3D METAL-PRINTED SECONDARY MIRROR SUPPORT STRUCTURE

Team Members (left to right) Calvin Tourangeau Alex Nagy Noah Schloff Shelinee Hernandez Espino Declan Bhagwat

Customer L3Harris

Project Overview

Secondary Mirror Support Structures (SMSS) are essential for properly aligning optical components in satellites. The team is working with L3Harris to develop a design for a 3D-printable SMSS to eliminate waste of material and speed up the manufacturing process while keeping the necessary performance characteristics required for use in space.

Problem Statement

Lightweight SMSS require affordable, fast, and structurally sound manufacturing methods, such as additive manufacturing, to precisely align optical components without obstructing the field of view.

- With a successful product, L3Harris will benefit through new SMSS design and fabrication ideas.
- Additively manufacturing aerospace products is a steppingstone towards rapid prototyping and manufacturing, allowing companies like L3Harris to push the limits within industry.

Deliverables and Requirements

The deliverables, requirements and specifications define what will be done and how to be objective about what it means to have a "successful" project.

Deliverables:

- Preliminary Design Review (PDR)
- Creation of a 3D-printed scaled model of SMSS.
- Full-scale CAD and finite element model of SMSS.
- Final drawings of SMSS.
- Final Design Review (FDR)
- Final Technical Report.
- 3D-printed material coupon data test results.
- Model Validation of 3D-printed scaled model.

Requirements:

- This project consists of the design and analysis of a secondary mirror support structure (SMSS), and the creation of a prototype of this model.
- The model shall be created with additive manufacturing (3D printing).
- The SMSS shall interface with and support the secondary mirror and its mounts, the actuator assembly, the shade assembly, and all necessary thermal hardware.
- There shall be no trapped cavities in the SMSS.
- The following factors of safety shall be used: 2.0 for Yield Stress, 1.0 for Micro-Yield Stress, 2.5 for Ultimate Stress and 4.0 for Buckling Stress.
- The following mass contingency factors shall be used: 20% for concept design, 15% for preliminary design, 10% for final design, 5% for post final design, and 0.10% for measured hardware.

ME205 - Advanced Mechanical Design

Secondary Mirror (SM)

Specifications

The deliverables, requirements and specifications define what will be done and how to be objective about what it means to have a "successful" project.

Specifications:

- The outer diameter of the SMSS (interface to the FMS) shall be 48 inches.
- The SMSS shall interface to the Forward Metering Structure (FMS) at three locations 120 degrees apart.
- The first mode of the SMSS shall be 120 Hz or greater when grounded at the FMS interface and supporting all hosted hardware.
- The mass of the SMSS shall be 18 lbm or less.
- The SMSS shall have positive margins of safety against yield and ultimate failure when exposed to a quasi-static load of 12 G laterally and 18 G axially simultaneously (lateral swept 15 deg increments) combined with a 5C to 35C temperature range (nominal room temp is 20C) while supporting all hosted hardware.
- The SMSS and hosted hardware shall not obstruct more than 14% of the Primary Mirror (PM) clear aperture area (assume 1.1 m diameter clear aperture).
- The SMSS should provide a stable mounting platform for the Secondary Mirror (SM) in thermal environments. The average motion of the SM interfaces under a 1 degree C isothermal load should be 0.66 micro-inches translation (RSS of X and Y) or less and 0.037 micro-radians rotation (RSS of Rx and Ry) or less.

Concepting

Pugh Matrix – Concept Sketches & Preliminary Analyses

Concept	1 (Baseline)	2	3	4	5
Manufacturability	0	-	-	0	-
Strength	0	-	+	-	+
Thermal Stability	0	+	0	-	+
Weight	0	+	+	-	+
Modal Frequency	0	+	_	+	-
Total	0	1	0	-2	1
Machanical Engineering					

ME205 - Advanced Mechanical Design

Model Optimization

Topology Optimization

- Determined load path through a solid design space
- Showed structural behavior under launch loads
- Displayed elements containing zero stresses

Optimization History				
Based on Optimizer				
Design Objective Function Results				
Minimum Weight [lbf]	0	1	2	3
	20.805785	22.092869	16.825496	16.827698
Design Variable Results				
Name	0	1	2	3
"24c041703A"::A_leg_length=9.5	9.5	8.41	10.999633	10.999267
Design Constraint Results				
	0	1	2	3
Frequency Mode 1				
Lower Limit = 120.000000 [Hz]	154.29231	159.11603	134.76999	134.79257
Small change in design, run converged.				

Shape Optimization

- Parameterized structure to determine what dimensions have greatest influence on model performance.
- Quickly altered variable dimensions to improve design based on the outlined objective.

Coupon Testing

Manufacturing & Printability

Scaled Prototype

Model Testing & Correlation

Mechanical Engineering University of Rochester

Model Testing & Correlation

24c054081 sim1 : Displacement Analysis Result Subcase - 3434.2g, \$ Displacement - Noda 10519 Min : 0.0000, Max : 567, Units CSYS : Absolute Re Deformation : Displ 0.056 0.0520 0.0473 0.0426 0.0378 0.0331 0.0284 0.0236 0.0189 0.0142 0.0095 0.0047 0.0000 [in] z Node ID х Υ Magnitude 205908 0.004102 -0.002853 -0.05165 0.05189

Total Mass 3434.2 grams Spot 1

Total Mass 3434.2 grams Spot 2

Measured Displacement = 0.0515 inches

Percent Error = 0.29%

Measured Displacement = 0.051 inches

Percent Error = 0.14%

Model Testing & Correlation

CONM2 0D

applied to source point of RBE3 1D connections **Finite Element Model**

Element Mesh Point Density = 0.05" (peak stress locations) Element Mesh Size on Faces = 0.5" (minimal stress locations)

> Material: Titanium_Ti-6Al-4V (NX library) Mesh Type: CTETRA(10) Element Size: 0.125" Yield Strength: 116,755 PSI (805,000 KPa) Ultimate Strength: 122,556 PSI (845,000 KPa)

OD Collectors – Equal Distribution:

- Shade Assembly = 4.67 lbm
- Actuator Assembly = 6.67 lbm
- SM & Mounts = 11.67 lbm

Lumped Mass Locations

Shade Assembly: 7.5" (+ZC) – Blue Actuator Assembly: 5.5" (+ZC) – Pink Secondary Mirror: -2.35" (-ZC) – Red

Volume = 110.639 in² Mass = **17.707 lbm** Total Weight (includes hardware) = 40.7071 lbf

"SMSS Mass: Goal is 18 lbs or less (for reference, the state-of-the-art graphite composite structure for this design was 12 lb)."

Mechanical Engineering University of Rochester Loads: 18G Axial (-ZC) 12G Lateral (360° from +XC

3X fixed polygon faces 120°

ME205 - Advanced Mechanical Design

Yield Stress Margin of Safety Computations

Von Mises Element Nodal Stresses – Maximum Values Across All Nodes

						Ra	nk by								Ra	nk by	
	Calculation	Failure Mode	Load Case	Margin of Saf	Global	Calculation	Failure Mode	e Load Case		Calculation	Failure Mode	Load Case	Margin of Saf	Global	Calculation	Failure N	1oc
1	YieldStress	margin_of	HO	1.8643		41 4	1 4:	1 1	25	5 YieldStress	margin_of	L0	1.7696	27	27	7	7
2	YieldStress	margin_of	H105	1.7316		18 1	8 18	8 1	26	6 YieldStress	margin_of	L105	1.6400	7	-	7	
3	YieldStress	margin_of	H120	1.7440		22 2	2 22	2 1	27	7 YieldStress	margin_of	L120	1.6515	10	10)	1
4	YieldStress	margin_of	H135	1.7793		30 3	0 30	1 C	28	8 YieldStress	margin_of	L135	1.6845	15	15	5	1
5	YieldStress	margin_of	H15	1.9006		43 4	3 43	3 1	$E_{1}S_{2}=2.0$ 29	9 YieldStress	margin_of	L15	1.8036	32	32	2	3
6	YieldStress	margin_of	H150	1.8368		35 3	5 35	5 1	30	0 YieldStress	margin_of	L150	1.7381	20	20)	2
7	YieldStress	margin_of	H165	1.7730		28 2	8 28	8 1	31	1 YieldStress	margin_of	L165	1.6736	13	13	3	1
8	YieldStress	margin_of	H180	1.7028		17 1	7 17	7 1	32	2 YieldStress	margin_of	L180	1.6079	5	5	ō	
9	YieldStress	margin_of	H195	1.6545		11 1	1 11	1 1	33	3 YieldStress	margin_of	L195	1.5628	3	3	3	
10	YieldStress	margin_of	H210	2.0247		48 4	8 48	8 1	34	4 YieldStress	margin_of	L210	1.9065	44	44	1	2
11	YieldStress	margin_of	H225	1.6282		6	6 (5 1	35	5 YieldStress	margin_of	L225	1.5383	1	t	L	
12	YieldStress	margin_of	H240	1.6507		9	9 9	9 1	36	6 YieldStress	margin_of	L240	1.5593	2	. 2	2	
13	YieldStress	margin_of	H255	1.6965		16 1	6 10	5 1	37	7 YieldStress	margin_of	L255	1.6020	4	. 4	1	
14	YieldStress	margin_of	H270	1.7648		25 2	5 25	5 1	38	8 YieldStress	margin_of	L270	1.6655	12	12	2	1
15	YieldStress	margin_of	H285	1.8538		38 3	8 38	8 1	39	9 YieldStress	margin_of	L285	1.7481	23	23	3	2
16	YieldStress	margin_of	H30	1.9590		47 4	7 47	7 1	40	0 YieldStress	margin_of	L30	1.8581	39	39)	3
17	YieldStress	margin_of	H300	1.9489		46 4	6 46	5 1	41	1 YieldStress	margin_of	L300	1.8470	36	36	5	3
18	YieldStress	margin_of	H315	1.8936		42 4	2 42	2 1	42	2 YieldStress	margin_of	L315	1.7971	31	31	L	3
19	YieldStress	margin_of	H330	1.8607		40 4	0 40	0 1	43	3 YieldStress	margin_of	L330	1.7664	26	26	5	2
20	YieldStress	margin_of	H345	1.8509		37 3	7 37	7 1	44	4 YieldStress	margin_of	L345	1.7571	24	24	1	2
21	YieldStress	margin_of	H45	1.9093		45 4	5 45	5 1	45	5 YieldStress	margin_of	L45	1.8055	33	33	3	3
22	YieldStress	margin_of	H60	1.8323		34 3	4 34	4 1	46	6 YieldStress	margin_of	L60	1.7338	19	19)	ţ
23	YieldStress	margin_of	H75	1.7762		29 2	9 29	9 1	47	7 YieldStress	margin_of	L75	1.6815	14	14	1	ţ
24	YieldStress	margin_of	H90	1.7424		21 2	1 2:	1 1	48	8 YieldStress	margin_of	L90	1.6500	8	8	3	

Lowest Margin = **1.538** (low temperature, 225° from +XC)

"The SMSS shall have positive margins of safety against yield and ultimate failure when exposed to a quasi-static load of 12 G laterally and 18 G axially simultaneously (lateral swept 15° increments) combined with a 5° C to 35°C temperature range (nominal Mechanical Engineering University of Rochester room temp is 20°C) while supporting all hosted hardware." ME205 - Advanced Mechanical Design

Max Yield Stress Subcase Plot

Von Mises Element Nodal Stresses – L225 Subcase

Ultimate Stress Margin of Safety Computations

Worst Principal Element Nodal Stresses – Maximum Values Across All Nodes

					Rank by									Ran	k by			
	Calculation	Failure Mode	Load Case	Margin of Saf	Global	Calculation	Failure Mode	Load Case			Calculation	Failure Mode	Load Case	Margin of Saf	Global	Calculation	Failure Mode Lo	ad Case
1	UltStress	margin_of	HO	1.2353	34	4 34	1 34	1		24	UltStress	margin_of	H90	1.2391	35	35	35	1
2	UltStress	margin_of	H105	1.2310	3	3 33	3 33	1		25	UltStress	margin_of	LO	1.1706	22	22	22	1
3	UltStress	margin_of	H120	1.2428	3	7 37	7 37	1		26	UltStress	margin_of	L105	1.1693	20	20	20	1
4	UltStress	margin_of	H135	1.2478	38	3 38	3 38	1		27	UltStress	margin_of	L120	1.1805	27	27	27	1
5	UltStress	margin of	H15	1.2696	43	3 43	3 43	1	ES - 25	28	UltStress	margin_of	L135	1.1706	21	21	21	1
6	UltStress	margin of	H150	1.1677	19	9 19	9 19	1	1.5. – 2.5	29	UltStress	margin_of	L15	1.2030	28	28	28	1
7	UltStress	margin of	H165	1.1008	14	1 14	1 14	1		30	UltStress	margin_of	L150	1.0957	13	13	13	1
8	UltStress	margin of	H180	1.0496	1	1	11	1		31	UltStress	margin_of	L165	1.0332	9	9	9	1
9	UltStress	margin of	H195	1.0153	-	7	7 7	1		32	UltStress	margin_of	L180	0.9852	4	4	4	1
10	UltStress	margin of	H210	1 2967	44	1 44	1 44	- 1		33	UltStress	margin_of	L195	0.9530	2	2	2	1
11	UltStress	margin of	H225	0.9998		5 (5 6	1		34	UltStress	margin_of	L210	1.2162	30	30	30	1
12	LiltStress	margin_of	H240	1 0188		2 5	3 8	1		> 35	UltStress	margin_of	L225	0.9384	1	1	1	1
13	LiltStross	margin_of	H255	1.0100	1) 1) 17	1		36	UltStress	margin_of	L240	0.9552	3	3	3	1
14	LiltStross	margin_of	H270	1 1086	1	5 1/	12 5 16	1		37	UltStress	margin_of	L255	0.9886	5	5	5	1
15	UltStross	margin_of	L1270	1 1772	2	1 2	1 24	1		38	UltStress	margin_of	L270	1.0379	10	10	10	1
16	UltCtross	margin_of	11205	1 2215	2. A.	τ 2 ⁻ 7 4 ⁻	ר ב דע לא	1		39	UltStress	margin_of	L285	1.1019	15	15	15	1
17	UltChrone	margin_of	020	1.5215	4	4	47	1		40	UltStress	margin_of	L30	1.2518	40	40	40	1
1/	Ultomas	margin_oi	1300	1.2389	4.	L 4.	L 41	1	-	41	UltStress	margin_of	L300	1.1781	26	26	26	1
18	UltStress	margin_of	H315	1.2426	31	5 30	30	1		42	UltStress	margin_of	L315	1.1775	25	25	25	1
19	UltStress	margin_of	H330	1.2216	3.	2 34	2 32	1		43	UltStress	margin_of	L330	1.1577	18	18	18	1
20	UltStress	margin_of	H345	1.2191	3:	1 3:	l 31	1		44	UltStress	margin_of	L345	1.1554	17	17	17	1
21	UltStress	margin_of	H45	1.3802	48	3 48	3 48	1		45	UltStress	margin_of	L45	1.3101	45	45	45	1
22	UltStress	margin_of	H60	1.3145	40	5 40	5 46	1		46	UltStress	margin_of	L60	1.2482	39	39	39	1
23	UltStress	margin_of	H75	1.2671	42	2 42	2 42	1	-	47	UltStress	margin_of	L75	1.2034	29	29	29	1
24	UltStress	margin_of	H90	1.2391	3	5 35	5 35	1		48	UltStress	margin_of	L90	1.1770	23	23	23	1

Lowest Margin = 0.938 (low temperature, 225° from +XC)

"The SMSS shall have positive margins of safety against yield and ultimate failure when exposed to a quasi-static load of 12 G laterally and 18 G axially simultaneously (lateral swept 15° increments) combined with a 5° C to 35°C temperature range (nominal

room temp is 20°C) while supporting all hosted hardware."

Max Ultimate Stress Subcase Plot

Worst Principal Element Nodal Stresses – L225 Subcase

Mechanical Engineering University of Rochester

ME205 - Advanced Mechanical Design

Obstruction Area Specification

"The SMSS and hosted hardware shall not obstruct more than 14% of the Primary Mirror (PM) clear aperture area (assume 1.1m diameter clear aperture)."

High & Low Temperature Thermal Displacements

	Max X [in]	Max Y [in]	Translation RSS [in]	Max R _x [radians]	Max R _y [radians]	Rotation RSS [radians]
1°C Isothermal Load	-6.191E-08	-2.637E-07	<mark>2.708E-07</mark>	1.489E-08	2.808E-08	<mark>3.178E-08</mark>

24c054085FM3 Titanium Final Model

Translation RSS [in]	Rotation RSS [radians]
ABIDES BY SPEC	ABIDES BY SPEC

"The SMSS should provide a stable mounting platform for the Secondary Mirror (SM) in thermal environments. The average motion of the SM interfaces under a 1 degree C isothermal load should be 0.66 micro-inches translation (RSS of X and Y) or less and 0.037 microradians rotation (RSS of Rx and Ry) or less."

Modal Analysis – Solution 103: Real Eigenvalue

<u>1st Mode Displacement</u>

Mode 1 = 123.38 Hz

"The first mode of the SMSS shall be 120 Hz or greater when grounded at the FMS interface and supporting all hosted hardware (note a flexure exists in the system between the SMSS and FMS that is not part of this scope)."

ME205 - Advanced Mechanical Design

Worst Case Buckling Analysis – Solution 105

24c054085FM3_sim9 : Solution 4 Result Subcase - Buckling Method, Mode 1, 90.19 Displacement - Nodal, Magnitude Min : 0.000, Max : 1.000, Units = in CSYS : Absolute Rectangular Deformation : Displacement - Nodal Magnitude

The worst-case buckling eigenvector was **90.19**. This occurred with a high temperature load, 18G axial load, and 12G lateral load at 135° from the XZ plane.

The specifications require a factor of safety of 4.0 for buckling, so our model is well within that requirement.

Conclusions/Future Work

Future Work:

- Implement a 2D mesh \rightarrow convergence & accurate modeling
- Nonuniform shell thickness optimization
- Internal support exploration
- Continued topology and shape optimization
 - Decrease weight, obstruction area, cost
- 3D printed metal data correlation
 - Relevant material testing \rightarrow 3D printed titanium samples
- Further develop post-processing procedures for powder bed printed shelled models

Acknowledgements:

- Professor Christopher Muir
- L3Harris Patrick Ellsworth, Patrick Zinter, & Steve Sutton
- Chris Pratt & Professor Gracewski
- Alex Prideaux, Jim Alkins, & Bill Mildenberger
- Bill Brennessel & Robert Nowark
- Professor Lambropoulos

Thank you again to L3Harris for sponsoring this project. The team is very grateful for the opportunity to be working on a project that pushes the boundaries for what can be done in the aerospace industry. We are thankful to have learned so much, not only the technical concepts tied to the project, but also important information and advice relevant to industry.

