# Low-Cost Single Mirror Telescope Product Requirements Document Team Z-Telescope

Team Members: Yeyue Chen, Akil Bhagat, Josh Hess Customer: Jim Zavislan, Professor of Optics at the University of Rochester

# Document Number 00001 Revisions Level Date G 12/11/2015

Г

Single Mirror Telescope Product Requirement Document (for OPT310 Senior Design Class)

| Rev | Description                          | Date       | Authorization |
|-----|--------------------------------------|------------|---------------|
| А   | Initial PRD                          | 10/30/2015 | YC            |
| В   | Specifications and Schedule created. | 11/18/2015 | YC            |
|     | Rewrote Vision.                      |            |               |
|     | Telescope Specifications             |            |               |
| С   | Formatting                           | 11/24/2015 | JH            |
|     | Team Name change                     |            |               |
| D   | Block Diagram                        | 12/8/2015  | AB            |
|     | Table of Contents                    |            |               |
| Е   | Formatting                           | 12/8/2015  | YC            |
|     | Customer Information                 |            |               |
|     | Project scope                        |            |               |
|     | Team member responsibilities         |            |               |
|     | Regulatory issues                    |            |               |
|     | Intellectual resources               |            |               |
|     | Budget                               |            |               |
| F   | Updates from class feedback          | 12/9/2015  | JH            |
| G   | Updates from customer feedback       | 12/11/2015 | AB,JH&YC      |

# Table of Contents

| Vision:                                          | 4  |
|--------------------------------------------------|----|
| Project Scope:                                   | 4  |
| Team Responsibilities:                           | 5  |
| Environment:                                     | 5  |
| Regulatory Issues:                               | 5  |
| Fitness for use:                                 | 5  |
| The system will:                                 | 5  |
| It is desirable that:                            | 6  |
| Block Diagram:                                   | 6  |
| Intellectual Resources:                          | 6  |
| Appendix A: Code V Full Telescope Specifications | 7  |
| Appendix B: Detector Specifications              | 8  |
| Appendix C: Budget:                              | 8  |
| Appendix D: ImageJ Decimation study              | 9  |
| Appendix E: Schedule                             | 10 |

The low-cost single mirror telescope is an internally driven product. As such its design inputs were derived from Jim Zavislan.

## Vision:

A low cost single telescope with a single mirror for planetary observation with a camera instead of an eye. The main objective is to get young students interested in astronomy/optics. The telescope should be able to be operated by children 12 years and older. The telescope should use a manual tracking to keep planets in field of view so multiple images can be taken as the object transits the field of view. Software will stack multiple images to create a final image of higher quality. A mechanical pointing system should be able to place naked eye planets in the field of view. The construction of the telescope should be simple enough that most supplies (not optics) can be purchased at a home improvement store.

## **Project Scope:**

Optical Engineering Senior Design Team (OPT 311) is responsible for the following deliverables:

Telescope optical design

Dimensions and surface figure of the optics

Spacing between optics (vertex - vertex)

Tolerances on all optical elements (Decenters, Tilts, etc.)

Location and diameter of aperture stop

Preferred method of optic mounting, as a starting point

Telescope mounts will be designed for fabrication in a machine shop.

A fully operational prototype with a user guide.

A budget and bill of electronics and software.

An assembly procedure for future builds.

Designating a camera to be used.

Identifying a stacking software for use with the telescope.

We are not responsible for:

Design of electronics and software

Building a sensor (we are buying a commercially available webcam see Appendix C)

Writing image stacking software.

#### Team Responsibilities:

Yeyue Chen: Project Coordinator, Document Handler, Telescope optical design Josh Hess: Customer Liason, FEM and CAD-Mechanical Akil Bhagat: Scribe, Testing & Modeling

#### **Environment:**

As an outdoor observation tool, it needs to operate in the following environment:

Temperature -20—105 □F – operation range

#### **Relative Humidity**

>0% - meets specifications

Resist contact with rain.

Resist degradation by condensation.

Run under battery power.

During normal operation, no maintenance will be required. Maintenance such as cleaning the glass surface may be required, depending on use, once a month.

#### Regulatory Issues:

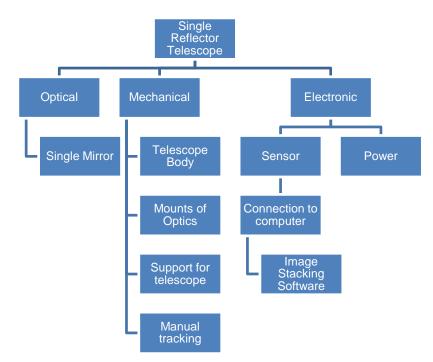
Due to the primary focus of utilizing commercially-available technology, the resulting product will adhere to the laws and regulations of the components. The telescope should not be used to direct to the Sun by naked eyes.

The telescope will be designed to minimize the possibility that the telescope can direct an image of the sun at any person.

#### Fitness for use:

The system will:

- Be robust (resist a 1 meter fall without any visible deterioration of image quality)
- Have a single surface with optical power
- Not have automated tracking, instead use sidereal motion to translate the planet across the FOV of an "inexpensive" web camera
- Capture multiple digital images as the planet transits the FOV
- Use image processing software to aggregate the images and enhance resolution (aka "Stacking" the images)
- Be able to preview images on the telescope


00001

- Image stacking to be done on a separate machine
- Process image to resolve the red spot of Jupiter, the ring structure of Saturn and track the position of the Jovian Moons
- Telescope can be easily operated by people 12 years of age and older
- Visual pointing of the telescope would place "naked eye" planets in the FOV

It is desirable that:

- The system is low-cost enough for a school budget
- Able to resolve Uranus with image processing
- Can be built by 12 year old
- Image processing could be done on a Chromebook, laptop or other portable computer
- · The system have no obscuration

### **Block Diagram:**

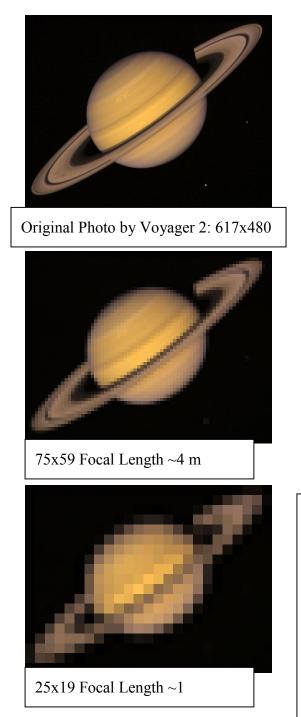


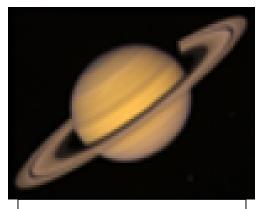
#### Intellectual Resources:

Jim Zavislan (UR, Optical Engineering) for system help, agreed to help Qiang Lin (UR, Mechanical Engineering) for FEM and CAD help, agreed to help Prof. Ginberg, No contact, Suggestion by Zavislan

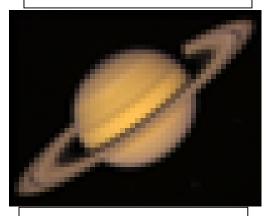
| Specification                   | Value          | <u>Unit</u>    | <u>Comments</u>                                     |
|---------------------------------|----------------|----------------|-----------------------------------------------------|
| Sensor                          |                |                |                                                     |
| Sensor Size                     | = 6.35         | mm             | ¼ inches = 6.35 mm                                  |
| Sensor Pixel Pitch              | = 0.0056       | mm             | <b>5.6</b> μm = 0.0056 mm                           |
| Sensor Full VGA<br>Resolution   | = 640 X<br>480 |                | ΗΧV                                                 |
| Sensor F/#                      | = 5.6          |                | From Sensor Spec Table                              |
| Sensor Diameter                 | = 4.48         | mm             | $De = \sqrt{640^2 + 480^2} \ge 0.0056 mm = 4.48 mm$ |
| Eyepiece Focal Length           | = 25.088       | mm             | fe = De X F/#                                       |
| Eyepiece Full Field of<br>View  | = 10.2         | Degrees        | De/2 = fe * tan (θ/2)                               |
| Objective                       |                |                |                                                     |
| Angular diameter of<br>Saturn   | > 14.50        | Arc-<br>second |                                                     |
| Angular diameter of Jupiter     | > 29.80        | Arc-<br>second |                                                     |
| Angular Resolution              | > 0.7          | Arc-<br>second | "Dawes Limit" (Cassini's Division)                  |
| Diameter of Objective           | < 170          | mm             | $Do = 120/P_R$                                      |
| Magnification                   | = 76           | Х              | M = Do/De                                           |
| Objective Focal Length          | = 1906.688     | mm             | fo = M X fe                                         |
| Objective Full Field of<br>View | = 483.156      | Arc-<br>second | FOVo = FOVe/M                                       |
|                                 |                |                |                                                     |
| System                          | r              | Г              |                                                     |
| F/#                             | = 11.2         |                | $F_R = fo/Do$                                       |
|                                 | 656.2725       | nm             |                                                     |
| Wavelength                      | 587.5618       | nm             | Visible Spectrum                                    |
|                                 | 486.1327       | nm             |                                                     |

# Appendix A: Code V Full Telescope Specifications


# **Appendix B: Detector Specifications**


| Detector            | ICX098BQ                   |
|---------------------|----------------------------|
| Sensor Size(pixels) | 640x480                    |
| Pixels size(um)     | 5.6                        |
| Camera              | Logitech QuickCam Pro 3000 |
| Price               | ~25\$                      |

# Appendix C: Budget:


| Part          | <u>Spec</u>                     | Price   |
|---------------|---------------------------------|---------|
| Sensor        | Logitech QuickCam Pro 3000      | \$25    |
| Software      | Keith's Image Stacker           | \$15    |
| Mirror        | Off-axis parabolic mirror - TBD | < \$50  |
| Lens          | TBD X 3                         | < \$50  |
| Manufacturing | TBD                             | < \$100 |
| Total         |                                 | < \$500 |

## Appendix D: ImageJ Decimation study





100x79 Focal Length ~5.5m



50x40 Focal Length 2m

#### Process.

- 1. Take original image (ex 617x480) into ImageJ.
- 2. Reduce size of image (ex 100x79)
- 3. Scale new image to be the same displayed size.
- 4. Using h=f\*tan( $\Theta_{1/2}$ ). Where h is half the larger length of the new image(ex 100/2 =50=h).
- 5. The resulting image approximates the image quality of the calculated focal length.

# Appendix E: Schedule

| Date<br>2015 | Objective                                                                                                                  |                                               |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|
| 11/20        | In-class PRD Review 2<br>-rewrite PRD in our words<br>-preliminary detector research<br>-preliminary optics specifications |                                               |  |
| 11/30        | -choose a detector/webcam<br>-settle on specifications for optics<br>-rough optical design                                 |                                               |  |
| 12/2         | Meet with Zavislan<br>-finalize specifications with customer<br>-discuss rough optical design                              |                                               |  |
| 12/9         | /9 Final PRD Review                                                                                                        |                                               |  |
| Date<br>2016 | Astronomical Event                                                                                                         | Goal                                          |  |
| January      |                                                                                                                            | Preliminary mirror design<br>And CAD modeling |  |
| February     |                                                                                                                            | Order optics and begin mechanical fabrication |  |
| 2/7          | Mercury at Greatest Western Elongation                                                                                     | Order sensor and connect to software selected |  |
| 2/22         | Full Moon                                                                                                                  | Test resolution of sensor                     |  |
| March        |                                                                                                                            | Assembly                                      |  |
| 3/8          | Jupiter at Opposition                                                                                                      | First build complete                          |  |
| March        |                                                                                                                            | Analyze data. Optimize system                 |  |
| 3/23         | Full Moon                                                                                                                  | Second round testing                          |  |
| April        |                                                                                                                            | Rebuild system                                |  |
| 4/18         | Mercury at Greatest Eastern<br>Elongation                                                                                  | Second build complete                         |  |
| 4/22         | Full Moon (Pink Moon)                                                                                                      | Last round testing                            |  |

### 00001