L3Harris 2025 SMSS Final Design Review

Team Members: Kaitlyn Bartlett, Angel Bermudez, Stanley Huang, Joshua Nova-Yingst, and Matthew Stead

April 29, 2025

L3Harris Secondary Mirror Support Structure

Team Members Kaitlyn Bartlett Angel Bermudez Joshua Nova-Yingst Stanley Huang Matthew Stead

Customer L3Harris

Project Overview

This project aimed to redesign the Secondary Mirror Support Structure (SMSS) for satellites using 3D metal printing. The goal was to reduce manufacturing time and cost, while maintaining strength and precision. The team has developed and tested lightweight designs with internal lattices, helping L3Harris improve production efficiency for satellite components, advancing the global accessibility of technology.

Problem Statement

Secondary Mirror Support Structure (SMSS) is a mount used in some large telescopes for holding optical mirrors. These structures must be highly durable and require precise manufacturing methods. Increased durability and precision come at the cost of increased expenses and time, and as such, L3Harris is looking into additive metal manufacturing to potentially reduce manufacturing time while increasing production capacity.

Deliverables, Requirements and Specifications

The deliverables, requirements and specifications define what will be done and how to be objective about what it means to have a "successful" project.

Deliverables:

- Preliminary Design Review (PDR)
- Final Design Review (FDR)
- 3D-printed scaled SMSS model

Requirements:

- Must be 3D-printable in titanium or invar
- Must be able to hold 23 pounds of equipment
- Shall interface to the Forward Metering Structure (FMS) at three locations 120 degrees apart.
- Shall provide interfaces with and support for all necessary hardware
- Must be considered cleanable
- The following factors of safety shall be used:
 - Yield Stress: 2.0
 - Micro-Yield Stress: 1.0
 - Ultimate Stress: 2.5
 - Buckling Stress: 4.0

Deliverables, Requirements and Specifications

The deliverables, requirements and specifications define what will be done and how to be objective about what it means to have a "successful" project.

Specifications:

- Outer diameter shall be 48 inches
- First mode shall be 120 Hz or greater
- Mass shall be 18 lbm or less
- Shall have positive margins of safety against yield and ultimate failure when exposed to load of 12 G laterally and 18 G axially, with lateral swept 15-degree increments
- Shall have positive margins of safety in a 5°C to 35°C temperature range
- Shall not obstruct more than 14% of Primary Mirror (PM) aperture area
- Average motion under a 1ºC isothermal load should be 0.66 micro-inches translation or less
- Average motion under a 1ºC isothermal load should be 0.037 micro-radians rotation or less

Work Breakdown Structure and Critical Path Management

		Secondary Mirror Support Structure			
3D Printed Prototype	Design Progression	Model Analysis	Prototype Test	Design Reviews	
Scaled Model	Concepts	Finite Element Model (FEM)	Stiffness Testing	Concept Design Review	
Research 3D printing vendors	Research current SMSS concepts	Research lattice designs and boundary conditions	Design four-point bend test to determine material properties	Schedule meeting with sponsor for progress update, questions and approval	
Obtain quotes for 3D printing	Create initial sketches	Create FEM model for solid	Conduct four-point bend test	Change design as needed	
	Initial CAD Model	structure	Thermal Testing	Droliminary Docim Doviou	
Modify size and material based on price	Create initial model with infill	Design and implement boundary conditions to represent FMS	Design thermal test to measure thermal displacement	Present feasible design	
Order scaled 3D printed	performance from material	interfaces	Conduct oven test	and analysis	
prototype	testing	Structural Analysis	Vibrational Testing	Present initial optimization of final CAD	
Material Testing Data	Final CAD Model	Determine critical stress states	Design hammer test to measure	model	
Research 3D metal materials	Perform final optimization	using given loads	first mode of vibration	Present initial one-pagers	
Purchase coupons from vendor	Obtain approval from sponsor	Thermal Analysis	Conduct hammer test	Final Design Review	
Determine kev material	Create 2D drawings	Perform thermal soak analysis	Model Validation	Present test results to	
properties to test		and additional specifications	Ensure cleanability of model	sponsor	
Test coupons		Vibrational Analysis	Correlate analysis results to test results	Present manufacturing plan	
Mechanical Engineering University of Rochester		Perform modal analysis to determine first modes of frequency	Compare data to ensure tests are within margin of error that validates FEM model	Present results during Senior Design Day	

	Student	\$/hr cost	hrs				Present Initial Optimization of Final CAD	0.14	\$ 000
A	Angel	\$100 \$2900	29		HZ		Model	3 K 2 M	\$300
J	Joshua	\$100 \$2900	29		H3		Present Initial 1-Pagers	3 14	\$300
К	Kaitlyn	\$100 \$2800	28				Schedule Meeting with Sponsor for Progress Undates, Questions and		
М	Matthew	\$100 \$2800	28		11	Concept Design Review	Approval	5 A	\$500
S	Stanley	\$100 \$3000	30	\$18,800	12		Alter Design as Needed	8 S	\$800
					J1	Final CAD Model	Perform Final Optimization	6 J	\$600
	Item	Activity	Time (hours) Skill	Cost	J2		Obtain Approval	1 K	\$100
A0		Start	0		JЗ		Create 2D Drawings	2 S	\$200
A1	Project Setup	Make Problem Statement	1 J	\$100	K1	Material Testing Data	Research 3D Metal Materials (Titanium)	8 J	\$800
A2		Make Specs and Recs	5 A	\$500	K2		Develop Models for Simulated Testing	2 M	\$200
Δ3		Create Deliverables	2 K	\$200	КЗ		Determine Material Properties to Test	4 J	\$400
Λ <i>Δ</i>		Make WRS and CPM	2 K	\$400	K4		Test Models	2 S	\$200
A4 B1	Concepts	Research SMSS and Previous Projects	4 A 10 M	\$400 \$1000	L1	Stiffness Testing	Design Simulated Four-Point Bend Test to Determine Material Properties	2 A	\$200
B2		Create and Modify Sketchs	14 K	\$1400	L2		Conduct Simulated Four-Point Bend Test	2 J	\$200
C1	Initial CAD Model	Develop Initial Model With Optimized	10 S	\$1000			Design Thermal Simulation to Measure		
D1	FEM	Research Lattice Design and BCs	8 S	\$800	M1	Thermal Testing	Displacement	2 K	\$200
		Create FEM and Model for Solid			M2		Conduct Thermal Simulation	2 A	\$200
D2		Structure	4 M	\$400	N1	Vibrational Testing	Design Vibration Simulation to Measure	21	\$200
D3		Design and Implement Boundary Conditions to Represent FMS Interface	s 6A	\$600	N2	Visitational results	Conduct Vibration Simulation	2 J	\$200
		Determine Critical Stress States Using			01	Model Validation	Ensure Model Cleanability	2 A	\$200
E1	Structural Analysis (FEM)) Given Loads	2 ا	\$200	02		Compare Analysis and L3Harris Materials Data	2 M	\$200
		Perform Thermal Soak Analysis Using					Compare Test Results Fall Within Margins		
F1	Thermal Analysis (FEM)	Given Temperature Values and Additional Specifications	2 M	\$200	03		of Error	2 M	\$200
	Vibrational Analysis	Borform Model Analysis to Dotormino			P1	FDR	Present Test Results to Sponsor	3 K	\$300
G1	(FEM)	First Modes of Frequency	2 J	\$200	P2		Present Manufacturing Plan	3 M	\$300
H1	PDR	Present Feasible Design and Analysis	3 A	\$300	P3		Present Results During Senior Design Day	3 K	\$300
1310									

Mechanical Engineering University of Rochester

Initial Design Progression

Pugh Matrix	Design 1 (Last Year's)	Design 2 (Stanley)	Design 3 (Joshua)
Design Images	1	N.	
Total Weight	0		-
Total Area	0	+	+
1 st Vibration Mode	0	+	+
Buckling Eigenvalue	0	+	+
Translation Displacement	0	8 87	-
Rotational Displacement	0	1 <u>11</u> 1	2
Ultimate MS	0	8785	+
Yield MS	0	1 <u>12</u> 3	+
Optimizable	0	+	+
TOTAL =	0	-1	3

Manufacturing

Manufacturing

Fused Deposition Modelling (FDM)

• Test coupons – ABS, PLA

Power Bed Fusion (PBF)

- Test coupons Aluminium
- Final scale model Aluminium

PLA samples

FDM ABS samples

PBF Aluminium samples

Coupon Testing and Results

Initial 4-Point Bend Testing Setup

Simulation and Testing Purpose:

- Conducting 4-point bend tests on 3D printed beam models with lattice infill to determine:
 - If 3D printing with lattice produces results comparable to simulation (low % error) to ensure 3D printing with lattice in the SMSS will have same properties as expected from NX simulations

Initial Testing Parameters:

- Model: 7" in length, 1" x 1" cross section
 - Dodecahedron lattice infill, default parameters (0.05" rod thickness, 0.5" edge length)
- Applied 1100 lbf to top two supports

Initial 4-Point Bend Testing Results

Method:

- Stiffness (k) obtained from linear region of force-displacement curves. The process for the first sample, D1, is shown below:

Observations:

 Simulation had stiffness and mass that were roughly double that of the test models

Mechanical Engineering
 University of Rochester

Enter start index for linear region: 154 Enter end index for linear region: 282 Calculated Stiffness: 2742.847 Lbf/in

Sample Tested	Stiffness (Lbf/in)	Mass (oz)
D1	2742.847	1.18
D2	2732.643	1.136
D3	2788.843	1.138
Average from Samples	2755	1.15
Simulated Sample	6395	2.09
Percent Error	56.92%	44.91%

Simulation Result:

testingA sim5 : Solution 1 Result

Stiffness of model from simulation: F = kx k = 1100 lbf/0.172 in = 6395 lbf/in

Mass of model from FEM solid properties check: m = 2.09 oz

Initial 4-Point Bend Testing Results

Corrected Model

-

- Determined model was shelled twice—once during the creation of the part, and then again for the 2D thin shell connection in the finite element model
- Editing model so it was only shelled once resulted in:

Stiffness of model from simulation: k = 1100 lbf/0.301 in = 3654 lbf/in

Sample Tested	Stiffness (Lbf/in)
D1	2742.847
D2	2732.643
D3	2788.843
Average Stiffness from Samples	2755
Stiffness of Simulated Sample	3654
Percent Error	24.61%

Observations:

- Percent error reduced but still relatively high
- Speculated to be due to a mismatch in Young's Modulus (E) from NX as compared to printer's ABS E value

Determining Young's Modulus for ABS

Linear region of force-

Method:

- 3D printed solid beam model with reduced thickness and tested it with the same four-point bend testing parameters
- Used force-displacement curve from linear region to calculate E of ABS

Lattice model recalculated with E_{ABS}= 1.635e6 kPa instead of 2.0e6 kPa:

Stiffness of model from simulation: k = 1100 lbf/0.369 in = 2981 lbf/in

Comparing simulation to 3D printed lattice models:

Sample Tested	Stiffness (Lbf/in)	Mass (oz)
D1	2742.847	1.18
D2	2732.643	1.136
D3	2788.843	1.138
Average from Samples	2755	1.15
Simulated Sample	2981	1.31
Percent Error	7.59%	12.11%

Observations:

 Percent error for stiffness was now in acceptable range (below 10%)

3-Point Bend Testing Results

Method:

- Originally conducted 4-point bend testing on 4-inch samples, however, the top and bottom supports were too close, resulting in shearing instead of bending
- Switched to three-point bend testing

Testing Parameters:

- Models: 4" in length, 0.75" x 0.75" cross section
- Dodecahedron lattice infill, 0.65" edge length for all -
 - Three samples had 0.06" rod thickness
 - Three samples had 0.07" rod thickness
- Applied 1100 lbf at top support

Simulation Result:

Note: brasse - Statics 1, Static Step 1 0.000 Mag 0.378 Units -CSYS : Absolute Rectangular mation : Displacement - Nodal Magnitude 0.347 0.515 0.284 0.2%2 0.224 0.109 0.158 0.125 0.095

Reduced 2D mesh element size from 0.125" to 0.05" as the 1D meshto-face connection was originally spanning over elements

Stiffness of the 0.07" rod thickness model: k = 1100 lbf/0.355 in = 3098.6 lbf/in

Sample Tested	Stiffness (Lbf/in)
1A (0.06")	2992.345
1B (0.06")	2974.664
1C (0.06")	2959.791
0.06" - Average	2975.6
0.06" - Simulated	3055.56
Percent Error	2.62%

	Sample Tested	Stiffness (I hf/in)
_	2A (0.07")	3141.882
	2B (0.07")	3096.352
	2C (0.07")	3111.22
	0.07" - Average	3116.5
ł	0.07" - Simulated	3098.59
	Percent Error	0.58%

3-Point Bend Testing and Results: Aluminium Samples

Testing Method:

- Same three-point bend testing, except with 1000 lbf applied instead of 1100 lbf
- Samples were supposed to have dodecahedron lattice but were only shelled, and dimensions were inconsistent—sides were sloped

Testing Samples	Mass (oz)	Maximum Displacement (in)	Stiffness (Lbf/in)
1	0.764	0.0588	1.63E+04
2	0.778	0.0509	1.89E+04
3	0.803	0.0484	1.98E+04

Sample Simulated	Mass (oz)	Maximum Displacement (in)	Stiffness (Lbf/in)
1	0.982	0.0596	1.68E+04
2	1.013	0.0578	1.73E+04
3	1.035	0.0556	1.80E+04

	Mass Percent	Stiffness	
Sample	Error	Percent Error	
1	22.20%	2.98%	
2	23.20%	9.25%	
3	22.40%	10%	

Simulated Result:

ubcase - Statics 1, Static Step 1 isplacement - Nodal, Magnitude lin : 0.0000, Max : 0.0606, Units = ir SYS : Absolute Rectangular

tion : Displacement - Nodal Magnitud

Mass percent errors were higher, likely due to the discrepancy in material between NX and actual metal coupons coupons were fully aluminum in NX

Mechanical Engineering
 University of Rochester

g, except

Elemental Analysis of Aluminium Samples

Det : Octane Elect Plus
Element Weight % Atomic % Error % Net Int. R

Element	weight %	Atomic 76	Error %	Net Int.	ĸ	A	F
ск	7.83	15.82	14.20	14.85	0.8875	0.0229	1.0000
ок	3.00	4.54	12.42	34.71	0.8993	0.1102	1.0000
Mg K	0.94	0.94	6.49	65.31	0.9172	0.6566	1.0471
AIK	80.00	71.94	3.66	5552.49	0.9211	0.7432	1.0026
Si K	7.63	6.59	8.67	216.82	0.9248	0.3159	1.0020
Fe K	0.25	0.11	35.17	4.71	0.9607	0.9617	1.0695
Ho L	0.35	0.05	48.29	2.65	0.9668	0.9730	1.0207

Observations: - Samples were only 80% aluminum

Microscopic Imaging at 20X Magnification

Optimization

Lattice Optimization

Method and Results:

- Created 1/6th model
- Set up Solution 200 to minimize weight -
 - Lattice range = 0.045 0.1 inches
 - Shell range = 0.045 0.2 inches
 - Loads = 46119 psi and 1C
- Assuming symmetrical geometry, lattice and shell thickness don't effect 1C displacement
- Under minimum FS load, lattice = 0.045 inches, shell = -0.0765 inches

[in]

Lattice Optimization

Constraints: 46119 psi 0.66E-06 Inches 0.37E-07 Radians

	A	D
L	\$gmax	5.00E-03
2	\$	
3	Cycle	Design Objective
ļ		Value
5	INITIAL	1.24E-01
5	1	9.41E-02
7	2	7.04E-02
3	3	7.04E-02

DVID	10	11
Label	RODTHICK	SHLTHICK
INITIAL	5.00E-02	1.00E-01
1	4.00E-02	5.00E-02
2	3.00E-02	1.00E-02
3	3.00E-02	1.00E-02
End of Dat		

CQUAD4 0.1 in mesh 0.05 in lattice 23 lbm CM Mirrored version of 1/6th model (slide 12)

Lattice Optimization

CQUAD4 0.1 in mesh No Lattice 23 lbm CM Mirrored version of 1/6th model (slide 12) 25c039906_sim1 : Optimization Result Desopt - Statics 1, Design Cycle 2, 2.00, Non-Linear Step 1 Displacement - Nodal, Magnitude Min : 0.000E+00, Max : 7.875E-04, Units = in CSYS : Absolute Rectangular Deformation : Displacement - Nodal Magnitude

\$gmax		5.00E-03
\$		
Cycle		Design Ob
		Valu
INITIAL		1.13E-01
i	1	6.49E-02
	2	6.49E-02
DVID		11
Label		SHLTHICK
INITIAL		1.00E-01
	1	1.00E-02
	2	1.00E-02
End of D)at	а

Topology Optimization

Optimization Studies:

- Max stress •
- Max Mass ٠

Load - 18G

••

Constraints:

- Overhang angle limited to 45 degrees ٠
- Rod Diameter 1 inch ٠
- Rotational symmetry ٠
- Contruction bodies Center and arm ends ٠

Actuator Mount Optimization

SM displaces too much isothermally, because the actuator mounts expand and cause deformation. The table below shows attempts at modifying actuator mount geometry and their results.

Change	X (in)	Y (in)	Translation (in)	Limit (in)	X (degrees)	Y (degrees)	Rotation (radians)	Limit (radians)
No Change	-1.646e-7	9.304e-6	9.3e-6	6.6e-7	-3.058e-5	-1.887e-6	5.347e-7	3.7e-8
Symmetric Center	-1.355e-7	5.827e-6	5.828e-6	6.6e-7	-1.545e-5	-1.395e-6	2.707e-7	3.7e-8
Perpendicular Beams	-4.37e-8	5.158e-6	5.158e-6	6.6e-7	-9.5e-6	-4.164e-7	1.659e-7	3.7e-8
Angled Beams	7.825e-7	8.093e-6	8.13e-6	6.6e-7	-3.037e-5	5.968e-6	5.4e-7	3.7e-8
Removed Center	8.156e-7	-4.93e-6	4.99e-6	6.6e-7	2.372e-5	6.398e-6	4.288e-7	3.7e-8

Actuator Mount Optimization

Computers were unable to capture proper geometry images and eventually crashed when running simulations.

Model Analysis

Analytical Results

From NX Ti-Alloy Ultimate Load w/ FS of 2 = 414750 kPa (low) And = 400171.5 kPa (high) Yield Load w/ FS of 2.5 = 304600 kPa (low) And = 291621 kPa (high)

Mass = 16.93145 lbm

1st Mode = 120.12 Hz

X (in)	Y (in)	Translation (in)	Translation Limit
-1.646e-7	9.304e-6	<mark>9.3e-6</mark>	6.6e-7
X (degrees)	Y (degrees)	Rotation (radians)	Rotation Limit
-3.058e-5	-1.887e-6	<mark>5.347e-7</mark>	3.7e-8

No Lattice Buckling:

Pcr= 3.823e4 psi * 81.19= psi Buckling allowable = 761500/4 kPa 1st Positive Buckling Eigenvalue = 81.19 Buckling MS = -0.939

Lattice Buckling:

Pcr= 7.313e4 psi * 149.49= psi Buckling allowable = 761500/4 kPa 1st Positive Buckling Eigenvalue = 149.49 Buckling MS = -0.983

Analytical Results

Low-Temp Ult = 1.0183

1	T-Low Ultimate MS	margin_of_safety	0DegLow	1.0876
2	T-Low Ultimate MS	margin_of_safety	105DegLow	1.0183
3	T-Low Ultimate MS	margin_of_safety	120DegLow	1.0347
3	T-Low Ultimate MS	margin_of_safety	120DegLow	1.034

High-Temp Ult = 1.0682

D	T-High Ultimate MS	margin_of_safety	210DegHigh	1.0712
1	T-High Ultimate MS	margin_of_safety	225DegHigh	1.0682
2	T-High Ultimate MS	margin_of_safety	240DegHigh	1.0743

High-Temp Yield = 0.5072

T-High Yield MS	margin_of_safety	210DegHigh	0.5094
T-High Yield MS	margin_of_safety	225DegHigh	0.5072
T-High Yield MS	margin_of_safety	240DegHigh	0.5116

Low-Temp Yield = 0.4823

T-Low Yield MS	margin_of_safety	0DegLow	0.5332
T-Low Yield MS	margin_of_safety	105DegLow	0.4823
T-Low Yield MS	margin_of_safety	120DegLow	0.4943

Corresponding Lattice MS = -0.5998

11	T-Low Yield MS	margin_of_safety	225DegLow	-0.5994
12	T-Low Yield MS	margin_of_safety	240DegLow	-0.5998
13	T-Low Yield MS	margin_of_safety	255DegLow	-0.5990

Mechanical Engineering

Lowest MS Shape

1st Mode Shape

Location of all Lowest Margins

Lattice Efficacy

Change in Stiffness - Using 1lbf load and a	z-axis displacements of mirror
---	--------------------------------

	Displacement (inches)	Stiffness (lbf/in)
With Lattice	2.284e-5	43782.8
Without Lattice	2.312e-5	43252.6

Loss of stiffness when lattice fails = 530.2 lbf/in

S/W - Using 1lbf load and z-axis displacements of mirror

Lattice Thickness (inches)	Displacement (inches)	Stiffness (lbf/in)	Mass (lbm)	S/W
0	2.312e-5	43252.6	16.25	2665.75
0.045	2.284e-5	43782.8	16.93	2585.9
0.1	2.184e-5	45787.5	19.59	2337.12
0.4	1.683e-5	59417.7	69.67	852.77

Takeaway: It is possible that other variables could yield different results, however, for this design, and these lattice parameters, the lattice is little more than dead weight. The one thing it does improve on is printability as the part can be easily printed without the need to add overhang–compatible geometry or removable internal supports.

1st Mode – No Lattice = 120.2 Hz

Final Model and Testing

Final Model

Vibration Testing Results

The calculated natural frequency is 90.89 Hz, which shows a 4.36% deviation from the simulation model's result of 87.09 Hz.

Vibration Testing Setup

800.00

Mechanical Engineering University of Rochester

Stiffness Testing Results

Mass of 50 grams applied to the middle portion of the two actuator mount beams. Force is approximately 0.1102 lbf.

	Displacement (in)	Stiffness (lbf/in)						
Simulated	2.398e-3	45.995						
Tested	2.45e-3	44.98						
Percent Error = -2.207%								

Project Conclusion, Future Work, and Acknowledgements

ANALYSIS VERIFYING ALL REQUIREMENTS AND SPECIFICATIONS

Requirements and Specifications	Verification					
1. The outer diameter of the SMSS (interface to the FMS) shall be 48 inches	All geometry is contained within 48-inch diameter circle. PASSED					
2. The first mode of the SMSS shall be 120 Hz or greater when grounded at the FMS interface and supporting all hosted hardware	The 1 st mode of vibration is 120.12 Hz PASSED					
3. The mass of the SMSS shall be 18 lbm or less	The mass is 16.9 lbm PASSED					
4. The SMSS shall have positive margins of safety against yield and ultimate failure when exposed to a quasi-static load of 12 G laterally and 18 G axially simultaneously (lateral swept 15-degree increments) while supporting all hosted hardware	The lowest MS of the shell is 0.48 and the lattice MS is -0.59 PASSED					
5. The SMSS shall have positive margin of safety in a 5°C to 35°C temperature range while supporting all hosted hardware	The above MS used the temperature range PASSED					

6. The SMSS and the hosted					
hardware shall not obstruct more	The SMSS has 12.5%				
than 14% of the Primary Mirror	coverage				
(PM) clear aperture area of 1.1	PASSED				
meters diameter					
7. The average motion of the SM					
interfaces under a 1 degree C	Average motion is 9.3				
isothermal load should be 0.66	micro-inches				
micro-inches translation (RSS of x	FAILED				
and y) or less					
8. The average motion of the SM					
interfaces under a 1 degree C	Average motion is 0.54				
isothermal load should be 0.037	micro-radians				
micro-radians rotation (RSS of Rx	FAILED				
and Ry) or less					

Future Work

- Teams should carefully evaluate the trade-off for the internal lattice. Increased stiffness and printability vs reduced strength-to-weight ratio
- Earlier communication with vendor improve understanding of infill density, build orientation, lead times, printer limitations and material additives.
- Further optimization into 2024 L3Harris team's design, learning from their successes, improving the geometry, and printability but utilizing the existing shape.
- Future iterations could focus on the geometry at the actuator mounting beams of the SMSS and may benefit from simulations and tests targeting that area.

Acknowledgements

L3Harris: Patrick Elsworth, Patrick Zinter, Steve Sutton Professor Christopher Muir Christine Pratt Jim Alkins

Alex Prideaux

		as of	5/2/2025			Week of														
					1/20	1/27	2/3	2/10	2/17	2/24	3/3	3/10	3/17	3/24	3/31	4/7	4/14	4/21	4/28	5/5
	input data in calls that are this caller	% actual	% must be		1	ſ	ſ		F	c	7	0	0	10	11	17	12	14	15	10
	input data in cells that are this color	complete	complete	status	T	Z	5	4	5	D	/	ð	9	10	11	12	15	14	15	10
Gate																				
	Sponsor Contact	100%	100%		х															
	Problem Definition	100%	100%		х	х														
А	R&S/Schedule/Background	100%	100%		х	х	х	х												
В	Concept Generation (>3)/selection/PDR	100%	100%		х	х	х	х	х	х										
С	Frankenstein Model/Initial Drawing Package/MFG Plan	100%	100%				х	х	Х	Х	х	х								
	Fabricate	100%	100%							Х	х	х	Х	Х						
	Build/Make it work	100%	100%									х	х	Х	Х					
D	Testing/Validation/FDR	100%	100%												Х	х	х			
S-A	Sponsor Validation Proof of Concept/Deliverables/PDR	100%	100%		х	Х	Х	х	Х	Х	х	Х								
S-B	Sponsor Validation Satisfied with Build/Test/FDR	75%	97%		х	х	х	х	х	Х	х	х	х	Х	х	х	х	х	Х	

		Approved
Problem Defined	Yes	Yes
Current Deliverables	8	Yes
Requirements	9	Yes
Specifications	8	Yes
Roadblocks	No	
Total Budget	\$1,000.00	
Burn	\$ 595	
Remaining Budget	\$ 405	

