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m PROJECT VISION

>
o

Wilmot Cancer Institute aims to increase the
effectiveness of chemotherapy in treating older
persons with advanced cancer.

PROJECT GOALS
2

Feature selection based on understanding and rigid thresholds

Predictive models to assess the efficiency of
medication features in chemotherapy results

Refine Data Preprocessing Pipeline



MILESTONES

Task Tg;gt:t A;Lutzl Status
1 Project Charter Draft 2/23 2/22 Completed
2 Merge Data and Visualization 2/28 2/26 Completed
& Project Charter 3/1 2/24 Completed
4 Model 1 3/14 3/14 Completed
5 Midterm Presentation 3/20 3/20 Completed
6 Model 2 3/28 3/30 Completed
7 Model Tuning 4/4 4/6 Completed
8 Data Preprocessing Pipeline 4/11 4/11 Completed
9 Final Presentation 4/20 4/19 Completed
10 Final Report, Code, README 5/1 In Progress




mDATA DESCRIPTION

e Geriatric Assessment for Patients 70 years and older (GAP-70) Dataset (.csv)
o 718 observations, 145 features, 77 missing target variables
o Target Variable
m RDI: Relative dose intensity (RDI) is the ratio of the delivered dose
intensity to the standard dose intensity, reflecting the
implementation of the expected dose intensity.

0.65 +

Sum of percentage of ideal dose given for each drug Expected interval
RDI= X

Interval between first and last dose 100 X no. of drugs

0-0.65

RDI



m DATA DESCRIPTION

e Demographic
> Age, etc.

e Symptoms

> Hairloss, etc.

e | Medical Records

> (Cancertype, etc.

v

e Psychological Status

> Anxiety and depression tests

e Cognition Status

> [Dementia tests

e Physical Status
> Weight, body status tests, KPS

Pre-chemo features: cancer type, number of medicine
Post-chemo features: dose level (stdofcare), treatment type



m DATA VISUALIZATION

KPS (Karnofsky Performance Status)

KPS Explanation

0-49 Unable to care for self

50-79 Unable to work; able
to live at home and
care for most personal
needs

80-100 Able to carry on

normal activity and to
work

Count of KPS
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m DATA VISUALIZATION

20%

19.72%

KPS v.s RDI
. KPS_Cluster I:LOCIOU(S;er
Moss. e 80% patientsinlowest KPS
group have RDI below 0.65
e Groups with higher KPS
tend to have more patients
. with higher RDI values

0%
50-79 80-100



m DATA VISUALIZATION

treatment_type v.s RDI

eeeeeee

TreatmentT ype_cat

CCCCC

eeeeeeeeeeeeeeeeeeeee
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RDl is below the average
for the pure chemotherapy

group

Other treatments could
largely increase the
effectiveness of the
treatment
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DESCRIPTIVE ANALYSIS

Correlation Heatmap
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MCORRELATION

Weight6MonthsAgo CurrentWeight 0.952285

HandFoot¥YN HandFootSev 0.900070 ™)

Skin¥N SkinSev 0.883104

DizzinessSev DizzinessY¥YN 0.876111
Concentration¥N ConcentrationSev 0.874495
SwallowingSev Swallowing¥N 0.870621 >-SympUnns
SOBIntrf SOBSev 0.869304

Taste¥YN TasteSev 0.865022

MouthSores¥YN MouthSoresSev 0.863359

RingEarsSev RingEarsYN 0.859921 /

e Delete Y/N columns = Keep Severity/Interference columns

e weight_change = CurrentWeight - WeightéMonthsAgo
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Predictive Modeling:
Classification

Response Variable: RDI
Explanatory Variables: Selective features



Why Recall?

Predict Class

True Class

Negative, >0.65

Positive, <=0.65

Negative, . .
>0.65 True Negative False Negative

Positive, False Positive True Positive
<=0.65

In reality, patients won't have
the Rdi value at first. We use
models to predict their Rdi and
decide whether they are able
to accept the chemo
treatment or not.

True Positive

Recall = True Positive + False Negative



Why ROC Curve AUC?

ROC Curve

0.8

In clinical epidemiology, ROC
analysis is widely used to
measure how accurately
medical diagnostic tests(or

5 Area Under Curve (AUC) systems) can distinguish
between two patient states.

0.6

True Positive Rate (Sensitivity)

0.2

0 0.2 04 0.6 0.8 1
° False Positive Rate (1 - Specificity)



mRANDOM FOREST

Tue Positive Rate (Positive label: 1)

10 A1
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Random Forest Confusion Matrix with labels

ROC curve for Random Forest

+
g
0 41

-~ RandomForestClassifier (AUC = 0.62) .
T T T T T T 0.65 +
0.0 0.2 04 0.6 08 10

False Positive Rate (Positive label: 1) Predicted Values
e Grid Search
o Best parameter: {n_estimators": 1000, 'min_samples_split": 2, ‘'min_samples_leaf": 1,
'max_features': ‘auto’, 'max_depth': 50, 'bootstrap': False}

e Accuracy: 0.609; Recall: 0.423; F1: 0.601; AUC: 0.618
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RANDOM FOREST

@ |stdofcare no <= 0.5
gini = 0.49
samples = 416
value = [237, 179]

® KPS<=750 | either_major_b'Yes' <= 0.5

gini = 0.456 gini = 0.487
samples = 273 samples = 143
value = [177, 96] value = [60,\83]
KPS <= 65.0 DryMouthSev <= 0.5 @ [cancertype_Gl <= 0.5/ BMIRange 19 to less than 21 <= 0.5
gini = 0.498 gini = 0.426 gini = 0.499 gini = 0.381
samples = 75 samples = 198 samples = 104 samples = 39

value = [40, 35] value = [137, 61] value =[50, 54] value = [10, 29]

[ / Y / y / N
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mPERFORMANCE SUMMARY

Baseline Model Summary
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O GaussianNB Logistic regression Random forest Gradient booster
= Recall 0.380 0.479 0.423 0.451 0.183
° = Accuracy 0.615 0.648 0.609 0.615 0.542
= F1 0.600 0.642 0.601 0.609 0.501

L4 = AUC 0.638 0.646 0.618 0.633 0.627



SABI Column

e Integrated numerical column for cancer symptoms
o Combined all binary results, pain level and
interference for a symptom
o Assigned different weights for different
symptoms
e Stillunder development



mSUMMARY WITH SABI

Model Summary with sabi

0.7
0.6480.'339 0.648
0.6
0.5 0.479
0.4
03
0.2
°
0.1
°
°
0.0 5 e . -
° GaussianNB Logistic regression Random forest Gradient booster KNN
= Recall 0.451 0.479 0.465 0.451 0.254
° = Accuracy 0.648 0.642 0.620 0.592 0.620
= F] 0.639 0.637 0.616 0.589 0.579

L4 = AUC 0.643 0.648 0.634 0.612 0.530



VR PRIMARY INQUIRIES

e Can we use the features to predict RDI value?

e Among all 145 features, which ones are important?
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YR FEATURE SELECTION :

0.06 | Random Forest Feature Importance

el Top 10 important features

0.04 1

0.03 1

0.02 1

Random Forest Feature Importance

O 0.01 1

0.00 -



YA FEATURE SELECTION

e Elastic Net (30 features with lowest MSE 0.063)

e Forward/ Backward Feature Selection (top 50 features)
o LogisticRegression; scoring: AUC;

e Random Forest Feature Importance (top 50 features)

Overlapping features (8 features):

e Physical Status: CalcTUG, KPS
e Symptoms: DizzinessIntrf, FatigueSev, Painlntrf,
e Medical Record: cancertype, stdofcare, treatment_type
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mPIPELINE REFINEMENT

Aim to process raw data for physicians, could choose

various models
o Dimension reduction: PCA, NMF, ICA
o K-fold
o Encoder: Label, OneHot
o Imputer: KNN, DropNA, Mean, Median

o Feature selection: Ridge, Lasso, Elastic Net
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MCHALLENGES

Complex
Dataset

Feature
Selection

.i
Model
Improvement
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mKEY INSIGHTS

Can we use the features to predict RDI value?

e Logistic regression works the best to predict the RDI value.
e Not ideal metric performance

DATA
COLLECTION
Among all 145 features, which ones are important?

e F[eaturesrelated to physical status are insightful for prediction.
e Information such as demographic, psychological status, and cognition status
is not critical.

26



m NEXT STEPS...

e Continue on insightful suggestions
e Organize charts, graphs, and codes

e Finish report paper
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ANY
QUESTIONS?



THANKS!




