

potential improvements and extensions of the causal discovery problem.

04

Experiments

Table 1: Benchmark Statistics

	Benchmark#1	Benchmark#2	Benchmark#3		
# of source tables	20	40	64		
total # of pairs	1095	1265	1838		
# of pairs pass MI threshold	312	405	668		
# of Positive causal relations	61	12	78		

Benchmarks are constructed on the remaining pairs after the joinability and similarity filtering. Ground truth is obtained through majority voting of 2 human labelers and GPT-4. We access the performance of different LLM strategies on Causal Dataset Discovery problem.

Table 2: Causal Links Discovery Results

	Benchmark#1				Benchmark#2				Benchmark#3				
Measurement	precision	recall	Accuracy	F-1 Score	precision	recall	Accuracy	F-1 Score	precision	recall	Accuracy	F-1 Score	
GPT-3.5 + default prompts	73.97	75.27	74.26	74.26	41.64	52.50	66.67	66.67	59.37	70.16	68.00	68.00	
GPT-3.5 + CoT prompts	54.18	54.46	41.58	41.58	36.41	29.79	23.53	23.53	40.67	45.45	27.00	27.00	
GPT-3.5 + 3-stage prompts	85.54	75.14	80.20	81.00	77.54	49.52	80.39	82.00	84.69	56.11	78.00	80.41	
GPT-3.5 finetuned	81.43	<u>78.68</u>	80.20	80.20	75.16	<u>66.76</u>	86.27	86.27	92.69	87.09	94.00	<u>94.00</u>	
GPT-4 + default prompts	97.08	93.07	95.05	95.05	91.71	83.81	94.12	94.12	97.75	88.94	95.00	95.00	

Table 3: Causal Links Identification Results

	Benchmark#1				Benchmark#2				Benchmark#3			
Measurement	precision	recall	Accuracy	F-1 Score	precision	recall	Accuracy	F-1 Score	precision	recall	Accuracy	F-1 Score
GPT-3.5 + default prompts	80.0	89.80	84.16	84.62	47.62	83.33	74.51	60.61	58.00	93.55	77.00	71.60
GPT-3.5 + CoT prompts	52.75	97.96	56.44	68.57	25.58	91.67	35.29	40.00	32.95	93.55	39.00	48.74
GPT-3.5 + 3-stage prompts	100	66.67	84.00	80.00	100	33.33	84.00	50.00	100	37.93	81.44	55.00
GPT-3.5 finetuned	90.70	79.59	86.14	84.78	88.89	66.67	90.20	76.19	96.43	87.10	95.00	91.53
GPT-4 + default prompts	100	89.80	95.05	94.62	100	83.33	96.08	90.91	100	83.87	95.00	91.23

Acknowledgement

I would like to extend my gratitude to Prof. Fatemeh Nargasian for her invaluable guidance and supervision, Mr. Shaotong Sun for his consistent contribution to this project, and Prof. Hangfeng for providing suggestions with his expertise in LLMs. This work would not have been possible without their dedication and commitment to excellence.

Causal Dataset Discovery with Large Language Models

Junfei Liu

B.S Computer Science, B.A. Economics, Class of 2024.

Problem Definition 02

Definition 1 (Correlation Link over Join)

In this work, we define that there is a correlation link between a numerical column X from a table T_1 and a numerical column Y from a table *T*₂ if *X* and *Y* have a correlation coefficient higher than a threshold *C* in table $T_1 \bowtie T_2$ where T_1 and T_2 are joined on categorical columns K_X from a table T_1 and K_Y from a table T_2 , expressed as $(T_1 \langle K_X, X \rangle, T_2 \langle K_Y, Y \rangle)$.¹

Definition 2 (Causal Link over Join)

A causal link over join exists between a numerical column X in T_O and a numerical column Y in T_C if:

- (1) There is a correlation link between X and Y in the joined table $T_Q \bowtie_{K_X=K_Y} T_C$ and this correlation exceeds a predefined threshold C.
- (2) Post the application of causal discovery algorithms, the link between X and Y is confirmed as causal, with its direction being either clearly established or not determined.

And column-level causal links over join can be expressed as $(T_1(K_X, X), \leftrightarrow, T_2(K_Y, Y))$, where the arrow represents the direction of causation. Additionally, we define a directed causal link exists between a table T_1 and a table T_2 if there exists a column-level causal link between an arbitrary numerical column X in table T_1 and Y in table T_2 .

Definition 3 (Causal Dataset Discovery)

We introduce the causal dataset discovery problem as the search for the top-*k* datasets within the repository that have a directed causal link to the query dataset. Given a query dataset T_O and a repository of datasets, the objective is to identify and rank the top-*k* datasets T_C within the repository by the number of directed causal links to T_Q . The desired output is a ranked list of datasets T_C , each contains a list of causal links $(T_Q(K_X, X), \leftrightarrow, T_C(K_Y, Y))$.

05

This study has several limitations and can be improved in future research:

- The benchmark size is limited due to the intensive manual labeling for application in large data repositories like data lakes.
- There's a lack of data-driven methods to supplement LLMs for causal relation identification. It is suggested to explore causal discovery methods under the causal dataset discovery setting with potential
- Algorithms that discover joinable tables could potentially be used to
- The effectiveness of LLMs in understanding and applying causality is limitations in causal dataset discovery tasks.

•

We also propose an extension of Causal Dataset Discovery problem called Causal Dataset Navigation problem, defined as constructing a navigation graph within a given repository, where the graph materializes all datasets as nodes and pairwise causal links as edges, which is equivalent to solving Causal Dataset Discovery Problem for each table in the repository.

Discussion & Future Study

process it requires, which could undermine evaluation results' confidence

missing variables and confounders while ensuring data correspondence.

reduce the complexity of filtering tables via joinability of current pipeline.

debated, indicating a need for further research on their capabilities and

computation heavy and we can't just throw every possible combination of columns to it! To reduce the number of candidates, we did 1) filter out pairs that can't be joined; 2) reduce # of similar pairs; 3) identify correlation links that serve as potential causal links over join.