
≈ −m̄ng

nω
= −L0ng

πc
, (7.15)

or

1

Λ

dym

dλ
≈ m̄ng

nλ
=

2L0ng

λ2
. (7.16)

One sees from Eqs. (7.15) and (7.16) that the movement rate is proportional to

the group index ng of the wedge plate. Note that the wedge interferometer is designed

to monitor the frequency shift of the incident light by detecting the lateral movement

of the fringes, and therefore its spectral sensitivity is directly proportional to the rate

of the fringe movement, i.e., proportional to ng. Also note that other wavelength-

dependent variables in Eq. (7.12), such as R, T and F , usually vary slowly within the

wavelength range of interest, and therefore their impact on the spectral sensitivity

can be ignored.

7.4 Experimental demonstration

A proof-of-principle experiment is carried out using a wedged shear interferome-

ter. The slow-light medium used as the wedge plate in the interferometer is a

CdS0.625Se0.375 c-cut single crystal. The wedge plate is about 0.5 mm thick, and

the angle between the two surfaces is about 2.28◦. The absorption edge of this direct-

bandgap semiconductor sample is measured to be 2.15 eV (i.e., 578 nm) at room

temperature. According to the Kramers-Kronig relation, the refractive index of this

sample experiences a rapid change near the absorption edge and consequently gives

a large group index in that region. The refractive index (for ordinary polarized light)
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as a function of wavelength can be determined through the relation [111],

no(ω) =
√

1 + 2co
0 [yB − q tan−1(yB/q)], (7.17)

where co
0 and yB are coefficients whose numerical values are 0.996 and 3.324 for

CdS0.625Se0.375, respectively, q ≡
√

1− ~ω/G, and G = 2.15 eV is the bandgap en-

ergy. Numerically, the values of the refractive index n and group index ng at λ = 605

nm are 2.64 and 3.87, respectively. As the wavelength is tuned towards the absorption

edge), the group index increases much faster than the phase index. At λ = 587.5 nm,

n has a value of 2.69, almost the same as that at λ = 605 nm, but the group index

now is almost twice as large as n with a value of 4.80. Because the change of n and

ng as the wavelength decreases from 605 to 587.5 nm are very different, it enables us

to distinguish experimentally whether the spectral sensitivity of the interferometer is

dependent on n or ng.

A Rhodamine 6G dye laser is used as the tunable source in the experiment. The

fringe patterns on the exit surface of the wedge plate are imaged onto a CCD beam

profiler using an imaging lens and are recorded digitally. Note that the imaging lens

would not be required if the CCD were attached directly to the exit surface of the

wedge plate. To determine the spectral sensitivity near each wavelength, the fringe

patterns are recorded while the laser is detuned near this wavelength with a detuning

step size of 0.01 nm for 21 steps. The relative peak positions are determined at each

detuning step, and the fringe movement rate near this wavelength is calculated using

linear fitting of the peak positions. The wavelengths at which the spectral sensitivity

are measured are chosen from 605 nm to 587.5 nm with an decrement of 2.5 nm each

time.

Figure 7.4 shows the relative rate of fringe movement (normalized by the fringe pe-

riod) at different wavelengths. The spectral sensitivity of this interferometer increases

from 10.7 periods/nm to 13.5 periods/nm (see squares in Fig. 7.4) as the wavelength

changes from 605 nm to 587.5 nm. This increase agrees very well with the change
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Figure 7.4: Relative rate of fringe movement as a function of wavelength. The squares
are experimental data with standard deviation bars, the solid line is the theoretical
prediction and the dashed line is the prediction if dispersion is neglected.

of group index of CdS0.625Se0.375 as the wavelength is tuned towards the absorption

edge. The solid line in Fig. 7.4 shows the theoretical predictions given by Eq. (7.16).

One clearly sees that it matches very well with the experimental results. Also note

that the rate of fringe movement (i.e., the spectral sensitivity) of our interferometer

with a slow-light medium is about twice as large as that of an interferometer with a

non-dispersive medium with the same refractive index [i.e., replacing ng by the phase

index n in Eq. (7.16); cf. the dotted line in Fig. 7.4]. Furthermore, the sensitivity

for the non-dispersive interferometer changes only slightly as the wavelength changes

from 605 nm to 587.5 nm.

7.5 Practical considerations

As shown in the previous two sections, the enhancement factor of the spectral res-

olution of a slow-light interferometer is equal to the group index of the slow-light

medium in ideal cases when its group index is uniform and absorption/gain is neg-

ligible. However, in practice, a slow-light medium typically has associated gain or

loss and has dispersion of the group index, which poses a further question: “What

is the maximum achievable enhancement of the spectral performances of a slow-light
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interferometer when realistic conditions of the medium is considered?”

We use two figures of merit to evaluate the spectral performance of an interfer-

ometer under practical considerations. The first one is the spectral resolution δνmin,

which describes the minimum frequency difference that the interferometer can resolve.

This quantity also describes how sensitive an interferometer is to the change of the

input frequency when it is used as a frequency monitor or sensor.

Secondly, the maximum usable spectral bandwidth of an interferometer, which we

call it the working bandwidth, is an important quantity. Since the working bandwidth

can be limited both by the dispersive properties of the slow-light medium and by the

construction of the interferometer itself, we will use this figure of merit to evaluate

specific slow-light processes in Chapter 9.

For a M-Z interferometer, the output transmission is given by

T =
1

4
(1 + e−αL + 2e−0.5αL cos ∆φ), (7.18)

where α is the absorption coefficient of the medium. The spectral resolution is still

given by Eq. (7.4), and one sees that the resolution is inversely proportional to the

group index ng as well as the length of the medium L. However, given a value of ng,

as the length L becomes larger, the associated gain or absorption mechanism of the

slow-light medium will either amplify or attenuate the beam passing through the arm

in which the slow-light medium is inserted. This will consequently change the fringe

visibility at the output. The visibility of such a M-Z interferometer is given by

V ≡ Iout,max − Iout,min

Iout,max + Iout,min

=
2e−0.5αL

1 + e−αL
. (7.19)

For a lossless M-Z interferometer, the value of the visibility V is 1. The associ-

ated loss or gain of the slow-light medium will decrease the fringe visibility V . For

definiteness, we require that the loss through the slow-light medium be less than 1/e

(or gain less than a factor of e), and consequently we obtain the following restriction
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on the maximum length L of the medium,

|αL| ≤ 1. (7.20)

Note that this requirement indicates that the visibility V is always no less than 0.65.

Substituting this requirement into Eq. (7.4), one obtains the following expression

for the minimum spectral resolution for a M-Z interferometer with a lossy slow-light

medium:

δνmin =
∣∣∣ cα

2ng

∣∣∣. (7.21)

Such an expression for the spectral resolution is also applicable to other types of

two-beam interferometers, such as a Michelson interferometer.
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Figure 7.5: Finesse of a F-P interferometer as a function of single path transmission
TL. Here the reflectivity at the air-etalon interface is assumed to be 0.99.

To see more clearly how the absorption or gain of the slow-light medium influence

the spectral resolution of multiple-beam interferometers, we recall that the expression

of F [cf. Eq. (7.6)] is dependent on the single pass transmission TL of the light field.

When the fractional loss or gain of the field after a single pass through the slow-

light medium is small, one has TL = exp(−αL) ≈ 1 − αL. In such cases and with

the reflectivity at the air-etalon interface being high, Rs ≈ 1, the finesse F can be
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approximated by (see also Fig. 7.5)

F ≈ 2

1−R + αL
. (7.22)

And the expression of Eq. (7.11) for the resolution of a F-P interferometer can be

approximated by

δλmin ≈ λ2(1 + αL−Rs)

2ngLπ

=

∣∣∣∣∣
λ2(1−Rs)

2ngLπ
+

λ2α

2ngπ

∣∣∣∣∣, (7.23)

or in frequency units

δνmin =

∣∣∣∣∣
c(1−Rs)

2πngL
+

cα

2πng

∣∣∣∣∣. (7.24)

One sees that the resolution is given by the sum of two terms. The first term is the

expression for an ideal, lossless slow-light interferometer, and is inversely proportional

to the group index ng. The second term is proportional to the ratio between α and

ng. In principle, the first term can be made to vanish when the reflectivity at the

surface Rs approaches unity. In such cases, the overall spectral resolution will be

primarily determined by the second term such that

δνmin ≈
∣∣∣ cα

2πng

∣∣∣. (7.25)

Figure 7.6 shows some theoretical calculations on the minimum spectral resolution

of a F-P interferometer as a function of the etalon thickness L. We consider the etalon

to be composed of four different materials, a non-slow-light medium with refractive

index of unity, and three slow-light medium with the same group index ng = 10 and

different values of the absorption coefficient. The reflectivity at the air-etalon interface

is all assumed to be Rs = 0.99. The green dash-dotted line is the result of a non-slow-
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light medium. The blue solid and the red dashed lines are the analytic [Eq. (7.11)]

and approximated [Eq. (7.24)] expressions for the slow-light cases, respectively. One

can see from the figure that when the single pass transmission through the etalon

is high (loss being low), the spectral resolution of a slow-light F-P interferometer

is indeed enhanced by a factor of ng as compared to a conventional non-slow-light

version. However, the absorption eventually limits the finest spectral resolution, and

our approximated expression of Eq. (7.24) accurately reveals this limit.
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Figure 7.6: Resolution of a F-P interferometer as a function of the etalon thickness
L for the etalon being composed of different materials.

Note that if the slow-light medium has gain such that the single-pass gain gL is

comparable to the loss at the reflection 1 − Rs, the two terms in Eq. (7.24) would

become comparable to each other but with opposite signs. In this case, one can obtain

very high spectral resolution as long as the gain is not saturated. Note that the

expression of Eq. (7.24) is also valid for other types of multiple-beam interferometer,

such as a wedged shear interferometer [11].

7.6 Summary

In this chapter, we have shown that the spectral sensitivity of an interferometer scales

with the group index of the material within it and hence can be greatly enhanced

by introducing a slow-light medium. The enhancement effect has been demonstrated
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experimentally with a wedged shear interferometer based on a CdS0.625Se0.375 semicon-

ductor material. The change of the spectral sensitivity of the interferometer at differ-

ent wavelengths agrees well with the change of the group index at these wavelengths.

In our proof-of-principle setup, the spectral sensitivity is enhanced by approximately

a factor of 2, which is limited by the value of ng of CdS0.625Se0.375. We have further

analyzed the influence of associated gain/loss of slow-light medium on the minimum

achievable spectral resolution of different types of interferometers, and we see that

for both two-beam and multiple-beam interferometers, the limiting resolution scales

with cα/ng.



Chapter 8

Slow Light Fourier-Transform

Interferometry

8.1 Conventional Fourier transform interferome-

try

Fourier-transform (FT) interferometry [112] is a powerful technique that has intrin-

sically high signal-to-noise ratio (SNR) and can have high resolving power. These

properties have led to its many applications in biomedical engineering, metrology

[113], astronomy, etc. A conventional FT interferometer [see Fig. 8.1(a)] is typically

comprised of a fixed arm and a moving arm, both of which contain non-dispersive

media (typically air) with refractive index n. The length of the moving arm can be

changed to achieve a variable optical delay time (ODT) τ = nL/c, where L is the

length difference between the two arms, and c is the speed of light in vacuum. The

output intensity is given by

(2Iout − Iin) =

∫ ∞

0

Iin(ν) cos(2πnνL/c)dν. (8.1)

103
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Assuming

Iin(ν) = Iin(−ν), (8.2)

One has

(Iout − 0.5Iin) =

∫ ∞

0

Iin(ν)ei2πnνL/cdν +

∫ ∞

0

Iin(−ν)e−i2πnνL/cdν

=

∫ ∞

−∞
Iin(ν)ei2πνnL/cdν. (8.3)

The above expression shows that the output intensity is the Fourier transform of

the intensity spectrum of the laser source. For simplicity, we define the normalized

output intensity as

I
′
out ≡ Iout − 0.5Iin. (8.4)

By measuring the output intensity while adjusting the optical path difference L from

zero to a large number Lmax, the spectrum of the source can be obtained as

Iin(ν) =

∫ ∞

−∞
I
′
out(l)e

−i2πνnl/cdl, (8.5)

where

I
′
out(l) = I

′
out(−l). (8.6)

To resolve the spectrum of an input optical field with center frequency ν, τ needs

to be tuned from zero to a maximum value τmax with a step size comparable to

1/ν. The spectral resolution is given by δνmin = 1/(2τmax) [112]. To achieve a

high spectral resolution, one needs a large device size [typically with the order of

c/(2nδνmin)] and a large number of data acquisition steps [determined by ν/(2δνmin)]
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for each measurement. Thus, the resolution of a conventional FT interferometer is

typically of the order of 1 nm, which needs approximately 1000 measuring steps.

detector

input field

moving arm

fixed arm

detector

input field

fixed arms

δ0.5
  

L

0.5Lmax

(a) (b)

tunable slow-
light medium

beam

splitter

beam
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Figure 8.1: Schematic diagrams of (a) a conventional FT interferometer with one
moving arm and one fixed arm; and (b) a FT interferometer with a tunable slow-light
medium in one of the two fixed arms.

8.2 A slow-light Fourier transform interferometer

In this chapter, we propose and demonstrate a new type of FT interferometer that uses

a continuously tunable slow-light medium to realize a tunable group delay between

the two arms [see Fig. 8.1(b)]. We first develop the theory for the ideal case in which

the slow-light medium has a uniform group index ng (defined by ng ≡ n+νdn/dν) and

thus no group velocity dispersion over the frequency range of interest. The frequency

dependence of the refractive index of such an ideal tunable slow-light medium in the

vicinity of a reference frequency ν0 is given by

n(ν) ≈ n(ν0) +
n′gν

′

ν0

, (8.7)

where ν ′ ≡ ν−ν0 is the frequency detuning and n′g ≡ ng−n is the relative group index.

We assume that for such a medium n′g can be varied continuously, for example by

changing the number density of an atomic vapor, from zero to a maximum value n′g,max

. Note that ν0 is a reference frequency chosen such that n(ν0) remains constant as n′g

is tuned. We consider a Mach-Zehnder (M-Z) interferometer with such a tunable slow-

light medium of length L in one arm and a non-dispersive reference medium of length



8.2 A slow-light Fourier transform interferometer 106

L2 and refractive index n2 in the other arm. For simplicity, we let I(ν) = |E(ν)|2.
When the input field has multiple frequency components, the output intensity at each

of the two ports of such a M-Z interferometer (see Fig. 8.2) is given by

Iout,± =
1

4

∫
Iin(ν)|eik[n(ν0)+

n′gν′
ν0

]L ± eikn2L2|2dν, (8.8)

where k = 2πν/c is the wave number at frequency ν in vacuum. Note that, in

practice, both arms also contain other non-dispersive media such as beam splitters

and air. However, the optical path lengths contributed from these media are assumed

to be balanced between the two arms, and therefore are not shown in Eq. (8.8).

When the two arms are balanced such that n2L2 = n(ν0)L, one can rewrite Eq. (8.8)

as follows:

Iout,± =
1

4

∫
Iin(ν)|eik

n′gν′
ν0

L ± 1|2dν

=
1

2
Iin ± 1

2

∫
Iin(ν) cos k

n′gν
′

ν0

Ldν. (8.9)

By subtracting the two outputs, and approximating k by k0, one obtains the following

relation

I ′out ≡ Iout,+ − Iout,− ≈
∫

Iin(ν) cos 2π
n′gν

′

c
Ldν, (8.10)

where I ′out is the modified output that can be directly measured by using a balanced

homodyne detection method [114]. Note that, for a pulse with center frequency near

ν0, the relative delay between the two arms of the interferometer is given by

τg =
ngL

c
− n2L2

c
= [ng − n(ν0)]

L

c
=

n′gL

c
. (8.11)

We assume that the incident field contains only frequency components that are

larger than ν0, as is in the case of the experiment shown below. In this way, one can
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obtain the following inverse Fourier transform relation:

I ′out(τg) =

∫ ∞

−∞
Iin(ν0 + ν ′) cos 2πν ′τgdν ′

= <{
∫ ∞

−∞
Iin(ν0 + ν ′)ei2πν′τgdν ′}, (8.12)

where <{} denotes the real part. Thus, one can retrieve the input spectrum by

applying a Fourier transform to the output intensity scan as a function of τg and

taking only the result with positive detuning ν ′ > 0. Note that expression (8.12) is

similar to that of a conventional FT interferometer (e.g., Eq. (11.4) in Ref. [112]),

except that in the present case the Fourier conjugate pair is the detuning ν ′ and the

group delay τg instead of the absolute frequency ν and the ODT τ .

In the ideal case in which the slow-light medium is lossless, the spectral resolution

δν of such a slow-light FT interferometer is limited by the largest achievable group

delay τg,max to

δν = 1/(2τg,max) = c/(2n′g,maxL). (8.13)

Since n′g,max can be very large when a suitable slow-light medium is used, the spectral

resolution of the slow-light FT interferometer can be enhanced by the significant

factor of n′g,max with respect to that of a conventional setup. Alternatively, for a

specified spectral resolution δν, the device size can be decreased by a factor of n′g,max.

The total spectral range of such a FT interferometer is given by

∆ν = c/(2δn′gL), (8.14)

where δn′g is the step size of the change in n′g. Note that our slow-light FT interferom-

eter does not require any moving arms, which is advantageous in certain situations in

which vibration and translation errors of a moving arm could introduce measurement

errors and decrease the SNR.
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The theory of Eqs. (8.7) – (8.12) can be extended to the more general case in

which the slow-light medium has an arbitrary frequency dependence of the refractive

index near ν0 in the form of n(ν) = n(ν0) + (n′g/ν0)f(ν ′) where f(ν ′) describes the

normalized dispersion function near ν0. In such a case, one can replace ν ′ by f(ν ′) in

Eqs. (8.8) – (8.12) and obtain the following inverse FT relation:

I ′out(τg(ν0)) = <{
∫ ∞

−∞
Iin(ν

′ + ν0)e
i2πf(ν′)τg(ν0)dν ′}, (8.15)

where τg(ν0) is the group delay of a pulse centered at ν0. Note that τg(ν0) can be

determined from the group delay of a pulse centered at any known frequency ν + ν ′

through the relation τg(ν0) = n′g(ν0)τg(ν0 + ν ′)/n′g(ν0 + ν ′). The Fourier transform

of I ′out(τg(ν0)) gives first the spectrum Iin as a function of f(ν ′). When each value of

f(ν ′) corresponds to a unique value of ν0+ν ′ within the spectral range of interest, one

can then map out the input spectrum Iin(ν0 +ν ′) from Iin(f). The spectral resolution

near frequency ν0 + ν ′ is given by δν(ν0 + ν ′) = max{c/[2n′g,max(ν0 + ν ′)L], cα(ν0 +

ν ′)/[2n′g(ν0+ν ′)]}, where n′g,max(ν0+ν ′) and α(ν0+ν ′) are the maximum relative group

index and the absorption coefficient of the medium at frequency ν0 + ν ′, respectively.

8.3 Experimental demonstration

We have constructed a slow-light FT interferometer possessing a M-Z geometry to

demonstrate the properties of our proposed scheme (see Fig. 8.2). A 10-cm-long ru-

bidium vapor cell is used as the slow-light medium. The tunability of the group index

is realized by controlling the temperature and thereby the atomic number density of

the cell. A tunable continuous wave (CW) diode laser operating at approximately

780 nm with a linewidth of approximately 100 kHz is used as the primary source.

An acousto-optic modulator (AOM) is used to produce a second CW field whose fre-

quency is 80 MHz lower than the primary field. The two fields are combined and used

as the input field. Balanced homodyne detection is used to measure the output inten-
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sity I ′out. For monitoring purposes, a part of the primary laser is directed through a

Mach-Zehnder modulator (MZM), which is driven by an arbitrary waveform generator

(AWG) to produce a pulse train with 4 nano-second pulse duration. By measuring

the group delay τg experienced by such pulses of known frequency in propagating

through the vapor cell, the value of n′g at the primary frequency is obtained.

PBS

PBS

PBS

AOM

BS

BS

λ/2

λ/2

λ/2

-

MZM

Laser

Rb cell

heater + controller

AWG

I-

I+

Iout=I+-I-
'

Figure 8.2: Experimental setup of the FT interferometer using a rubidium vapor cell
as the slow-light medium.

The refractive index of a rubidium vapor near the D2 transition lines can be

approximated as [115, 116],

n(ν) = 1− A

2

4∑
j=1

gj

ν − νj + iγ
, (8.16)

where the four terms in the summation correspond to the four major hyperfine tran-

sitions of the rubidium D2 lines [see Fig. 8.3], gj and νj are the relative peak strength

and the frequency center of the jth resonance, respectively, γ ≈ 6 MHz is the homoge-

neously broadened linewidth of the Rb resonances, and A is a coefficient determined

by the atomic number density and the dipole transition moments. The frequency

spacing between the centers of neighboring resonances from low to high frequencies

are 1.22 GHz, 3.035 GHz, and 2.58 GHz, respectively. The natural abundances of 87Rb

and 85Rb are 28% and 72% respectively; therefore the relative peak strengths among

the four resonances are g1 : g2 : g3 : g4 = (5/8)× 0.28 : (7/12)× 0.72 : (5/12)× 0.72 :
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(3/8)× 0.28. The transmission as a function of detuning ν ′ through the vapor cell at

a temperature of approximately 100 ◦C is plotted in Fig. 8.3(a). The thick and thin

curves show the measured data and the theory of Eq. (8.16) (with A = 1.14 × 106

Hz), respectively. The reference frequency ν0 is chosen between the resonances of the

85Rb F = 2 → F ′ and 87Rb F = 1 → F ′ transitions so that n(ν0) = 1 according

to Eq. (8.16). Note that the theory curve for the absorption, which is based on the

use of Eq. (8.16), fits the data very well in the wings of the lines but not near the

resonances themselves. This is because Eq. (8.16) ignores the influence of Doppler

broadening and the resulting Gaussian lineshape. Since Gaussian lineshapes decay

much more rapidly in the wings than do Lorentzian lineshapes, Eq. (8.16) accurately

describes the atomic response at the frequencies (the gray region in Fig. 8.3) at which

our measurements were performed. The calculated corresponding refractive index n,

and group index ng are plotted in Fig. 8.3(b) and 8.3(c), respectively, as functions of

ν ′.
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Figure 8.3: (a) Transmission; (b) refractive index n; and (c) group index ng of the 10-
cm-long rubidium vapor cell at the temperature of approximately 100 ◦C as functions
of detuning ν ′. The thick curve is the measured transmission, and the thin curves
are the fitted theory using Eq. (8.16). The inset shows the energy levels of the 87Rb
and 85Rb D2 transitions; and the gray region is the frequency region over which the
spectral measurement are performed.
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The primary frequency of the input field is chosen to be approximately 1.79 GHz

higher than the reference frequency ν0 so that the dispersion model of Eq. (8.16) can

be used. At room temperature, the vapor pressure is practically zero so that n′g ≈ 0.

As the temperature rises, the atomic number density increases [i.e., A in Eq. (8.16)

increases] and therefore n′g increases. In the experiment, the pulse delay τg and the

output intensity I ′out are measured simultaneously as the vapor cell is heated from

room temperature to approximately 120 ◦C in a time of approximately 1 minute.

The maximum group delay is approximately 40 nanoseconds, which corresponds to

n′g,max ≈ 120 at the primary frequency.
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Figure 8.4: Output intensity of the slow-light FT interferometer as a function of the
group delay τg for an input field of two sharp spectral lines separated by 80 MHz.

Figure 8.4 shows the experimental data for the output intensity I ′out as a function

of the group delay τg at the primary frequency. The interference pattern clearly shows

the beating between the two closely spaced spectral lines. Note that the envelope of

I ′out is not at a maximum when n′g approaches zero, which is probably because the

phase difference (e.g., due to the coatings on the surfaces of various optical elements

in our setup) between the two arms is not the same for different frequency components

of the input field even when n′g = 0.

The input spectrum is retrieved through the FT relation of Eq. (8.15) and the

mapping process described above. The result is plotted as the solid line in Fig. 8.5.

The dotted line is the actual input spectrum, and the dashed line shows the simulated

result which is obtained from the calculated I ′out using the actual input spectrum, the
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Figure 8.5: Retrieved spectrum of the input field using experimental data (solid line)
and simulated data (dashed line) and the actual spectrum of the input field (dotted
line). The resolution of a conventional FT interferometer of the same size would be
approximately 100 times worse.

rubidium model of Eq. (8.16) and the assumption of a balanced, noise-free interfer-

ometer. One sees that the experimental result accurately resolves the position and

the profile of the input field. The spectral resolution demonstrated in the experiment

is approximately 15 MHz. This value agrees with the simulation result, and is limited

by the absorption of our slow-light medium. In contrast, a conventional setup with

an OPD between the two arms limited to 10 cm could produce a spectral resolution

no better than approximately 1.5 GHz. Thus, through use of slow-light methods, we

have enhanced the resolution by a factor approximately equal to the maximum group

index (100) of our slow-light medium.

8.4 Practical considerations

In practice, however, a variable slow-light medium typically has associated frequency-

dependent loss, which is usually linearly proportional to the reduced group index n′g.

In this case, the output of the interferometer can be re-written in the following form:

Iout(τg)

= <{
∫ ∞

−∞
Iin(ν0 + ν ′)e−

α(ν0+ν′)
2

Lei2πν′τgdν ′}. (8.17)
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For an input field containing only an infinitely narrow spectral line centered at ν1,

the output as a function of the group delay is given by

I ′out = <{e−0.5α(ν1)Lei2π(ν1−ν0)τg}. (8.18)

To retrieve the input spectrum, one needs to take the Fourier transform of the

output Iout(τ
′
g) as follows,

Iin = FT{<{e−0.5α(ν1)Lei2π(ν1−ν0)τg}}
=

∫ ∞

−∞
e
−α(ν1)L

2τg
|τg|e−i2πτg(ν′−ν1+ν0)dτg

=

∫ ∞

−∞
e−σ|τg|e−i2πτgν′′dτg, (8.19)

where σ ≡ α(ν ′)L/(2τg) and ν ′′ ≡ ν ′ − ν1 + ν0 is the frequency detuning from ν ′.

Note that σ is independent of τg. Consequently, one can calculate the above Fourier

transform as follows:

Iin(ν
′′) =

∫ ∞

0

e−στge−i2πτgν′′dτg +

∫ 0

−∞
eστge−i2πτgν′′dτg

=
1

σ + i2πν ′′
+

1

σ − i2πν ′′

=
C

ν ′′2 + γ2
eff

, (8.20)

where C is a constant independent of ν ′′, and γeff is the effective linewidth given by

γeff =
σ

2π
=

cα

4πn′g
. (8.21)

One sees that the retrieved spectrum is a Lorentzian-shaped line with a FWHM

linewidth of

δν2 = 2γeff = cα/2πn′g. (8.22)
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Figure 8.6: (a) Simulated output of a slow-light FTI as the reduced group index n′g
increases when the input field only contains a single frequency. (b) The retrieved
spectrum as compared to a Lorentzian-shaped spectral line.

As a numerical example, we simulate the output [see Fig. 8.6(a)] of a ideal SL-FTI

when the input field has only one frequency which is 0.5 GHz away from the reference

frequency ν0. The ratio of α/n′g is assumed to be 0.75, and the length of the variable

slow-light medium is 10 cm. One sees that due to the existence of absorption, the

fringe visibility dies off as the reduced group index increases. When one takes the

Fourier transform, the retrieved spectrum, as plotted in blue solid curve in Fig. 8.6(b),

is indeed well approximated by a Lorentzian shaped spectral line with linewidth given

by Eq. 8.22 [see the red dotted line in Fig. 8.6(b)].

When both the maximum group index and absorption are considered, the overall

spectral resolution of the slow-light FT interferometer is given by

δνmin = max

[
c

2n′g,maxL
,

cα

2πn′g

]
. (8.23)

Since the first term can always be made arbitrarily small by increasing the medium

length L, and the spectral resolution of a practical slow-light FTI will be primarily

limited by the second contribution.
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8.5 Summary

In this chapter, we have proposed and experimentally demonstrated a new type of

Fourier-transform interferometer that has two fixed arms with a tunable slow-light

medium in one arm. We have shown that in such a FT interferometer the spectrum of

the input field and the modified output intensity as a function of group delay form a

Fourier transform pair. Since the maximum group delay through a slow-light medium

can be very large under proper conditions, such a slow-light FT interferometer can

provide very high spectral resolution. Moreover, a slow-light FT interferometer might

be expected to outperform a conventional FT interferometer by eliminating instabil-

ities and positioning errors associated with the moving arm of a conventional device.

Furthermore, we show that when absorption is present, the intrinsic spectral line re-

trieved has a Lorentzian shape, and the linewidth again scales with the ratio between

the absorption coefficient and the reduced group index.



Chapter 9

Evaluating Slow Light Processes

for Interferometry Applications

9.1 Introduction

There are many physical processes that have been proposed and demonstrated to

realize slow and fast light. While each slow light processes has its own beauty in

physics and implementation, one way or the other, some of them maybe more suitable

for interferometry applications than others. To have a better understanding on which

slow-light processes have more potentials in interferometry, we here investigate the

performance of slow-light interferometers when three specific slow-light mechanisms

are used.

As derived in the pervious two chapters, the spectral resolutions of the three types

of interferometers (two-beam, multiple-beam and Fourier-transform interferometers)

we have considered are limited by |cα/(2ng)|, |cα/(2πng)| and |cα/(2πn′g)|, respec-

tively. For definiteness, we define the characteristic spectral resolution as

δνc ≡ |cα/(2πn′g)| (9.1)
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for the remaining of this chapter. Note also that we assume that the group index ng

is much larger than the refractive index n such that n′g ≈ ng.

Besides the minimum spectral resolution, another figure of merit we consider here

is the working bandwidth as compared to the characteristic spectral resolution. This

thought is quantified by working finesse, which is defined by

Fw = ∆νw/δνc, (9.2)

where the working bandwidth ∆νw of a slow-light medium is calculated such that

the spectral resolution within the working bandwidth does not vary by more than a

factor of 2.

9.2 Single isolated Lorentzian gain line

Single-resonance gain features are commonly used to achieve slow light [12, 117, 35, 73]

because of the rapid change of the refractive index in the vicinity of the resonance

center. For example, the gain coefficient, refractive index, and reduced group index of

an unsaturated Lorentzian gain line [12, 117] as functions of the frequency detuning

ν ′ = ν − ν0 from the resonance center ν0 are given by

g(ν ′) = g0
γ2

ν ′2 + γ2
, (9.3)

n(ν ′) = n(0) +
g0

2k0

γν ′

ν ′2 + γ2
, (9.4)

and

n′g(ν
′) =

cg0γ

4π

−ν ′2 + γ2

(ν ′2 + γ2)2 , (9.5)
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where g0 and k0 are the gain coefficient and the wave number at the center frequency

ν0, respectively, γ is the half width at half maximum (HWHM) linewidth, and n(0)

is the background refractive index at the resonance center.

From the above expressions, one can obtain the ratio between g and n′g as

g(ν ′)
n′g(ν ′)

= −4πγ

c

ν ′2 + γ2

ν ′2 − γ2
. (9.6)

The characteristic spectral resolution at the resonance center is then given by

δνc(ν
′ = 0) =

∣∣∣ cα(0)

2πn′g(0)

∣∣∣ = 2γ. (9.7)

One sees from Eq. (9.6) that the spectral resolution is frequency dependent and

deteriorates as the frequency moves away from the resonance center. The working

bandwidth is determined through the relation

δνc(ν
′ = 0.5∆νw) = 2δνc(ν

′ = 0), (9.8)

and is given by

∆νw =
2γ√

3
. (9.9)

Consequently, the working finesse Fw is given by

Fw =
1√
3
. (9.10)

We see that the working finesse is independent of the linewidth of the resonance,

and is less than unity, which is due to the rapid change in spectral resolution [see

Fig. 9.1(b)] caused by the rapid variation of the group index and the gain coefficient

in the vicinity of a Lorentzian resonance center [see Fig. 9.1(a)]. This result indicates

that such a slow-light medium may be useful for detecting the frequency shift of an
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Figure 9.1: (a) The reduced group index n′g and gain coefficient g, and (b) the char-
acteristic spectral resolution δνc as functions of the normalized frequency detuning
from the resonance center for a single Lorentzian gain line medium.

input field, but is not suitable for constructing a spectrometer to measure a broad

spectrum because of its very limited working finesse near the resonance center.

Two techniques can be used to overcome this limitation. One is to use a broadened

gain feature with a flattened top (e.g., using multiple gain lines [35, 73]) instead of

a single Lorentzian gain line to increase the working bandwidth. The other is to

put the gain feature on a broadband absorption background to make the medium

transparent near the resonance center. Using the latter technique, one can make the

absolute magnitude of the gain coefficient be very small near the resonance center,

and consequently achieve high spectral resolution because the characteristic spectral

resolution will no longer be restricted by Eq. (9.7).

Note however that the ratio given by Eq. (9.6) does not change much in the

wings of the resonance when the frequency detuning ν ′ is much larger than γ [also

see Fig. 9.1(b)]. This result indicates that such a slow-light medium can be used

in a spectrometer if the working frequency range is chosen to be in the wing of the

resonance center [118], so long as the strength of the resonance is great enough to

provide a large group index in the wing region.

9.3 Separated double absorption lines

It has recently been shown that the use of the transparency window between two

separated absorption features is a very effective technique to realize slow light [10,
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15]. Here we consider the case in which two identical, Lorentzian resonance lines of

HWHM linewidth γ and separated by 2∆ are used. The absorption coefficient, relative

refractive index n′(ν ′) ≡ n(ν ′) − n(ν ′ = 0) and reduced group index as functions of

the detuning ν ′ = ν − ν0 from the center frequency ν0 half way between the two

resonance lines are given by

α(ν ′) = α0

[
γ2

(ν ′ −∆)2 + γ2
+

γ2

(ν ′ + ∆)2 + γ2

]
, (9.11)

n′(ν ′) = − α0

2k0

{
γ(ν ′ −∆)

(ν ′ −∆)2 + γ2
+

γ(ν ′ + ∆)

(ν ′ + ∆)2 + γ2

}
, (9.12)

and

n′g(ν
′) =

cα0γ

4π

[
(ν ′ −∆)2 − γ2

[(ν ′ −∆)2 + γ2]2
+

(ν ′ + ∆)2 − γ2

[(ν ′ + ∆)2 + γ2]2

]
. (9.13)

Thus, the ratio between n′g and α is given by

n′g(ν
′)

α(ν ′)
=

c

4π

[1

γ
+

2γ

ν ′2 + γ2 + ∆2

− 2γ

(ν ′ −∆)2 + γ2
− 2γ

(ν ′ + ∆)2 + γ2

]
. (9.14)

The characteristic spectral resolution near the center frequency ν0 is thus given by

δνc(ν
′ = 0) =

∣∣∣ cα(0)

2πn′g(0)

∣∣∣ = 2γ
∆2 + γ2

∆2 − γ2
. (9.15)

For the case in which the half separation ∆ between the two resonance centers

is much larger than the resonance linewidth γ, δνc is approximately equal to 2γ [see

Fig. 9.2(b)].

Note that in the cases in which ∆ À γ, the working bandwidth is approximately
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Figure 9.2: (a) The reduced group index and absorption coefficient as functions of
detuning for a double-absorption-line medium with ∆ = 4γ; (b) the characteristic
spectral resolution at ν ′ = 0, and (c) the working finesse as functions of the normalized
half separation between the two resonance centers.

equal to the separation between the two resonances 2∆. Therefore, the working finesse

in this case can be approximated by

Fw ≈ ∆

γ
. (9.16)

As long as the strength of the resonances is great enough, the working finesse can be

very high, linearly proportional to the separation between the two resonance centers

[see Fig. 9.2(c)]. Note that we require that the reduced group index within the entire

working bandwidth to be of the same sign (either positive or negative for slow or fast

light cases, respectively). Thus, the working finesse becomes zero when ∆ = γ. For

∆ < γ the double resonance medium becomes a single absorption line medium, and

therefore the working finesse is also reduced to that of a single-gain-line medium.
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frequency detuning for a EIT medium with three different pump field strength.

9.4 Electromagnetically induced transparency

Electromagnetically induced transparency (EIT) is a quantum optical process that

can achieve very large group indices of the order of millions [119, 2, 120]. In the

case of zero pump detuning [see Fig. 9.4(a)], the analytic expression for the complex

refractive index of a Λ-type EIT medium as a function of the frequency detuning

ν ′ = ν − ν0 from the EIT resonance center ν0 is given by [4]

ñ(ν ′) =
α0

2k0

γba(ν
′ + iγca)

|Ωp|2 − (ν ′ + iγba)(ν ′ + iγca)
, (9.17)

where α0 and k0 are the background absorption coefficient (when the pump field is

absent) and the wave number at the EIT center frequency, respectively, γca and γba

are the dephasing rates of the transitions from levels |c〉 to |a〉 and from |b〉 to |a〉,
respectively, and Ωp is the pump Rabi frequency.

For a typical EIT medium with γba À γca, one can expand Eq. (9.17) in a Taylor

series, keep terms up to the third order, and obtain the following approximate expres-

sions for the absorption coefficient and the refractive index near the EIT resonance



9.4 Electromagnetically induced transparency 123

center (within the transparency window),

α(ν ′) ≈ α0

1 + |Ωp|2
(

1 +
ν ′2

A2

)
, (9.18)

and

n(ν ′) ≈ 1 +
α0c

4πν0

Bν ′

1 + |Ωp|2
(

1 +
ν ′2

C2

)
, (9.19)

where Ωp ≡ Ωp/
√

γbaγca is the normalized pump Rabi frequency, γ̄ ≡ γba/γca, A2 ≡
γ2

ba

(
1 + |Ωp|2

)2
/
[
(γ̄2 + 2γ̄)|Ωp|2 − 1

]
, B ≡ (|Ωp|2 − γ̄−1)/

[
γca(1 + |Ωp|2)

]
, and C2 ≡

γcaγba(|Ωp|2 + 1)2(|Ωp|2 − γ̄−1)/
[|Ωp|4 − (3γ̄−1 + γ̄ + 2)|Ωp|2 + γ̄−2

]
.

The reduced group index n′g is then given by

n′g(ν
′) =

α0c

4π

B

|Ωp|2 + 1

(
1 +

3ν ′2

C2

)
. (9.20)

Using these expressions, one can obtain the following result for the ratio of α to n′g,

α(ν ′)
n′g(ν ′)

=
4πC2

cBA2

(A2 + ν ′2)
(C2 + 3ν ′2)

. (9.21)

At the EIT resonance center (i.e., ν ′ = 0), one obtains the following expression

for the characteristic spectral resolution,

δνc(ν
′ = 0) =

∣∣∣ cα(0)

2πn′g(0)

∣∣∣ =
2

B
= 2γca

|Ωp|2 + 1

|Ωp|2 − γ̄−1
. (9.22)

As the pump Rabi frequency increases, the characteristic spectral resolution ap-

proaches its minimum value δνc → 2γca. Note that this resolution is much finer

than the intrinsic linewidth γba associated with the transition from level |b〉 to |a〉.
One sees from Eq. (9.21) that the resolution δνc will deteriorate as the signal

frequency is detuned away from the EIT resonance center. The working bandwidth

∆νw is determined through the relation that the resolution at the boundary δνc(ν
′ =
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Figure 9.4: (a) Energy level diagram of a Λ-type EIT system; (b) the reduced group
index and absorption coefficient at the center frequency, (c) the characteristic spectral
resolution at ν ′ = 0, and (d) the working finesse, all plotted as functions of the
normalized pump Rabi frequency for an EIT medium with γ̄ = 100. The dots are
results using the approximate expression of Eqs. (9.22) and (9.25), and the solid lines
are results based on the analytical expression of Eq. (9.17).

0.5∆νw) of the working bandwidth is twice as large as the resolution at the EIT

resonance center, i.e.,

A2 + (0.5∆νw)2

C2 + 3(0.5∆νw)2
= 2

A2

C2
. (9.23)

For a large pump Rabi frequency, one obtains the following expression for the working

bandwidth,

∆νw = 2

√
A2C2

C2 − 6A2
≈ 2γba|Ωp|√

γ̄(γ̄ − 5)
. (9.24)

Since γba À γca (i.e., γ̄ À 1), the working bandwidth can be further approximated as
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∆νw ≈ 2γca|Ωp|. Consequently, the working finesse Fw is given by

Fw = B

√
A2C2

C2 − 6A2
=

|Ωp|2 + 1

|Ωp|2 − γ̄−1

√
γ̄

γ̄ − 5
|Ωp|. (9.25)

For a large pump Rabi frequency and a large γ̄, the working finesse becomes Fw ≈
|Ωp|, i.e., the normalized pump Rabi frequency.

Figure 9.4(b) shows the normalized reduced group index and the absorption co-

efficient at the EIT resonance center as the normalized pump Rabi frequency Ωp

increases. One sees that the group index reaches its maximum when Ωp is approx-

imately equal to 1. For Ωp > 1, the value of the group index decreases due to the

power broadening of the transparency window. Meanwhile, the absorption coefficient

decreases monotonically as Ωp increases. As a result, the characteristic spectral res-

olution δνc rapidly becomes smaller first as Ωp increases from zero, and gradually

approaches to its theoretical limit 2γca for Ωp > 2 [see Fig. 9.4(c)]. On the other

hand, one sees from Fig. 9.4(d) that the working finesse is approximately equal to the

value of the normalized Rabi frequency Ωp as predicted in Eq. (9.25).

Note also that the characteristic resolution of an EIT medium is limited by the de-

cay rate between the two ground state, which is typically much less than the linewidth

of the transition between the excited state and one ground state. Therefore, an slow-

light interferometer based on EIT can potentially achieve higher spectral resolution

as compared to an interferometer based on double-absorption lines.

9.5 Summary

The spectral performance of slow light interferometers using three specific slow light

processes has been evaluated in terms of the characteristic spectral resolution and

the working finesse. It has been shown that while the characteristic resolution is

typically limited by the linewidth of a resonance-induced slow-light medium, it can

be much smaller if a broadband absorption or gain can be added on the narrow gain or
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absorption feature to make the slow-light medium more transparent over the spectral

region for which the group index is large. Moreover, it has been shown that there is

no fundamental upper limit for the working finesse that a slow light interferometer

can achieve.

Of the three types of slow light processes studied here, EIT media have the po-

tential to achieve the finest spectral resolution, because the linewidth is limited by

the decay rate between two ground states, which is typically much less than that of a

transition between an excited state and a ground state. However, double-absorption-

line media have more applicability because it can be more easily implemented and

controlled [118]. These analyses provide guidelines for how to choose appropriate

slow-light techniques for interferometry applications to meet specific demands on the

spectral performance.



Chapter 10

On-Chip Slow-Light

Interferometers

We have shown in previous chapters that slow light can greatly enhance the spectral

resolution of spectroscopic interferometers. On the other hand, slow light can also

greatly reduce the size of a spectroscopic interferometer while maintaining the same

resolution. Following this thought, we here study the possibility of building on-chip

spectrometers using slow light that have unprecedented spectral performances.

10.1 Design of the geometry of an on-chip spec-

trometer

There are many different geometries that can be applied to construct an on-chip spec-

trometer, such as Mach–Zehnder interferometer, etched diffraction grating, arrayed

waveguide grating, and so on.

The M–Z interferometer has been studied in detail in Chapter 7. For an on-

chip M–Z interferometer, the slow-light medium can be replaced with a slow-light

waveguide. To better understand other types of spectrometers, we start by analyzing

a planar diffraction grating. The grating equation, which links the incident and the

127



10.1 Design of the geometry of an on-chip spectrometer 128

mth–order diffracted field, is

ninc sin θinc + ndiff sin θdiff,m =
mλ

Λ
, (10.1)

where ninc and ndiff are the refractive indices of the materials in the incident and

diffracted regions, respectively, θinc is the incidence angle, θdiff,m is the mth-order

diffraction angle, λ is the vacuum wavelength of the incident field, and Λ is the

grating period. In non-slow-light cases, in which neither ninc nor ndiff is wavelength

dependent, the angular dispersion can be calculated as follows:

dθdiff,m

dλ
=

m

Λndiff cos θdiff,m

. (10.2)

This result shows that one would prefer a high diffraction order and a small grating

period to obtain a high angular dispersion. This usually leads to high diffraction an-

gles, which then has practical issues of effective length of the grating and aberrations

for concave gratings.

Next, we consider an ideal slow-light medium with the refractive index of the form

of

n(ν) = n0 +
n′g
ν0

(ν − ν0), (10.3)

where n′g = ng − n is the reduced group index of the medium in the vicinity of the

center frequency ν0, and where ng = n + ν dn/dν is the group index of the medium.

If both the incident and diffracted regions are composed of such a slow-light medium

(i.e., ninc = ndiff = n(ν)), the angular dispersion of the grating near ν0 is given instead

by

dθdiff,m

dλ
=

m

Λn cos θdiff,m

− mλ

Λn2 cos θdiff,m

dn

dλ
=

mng

Λn2 cos θdiff,m

. (10.4)

Similarly, by using a slow-light waveguide slab in the incident and diffracted beams
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of an integrated grating (e.g., an etched diffraction grating), one can enhance the

angular dispersion of the grating and consequently enhance the spectral resolution by

a factor of ng/n, the ratio between the group index and the effective mode index of

the slow-light slab.

slow-light waveguide region

input

(spectrum)

detector 

array

free propagation region

(FPR)

conventional

 waveguides

conventional

 waveguides

read out 

spectrum

Figure 10.1: Schematic diagram of a slow-light arrayed waveguide grating spectrom-
eter.

Another important type of integrated grating devices is arrayed waveguide grat-

ings (AWGs; [121]). AWGs are commonly used as wavelength multiplexers and demul-

tiplexers in wavelength division multiplexing (WDM) telecommunications systems. A

conventional AWG is typically comprised of three parts as shown in Fig. 10.1. The

input signal field first propagates through a free-propagation region (FPR) to expand

its beam width. The field is then coupled into a series of waveguides. The waveg-

uides are designed such that the lengths of neighboring waveguides differ by a fixed

amount ∆l = mλ0/neff where λ0 is the designed central (vacuum) wavelength of the

device, and neff is the effective refractive index (i.e., mode index) of the waveguides.

The output ports of these waveguides are spaced periodically (with a period of Λ) at

the entrance to a second FPR, and the fields exiting from the waveguides array will

constructively interfere and focus at the other side of the second FPR. The diffraction

equation of such an AWG is given by

nwg∆l + nFPRΛ(sin θinc + sin θdiff,m) = mλ, (10.5)
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where nwg and nFPR are the effective mode indices for the waveguides and the FPR,

respectively.

When the dispersion of nwg and nFPR are negligible, the angular dispersion of such

an AWG is given by

dθdiff,m

dλ
=

m

neffΛ cos θdiff,m

(10.6)

Since m is independent of Λ in this case, an AWG can, in principle, have arbitrarily

large angular dispersion. However, a large angular dispersion indicates that ∆l must

be large, which leads to an increased footprint of the device.

If the dispersion of nwg and nFPR are taken into account, the diffraction equation

becomes modified as follows:

dθdiff,m

dλ
=

mng,FPR

n2
FPRΛ cos θdiff,m

− ∆l

nFPRΛ cos θdiff,m

dnwg

dλ

+
nwg∆l

n2
FPRΛ cos θdiff,m

dnFPR

dλ

=
mng,FPR

n2
FPRΛ cos θdiff,m

+
nwg∆l

nFPRλΛ cos θdiff,m

(
n′g,wg

nwg

− n′g,FPR

nFPR

)
. (10.7)

Here, we consider the case in which the waveguide has large modal dispersion (i.e.,

large dispersion on the effective index), but the dispersion of the FPR is negligible.

In such a case, the angular dispersion becomes

dθdiff,m

dλ
=

m

nFPRΛ cos θdiff,m

+
n′g,wg∆l

nFPRλΛ cos θdiff,m

. (10.8)

One sees that in such a case, the angular dispersion of the AWG comes from two

contributions, one containing the non-slow-light contribution and one containing the
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slow-light contribution from the waveguide.

In practice, an AWG can work in a configuration such that the diffraction angle

for the central wavelength is zero degree to minimize the influence of aberrations,

etc. In such cases, the diffraction order m of the AWG depends primarily on the

waveguide increment ∆l such that m ≈ nwg∆l/λ, and the angular dispersion is given

by

dθdiff,m

dλ
≈ ng,wg∆l

nFPRλΛ cos θdiff,m

(10.9)

=
ng,wgm

nFPRnwgΛ cos θdiff,m

. (10.10)

One sees that by using a slow-light waveguide array, the angular dispersion of an

AWG can be enhanced by a factor of ng,wg/nwg, and therefore one can enhance the

spectral resolution by the same factor.

Here, we demonstrate our design using a numerical example based on the Silicon-

On-Insulator (SOI) platform. We assume the center wavelength to be 1.55 µm. The

refractive indices for Si and SiO2 are nSi = 3.476 and nSiO2 = 1.5, respectively. We

assume the spacing between the output of neighboring waveguides to be 3 µm, the

diffraction angle θdiff = 0◦ at the center wavelength, and the length of the FPR to be

RFPR1.5 mm.

Figure.10.2 shows the calculated transverse dispersion at the focal plane of the

output FPR of a slow-light AWG as a function of the group index ng,wg of the waveg-

uides. Here the transverse dispersion dx/dλ = RFSRdθdiff,m/dλ, where the angular

dispersion dθdiff,m/dλ is given by Eq. 10.9. When the ng,wg = 3 and ∆L = 10 µm, the

transverse dispersion is approximately 2.8 µm/nm, which is just adequate to sepa-

rate two wavelength differing 1 nm as two spectral channels in a wavelength division

multiplexing system. When ng,wg = 100, the transverse dispersion increases to 94

µm/nm. If we let ∆L = 40 µm, the transverse dispersion is 375 µm/nm. If the

distance between neighboring output waveguide is 3 µm, this indicates a spectral
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Figure 10.2: Linear transverse dispersion at the focal plane of the output FPR as a
function of the group index of the waveguide of a slow-light AWG with ∆L = 10, 20
and 40 µm, respectively.

resolution of 1 GHz. Note that the group index in photonic crystal waveguides can

be as large as 230 [20, 122] or even more, which indicates the possibility of a further

increase in the spectral resolution.

10.2 Photonic crystal waveguide

One essential component of the slow-light on-chip spectrometer described in the pre-

vious section is a group of the slow-light waveguides, which are the waveguides within

the triangle areas in Fig. 10.1. In this section, we show that a slab photonic crystal

(PhC) line-defect waveguides can be used as slow-light waveguides to be incorporated

into the on-chip slow-light spectrometer. A slab photonic crystal is a two-dimensional

periodic structure fabricated on a planar waveguide slab, such as a silicon-on-insulator

(SOI) platform. Figure 10.3 shows an example of a PhC single-line-defect waveguide

on SOI platform. The light is confined by index contrast in z direction, and by the

photonic crystal structures in the x− y plane.

One approach to achieve slow light in a PhC waveguide is to design the bandgap of

the PhC waveguide such that the working frequency is very close to a band edge. One

advantageous property of photonic crystal waveguides is scalability, i.e., the frequency
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Figure 10.3: Two-dimensional schematic diagram of a slab photonic crystal single line
defect (W1) waveguide with lattice constant a and hole radius r.

properties of the bandgaps and of the dispersion relations are all proportional to the

lattice constant (periodicity) of the PhC structure, provided that the refractive index

is dispersionless.

As an example, we study one particular design of a PhC W1 waveguide [123].

Here the term “W1” indicates that one row of holes is missing as a line defect. The

geometric parameters of such a W1 PhC waveguide are the lattice constant a and air-

hole radius r. We here choose a = 405 nm and r = 0.3a. We calculated the dispersion

diagram of such a PhC W1 waveguide using a planar wave expansion analysis package

(MIT MPB [124]). The dispersion relation of the fundamental guided band in the

second Brillouin zone is plotted in Fig. 10.4(a). Here λvac is the optical wavelength

in vacuum.

The corresponding effective mode index neff and reduced group index n′g ≡ ω(dneff/dω)

are plotted in Fig. 10.4(b) and (c), respectively. One sees that this guided mode cuts

off at approximately 1.57 µm, and therefore the group index increases rapidly as the

wavelength approaches the band edge. For example, n′g = 100 and 200 for λ = 1.5640

µm and 1.5647 µm, respectively.

While working near the band edge, as in the above design, can achieve a large

group index, the group index is highly frequency dependent. In practical applications,

one would prefer a slow-light waveguide to have a large working bandwidth over which

the group index is constant.
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Figure 10.4: (a) Dispersion relations of the fundamental guided Bloch modes of a
PhC W1 waveguide; corresponding effective mode index (b) and reduced group index
n′g (c) as functions of wavelength for such a waveguide structure.

The need for a flat-band slow-light waveguide leads to the need to optimize the

PhC waveguide geometry, such as changing the shape, size and position of some holes

[125], and longitudinal period of a few rows near the line defect.

10.3 Design of a flat-band slow-light photonic crys-

tal waveguide

To design a flat-band slow-light photonic crystal waveguide, we start from taking a

more careful look at the parameters in our 2-D model. The PhC structure is fabricated

on a SOI platform, in which the silicon (Si) core layer is 275–285 nm thick for the

samples we have and the silica (SiO2) substrate is 3 µm. The frequency-dependent

refractive index of Si in the near IR wavelength regime can be approximated using
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the following Sellmeier model [126]:

n2(λ) = ε1 +
A

λ2
+

Bλ2
1

λ2 − λ2
1

, (10.11)

where ε1 = 11.6858, A = 0.939816, B = 8.10461 × 10−3, and λ1 = 1.1071 µm,

respectively. Here λ is in the unit of µm. The frequency-dependent refractive index

of SiO2 can be approximated using the following Sellmeier model:

n2(ω) = 1 +
3∑

j=1

Bjω
2
j

ω2
j − ω2

, (10.12)

where B1 = 0.6961663, B2 = 0.4079426, B3 = 0.8974794, λ1 = 0.0684043 µm,

λ2 = 0.1162414 µm, and λ3 = 9.896161 µm, respectively. ωj can be determined

through the relation λj = 2πc/ωj.

At the wavelength of 1550 nm, the above models give refractive indices of 3.474

and 1.444 for Si and SiO2, respectively.

In reality, the modes supported by either the waveguides or the photonic crystal

structures are of three dimensional (3-D), and a 3-D simulation and analysis seem

to be most appropriate. However, 3-D analysis typically requires a large amount of

computation time and resource. Thus, we here use two-dimensional simulations for

most of the analysis and design.

To convert the 3-D problem into a 2-D model, we use the effective index treatment.

The effective mode index of a slab SOI waveguide is calculated and used as the

effective index of the waveguide region in the 2-D model. The calculation results are

shown in Fig. 10.5 as a function of the thickness of the Si layer. In our case the Si

slab is 280 nm thick, therefore the effective index for TE and TM like modes are 2.998

and 2.4193, respectively. Here, a TE like mode is defined such that the main E field

component is in the y direction, and a TM like mode is defined such that the main H

field component is in the y direction. Hereafter, we will use these two values as the
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Figure 10.5: Effective indices of a slab SOI waveguide for two different polarizations
as functions of the thickness of the silicon core layer.

effective index for two polarizations for the waveguide region in the 2-D model.

We here propose a new geometry for a flat-band, slow-light PhC waveguide. Our

geometry is still based on W1 line defect waveguide, in which one row of holes is

removed to serve as the core of the waveguide. Besides that, the first rows on each

side of the defect line are truncated into semicircles. Due to the shape of the first rows,

we name our proposed structure “a calzone line-defect waveguide” following Ref. [127],

a schematic diagram of which is plotted in Fig. 10.6. The design parameters of such

a calzone line-defect waveguide include the width of the line defect w, the radius of

the holes r, and the lattice constant a.

a
2rx

yz

w

Figure 10.6: Two-dimensional schematics of a slab photonic crystal calzone line-defect
waveguide with lattice constant a and hole radius r.
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As an example, we choose the parameters a = 403 nm, r = 0.3, and w = 0.7 ×
√

3a = 488.6 nm. The calculated dispersion relation over the wavelength range near

1550 nm is shown in Fig. 10.7(a). The corresponding effective mode index neff and

reduced group index n′g as functions of wavelength are plotted in Fig. 10.7(b) and

(c), respectively. One sees that for this design, there is a plateau near λ = 1551 nm

over which the group index is approximately 60. If we define the working bandwidth

by requiring that the group index does not change by more than 10% within the

bandwidth, the example structure has a working bandwidth of 3.2 nm. This design

can be incorporated into the slow-light AWG shown in the previous section for a

on-chip spectrometer with 2 GHz resolution.
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Figure 10.7: (a) dispersion relations of the fundamental guided Bloch modes of a
flat-band calzone line-defect waveguide with a = 403 nm, r = 0.3, and w = 488.6 nm;
corresponding effective mode index (b) and reduced group index n′g (c) as functions
of wavelength for such a waveguide structure.

We have also analyzed the effect of any changes of the values of r and w on the

mode dispersion. Generally speaking, an increasing r leads to a higher but narrower

group index plateau with a shift towards shorter wavelengths. Meanwhile, as w in-

creases, on the other hand, the group index plateau shifts towards longer wavelengths
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(lower frequency), and the height of the plateau deceases while its width increases.

With further optimizing other parameters of the waveguide structure, one can further

increase the group index of the waveguide with an adequate bandwidth over a few

nanometers.

10.4 Coupling between a normal waveguide and a

slow-light waveguide

Besides the geometry of the slow-light waveguide, another challenge to design a com-

plete device is to couple light into and out of the slow-light waveguides. In particular,

our proposed on-chip interferometers use conventional waveguides, e.g., channel SOI

waveguides, as the main guides for the on-chip device. Thus, the challenge here is

to design the connection between a channel SOI waveguide and a slow-light photonic

crystal waveguide.

The coupling efficiency between two different waveguides are determined by vari-

ous factors. The first factor is the effective mode indices of the two waveguides. This

is in analogy to Snell’s law of transmission at interface between two media. Besides

this impedance matching issue, another important factor is the matching of the spa-

tial profiles of the modes supported by the two connecting waveguides. The coupling

efficiency into a single mode waveguide can be estimated using the overlap integral

as follows:

Tcpl =

∫
dy|Einc(y)E∗

wg(y)|2√∫
dy|Einc(y)E∗

inc(y)|2 ∫
dy|Ewg(y)E∗

wg(y)|2
, (10.13)

where Einc(y) is the spatial profile of the incident field, and Ewg(y) is the spatial mode

profile of the exit waveguide.

For a channel waveguide, the spatial mode profile is independent of the position

along the waveguide direction (e.g., x direction in Fig. 10.8). However, the spatial
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mode profile is x dependent for a photonic crystal waveguide since the waveguide

itself has a geometry change that is periodic along the waveguide. In such a case, it is

natural that the coupling efficiency may change when the photonic crystal waveguide

starts with a different position within its period.

a

2r

x
y

z

ww
ch

∆L

Figure 10.8: Two-dimensional schematics of connecting SOI channel waveguides with
a photonic crystal calzone line-defect waveguide slab. Here ∆L is the difference
between the actual start of the PhC slab and the start of the original unmodified
slab.

Furthermore, both the effective mode index and the spatial mode profile of pho-

tonic crystal waveguides can be frequency dependent, the coupling efficiency can also

be frequency dependent. To optimize the coupling efficiency, we here first calculated

the transmission as a function of wavelength through a channel-PhC-channel waveg-

uide structures (see Fig. 10.8). We also change the total length of the photonic crystal

region such that the interface between the channel waveguide and the calzone line

defect waveguide changes. The total length of the original unmodified PhC slab is 12

lattice constant with 23 rows of honey-comb-shape spaced holes. We modify the total

length with respect to the original PhC section by 2∆L (∆L on each interface). If

∆L is smaller than zero, the device may start in the middle of a row of holes as shown

in Fig. 10.8, and if ∆L is larger than zero, the extra length is all silicon without any

PhC structures.
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Figure 10.9: TE Transmission through a channel-PhC-channel waveguide structure
as a function of wavelength and the modification of the PhC slab length ∆L.

Using a commercial software package, Lumerical FDTD solutions, we calculated

the transmission of TE polarized light (main component of E–field in y–direction)

at different wavelength through such a channel-PhC-channel waveguide structure as

we change the total length of the PhC slab by 2∆L. We choose the width of the

channel waveguide to be 300 nm as a typical value in a real device. The geometry

of the calzone photonic crystal line-defect waveguide is described in the previous

section with a = 403 nm, r = 0.3, and w = 0.7 × √3a = 488.6 nm. The calculated

transmission at wavelengths from 1.4 to 1.7 µm is plotted in Fig. 10.9. One can

see that the transmission below approximately 1.55 µm or larger than 1.66 µm is

relatively high, and almost zero in between. This is consistent with the band diagram

calculation using MPB, in which the forbidden band is located between 1.58 µm and

1.65 µm.

Besides the transmission over the large wavelength range of 300 nm, we are more

interested in the transmission over the wavelength regime in which the photonic crys-

tal waveguide structure has large slow-light effect. The flat-band slow-light regime of

our calzone PhC structure is in the wavelength range between 1549.5 and 1552.8 nm,

in which the group index is varied within 10%. The average group index with stan-
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dard deviation over such wavelength range as a function of ∆L is plotted in Fig. 10.10.

One can see that the transmission has a large variation for different values of ∆L,

and the largest transmission of approximately 0.65 is achieved when ∆L = −0.25a,

where a is the lattice constant of the PhC structure.

−1 −0.5 0 0.5

0.2

0.4

0.6

0.8
av

er
ag

e 
tr

an
sm

is
si

o
n
 

o
v
er

 t
h
e 

sl
o
w

−
li

g
h
t 

re
g
im

e

∆L/a

w
ch

 = 300 nm

Figure 10.10: Average transmission over the slow-light regime through a channel-
PhC-channel waveguide structure as a function of the modification of the PhC slab
length ∆L.

We have also changed the width wch of the channel waveguide and see if there

is an optimum width for coupling light in and out of PhC slab. For a wide range

of wch (approximately from 240 nm to 400 nm), the highest transmission occurs

at ∆L = 0.25a, the value of which is plotted in Fig. 10.11. As one sees, for the

current parameter space, maximum transmission is achieved when wch = 300 nm and

∆L = −0.25a. One also sees that the transmission is not very sensitive to wch near

300 nm, which makes the fabrication more tolerant to experimental errors.

10.5 Overview of fabrication procedures

A quick summary of the fabrication procedures is shown in Fig. 10.12. We start with

commercial SOI wafers with the top Silicon layer approximately 280 nm thick and

Silica BOX layer approximately 3 µm thick. We first spin coat approximately 200 nm

thick of a positive e-beam resist (HSQ) followed by a 90 second pre-bake at 90 ◦C. We
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Figure 10.11: Average transmission over the slow-light regime through a channel-
PhC-channel waveguide structure as a function of the width of the channel waveguide
wch.

then use an e-beam lithography system (JEOL9300) to write the desired waveguide

structures on the e-beam resist. After the patterns are written, the sample is taken

out and developed using an e-beam resist developer (MIF 300), and only the written

patterns are kept while the unexposed parts are washed away. The pattern on the

e-beam resist is then treated with a resist hardening process (Branson resist stripper,

process #3 for 5 minutes). After the hardening process, the sample goes through

a chlorine etching process using PT-770 inductively coupled plasma (ICP) etching

machine during which the pattern is transferred from the resist to the Silicon layer.

The etching time is controlled such that the top Si waveguide layer is just etched

through. We then dip the sample into HF for a few seconds to remove the residual

e-beam resist and end up with a SOI waveguide structure.

In practice, since SOI waveguide has a Si substrate, the supported waveguide

mode is actually leaky mode, which means that energy will leak into the bottom

Si substrate as the mode propagates. One way to reduce the energy leaking is to

remove the Silica BOX layer such that the top Si waveguide layer is surrounded by

air on both sides and consequently has better energy confinement. This under-etch

process is more commonly used on the photonic crystal waveguide part, but not the
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conventional SOI channel waveguides. A second resist layer (usually photo-resist) is

spun on top of the fabricated sample. After aligning with the existing pattern, an

exposure window is patterned onto the photo-resist using a photo-lithography system

(e.g., a stepper). The exposed resist is developed so only the under-etching area is

not covered by the resist. the sample then goes through a selective isotropic etching

process [e.g., reactive ion etching (RIE)]. The sample is then dipped into HF for a few

seconds to remove the residual photo-resist and a suspended silicon photonic crystal

structure is achieved.

step 1 step 2 step 3 step 4

step 8 step 7 step 6 step 5

e-beam resist

deposition 

e-beam

lithography 

e-beam resist

development 

ICP etching
e-beam resist

removal 

isotropic
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membrane

structure  

SOI wafer

Si

SiO2

Si

Figure 10.12: Schematic Flow Chart of fabricating a suspended silicon photonic crys-
tal waveguide.

10.6 Summary

In this chapter, we have extended our concept of slow-light interferometers towards

on-chip devices. We have proposed both designs of an integrated spectrometer based

on a slow-light arrayed waveguide grating and designs of slow-light waveguide using

calzone photonic crystal line-defect waveguides. We have also designed the connection

between a normal channel waveguide and a photonic crystal waveguide to maximize

the transmission. Our simulation suggests the possibility of building an chip-scale

spectrometer with an spectral resolution in the order of GHz, which is approximately
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100 times better than current technology. The fabrication and characterization of the

device based on silicon-on-insulator platform is under progress.
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[13] M. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast

light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett.

87, 081113 (2005).

[14] Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson,

“All-optical slow-light on a photonic chip,” Opt. Express 14, 2317–2322 (2006).

[15] R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional

delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A 74, 033801

(2006).

[16] L. Yi, W. Hu, Y. Su, M. Gao, and L. Leng, “Design and system demonstration

of a tunable slow-light delay line based on fiber parametric process,” IEEE

Phot. Tech. Lett. 18, 2575–2577 (2006).

[17] E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “Large

tunable delay with low distortion of 10 Gbit/s data in a slow light system based



BIBLIOGRAPHY 147

on narrow band fiber parametric amplification,” Opt. Express 14, 8540–8545

(2006).
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