Elastographic Imaging

Elastographic imaging example.

Elastography visualizes the biomechanical properties of soft tissues. These properties offer important diagnostic information that clinicians have used to improve the differential diagnosis of breast and prostate cancer, to detect life-threatening plaques in either the carotid or coronary arteries, to improve the diagnosis of non-alcoholic fatty liver disease, and to assess the role the role of the mechanical properties in the aging brain. Projects are underway to study how the pancreatic cancer tumor microenvironment responds to immune and anti-stromal therapy. We are also using elastography to investigate vascular aging in patients infected with the HIV virus.

Journal Articles

  1. Stiffness pulsation of the human brain detected by non-invasive time-harmonic elastography
    T. Meyer, B. Kreft, E. Antes, M. S. Anders, B. Wellge, J. Braun, M. M. Doyley, H. Tzschätzsch, and I. Sack
    Front Bioeng Biotechnol 11 , pp. 1140734-1 -1140734-9  (2023). View Online
  2. Reverberant magnetic resonance elastographic imaging using a single mechanical driver
    I. E. Kabir, D. A. Caban-Rivera, J. Ormachea, K. J. Parker, C. L. Johnson, and M. M. Doyley
    Phys Med Biol 68(5) , pp. 055015-1 -055015-16  (2023). View Online
  3. Volumetric tri-modal imaging with combined photoacoustic, ultrasound, and shear wave elastography
    E. Zheng, H. Zhang, W. Hu, M. M. Doyley, and J. Xia
    J Appl Phys 132(3) , pp. 034902-1 -034902-8  (2022). View Online
  4. Imaging the local nonlinear viscoelastic properties of soft tissues: initial validation and expected benefits
    S. Goswami, R. Ahmed, F. Feng, S. Khan, M. M. Doyley, and S. A. McAleavey
    IEEE Trans Ultrason Ferroelectr Freq Control (69)3 , pp. 975 -987  (2022). View Online
  5. Second-generation dual scan mammoscope with photoacoustic, ultrasound, and elastographic imaging capabilities
    E. Zheng, H. Zhang, S. Goswami, I. E. Kabir, M. M. Doyley, and J. Xia
    Front Oncol 11 , pp. 779071-1 -779071-8  (2021). View Online
  6. Enabling quantitative robot-assisted compressional elastography via the extended Kalman filter
    M. E. Napoli, S. Goswami, S. A. McAleavey, M. M. Doyley, and T. M. Howard
    Phys Med Biol 66(22) , pp. 225014-1 -225014-23  (2021). View Online
  7. A robust and fast method for 2-D shear wave speed calculation
    H, K. Lee, D. Kong, K. Choi, R. Mislati, and M. M. Doyley
    IEEE Trans Ultrason Ferroelectr Freq Control 68(7) , pp. 2351 -2360  (2021). View Online
  8. Shear induced non-linear elasticity imaging: elastography for compound deformations
    S. Goswami, R. Ahmed, S. Khan, M. M. Doyley, and S. A. McAleavey
    IEEE Trans Med Imaging 39(11) , pp. 3559 -3570  (2020). View Online
  9. Nonlinear shear modulus estimation with bi-axial motion registered local strain
    S. Goswami, R. Ahmed, M. M. Doyley, and S. A. McAleavey
    IEEE Trans Ultrason Ferroelectr Freq Control 66(8) , pp. 1292 -1303  (2019). View Online
  10. Distributing synthetic focusing over multiple push-detect events enhances shear wave elasticity imaging performance
    R. Ahmed and M. M. Doyley
    IEEE Trans Ultrason Ferroelectr Freq Control 66(7) , pp. 1170 -1184  (2019). View Online
  11. Plane-wave imaging improves single-track location shear wave elasticity imaging
    R. Ahmed, S. A. Gerber, S. A. McAleavey, G. Schifitto, and M. M. Doyley
    IEEE Trans Ultrason Ferroelectr Freq Control 65(8) , pp. 1402 -1404  (2018). View Online
  12. Revisiting the Cramér Rao lower bound for elastography: predicting the performance of axial, lateral and polar strain elastograms
    P. Verma and M. M. Doyley
    Ultrasound Med Biol 43(9) , pp. 1780 -1796  (2017). View Online
  13. A new energy inversion for parameter identification in saddle point problems with an application to the elasticity imaging inverse problem of predicting tumor location
    M. M. Doyley, B. Jadamba, A. A. Khan, M. Sama, and B. Winkler
    Numerical Functional Analysis and Optimization 35(7-9) , pp. 984 -1017  (2014). View Online
  14. Elastography: general principles and practices
    M. M. Doyley and K. J. Parker
    Ultrasound Clinics 9(1) , pp. 1 -11  (2014). View Online
  15. Model-based elastography: a survey of approaches to the inverse elasticity problem.
    M. M. Doyley
    Phys Med Biol. 2012 Phys. Med. Biol. 57 R35 doi:10.1088/0031-9155/57/3/R35. (2012). View Online
  16. Estimating axial and lateral strain using a synthetic aperture elastographic imaging system.
    Sanghamithra Korukonda and M. M. Doyley
    Ultrasound Med Biol. 2011 Nov;37(11) , pp. 1893 -1908  (2011). View Online
  17. A three-dimensional quality-guided phase unwrapping method for MR elastography.
    H. Wang, John B. Weaver, I. I. Perreard, M. M. Doyley, and Keith D. Paulsen
    Phys Med Biol. 2011 Jul 7;56(13) , pp. 3935 -3952  (2011). View Online
  18. Imaging the elastic properties of tissue: the 20 year prospective.
    K. J. Parker, M. M. Doyley, and D. J. Rubens
    Phys Med Biol. 2011 Jan 7;56(1):R1-R29. Epub 2010 Nov 30. (2010). View Online
  19. Effects of frequency- and direction-dependent elastic materials on linearly elastic MRE image reconstructions.
    I. M. Perreard, Adam J. Pattison, M. M. Doyley, M. D. McGarry, Z. Barani, E. E. Van Houten, John B. Weaver, and Keith D. Paulsen
    Phys Med Biol. 2010 Nov 21;55(22) , pp. 6801 -6815  (2010). View Online
  20. The performance of steady-state harmonic magnetic resonance elastography when applied to viscoelastic materials.
    M. M. Doyley, Irina Perreard, Adam J. Pattison, John B. Weaver, and Keith M. Paulsen
    Medical Physics. 37, 3970. (2010). View Online
  21. Optimized motion estimation for MRE data with reduced motion encodes.
    H. Wang, John B. Weaver, M. M. Doyley, F. E. Kennedy, and Keith D. Paulsen
    Phys Med Biol. 53(8). Epub 2008 Apr 3. , pp. 2181 -2196  (2008). View Online
  22. Performance analysis of steady-state harmonic elastography.
    M. M. Doyley, Q. Feng, John B. Weaver, and Keith D. Paulsen
    Phys Med Biol. 52(10). Epub 2007 Apr 23. , pp. 2657 -2674  (2007). View Online
  23. Anthropomorphic breast phantoms for testing elastography systems.
    E. L. Madsen, M. A. Hobson, G. R. Frank, H. Shi, J. Jiang, T. J. Hall, T. Varghese, M. M. Doyley, and John B. Weaver
    Ultrasound Med Biol. 32(6). , pp. 857 -874  (2006). View Online
  24. Magnetic resonance elastography of the plantar fat pads: Preliminary study in diabetic patients and asymptomatic volunteers.
    Y. Y. Cheung, M. M. Doyley, T. B. Miller, F. E. Kennedy, F. Lynch Jr., J. S. Wrobel, K. Paulson, and John B. Weaver
    J Comput Assist Tomogr. 30(2) , pp. 321 -326  (2006). View Online
  25. Enhancing the performance of model-based elastography by incorporating additional a priori information in the modulus image reconstruction process.
    M. M. Doyley, S. Srinivasan, E. Dimidenko, N. Soni, and J. Ophir
    Phys Med Biol. 51(1). Epub 2005 Dec 15. , pp. 95 -112  (2006). View Online
  26. Comparative evaluation of strain-based and model-based modulus elastography.
    M. M. Doyley, S. Srinivasan, S. A. Pendergrass, Z. Wu, and J. Ophir
    Ultrasound Med Biol. 31(6). , pp. 787 -802  (2005). View Online
  27. A three-parameter mechanical property reconstruction method for MR-based elastic property imaging.
    E. E. Van Houten, M. M. Doyley, F. E. Kennedy, Keith D. Paulsen, and John B. Weaver
    IEEE Trans Med Imaging. 24(3). , pp. 311 -324  (2005). View Online
  28. Imaging the shear modulus of the heel fat pads.
    John B. Weaver, M. M. Doyley, Y. Y. Cheung, F. E. Kennedy, E. L. Madsen, E. E. Van Houten, and K. Paulson
    Clin Biomech, 20(3). , pp. 312 -319  (2005). View Online
  29. Shear modulus estimation using parallelized partial volumetric reconstruction.
    M. M. Doyley, E. E. Van Houten, John B. Weaver, Steven P. Poplack, L. Duncan, F. E. Kennedy, and Keith D. Paulsen
    IEEE Trans Med Imaging. 23(11) , pp. 1404 -1416  (2004). View Online
  30. Magnetic resonance-guided near-infrared tomography of the breast.
    Ben Brooksby, Shudong Jiang, Hamid Dehghani, B. W. Pogue, Keith D. Paulsen, Christine Kogel, M. M. Doyley, John B. Weaver, and Steven P. Poplack
    Rev. Sci. Instrum. 75, 5262 (2004). View Online
  31. Evaluation of the adjoint equation based algorithm for elasticity imaging.
    A. A. Oberai, N. H. Gokhale, M. M. Doyley, and J. C. Bamber
    Phys Med Biol. 49(13) , pp. 2955 -2974  (2004). View Online
  32. Breast deformation modelling for image reconstruction in near infrared optical tomography.
    Hamid Dehghani, M. M. Doyley, B. W. Pogue, Shudong Jiang, J. Geng, and Keith D. Paulsen
    Phys Med Biol. 49(7) , pp. 1131 -1145  (2004). View Online
  33. Thresholds for detecting and characterizing focal lesions using steady-state MR elastography.
    M. M. Doyley, John B. Weaver, E. E. Van Houten, F. E. Kennedy, and Keith D. Paulsen
    Med Phys. 30(4) , pp. 495 -504  (2003). View Online
  34. Initial in vivo experience with steady-state subzone-based MR elastography of the human breast.
    E. E. Van Houten, M. M. Doyley, F. E. Kennedy, John B. Weaver, and Keith D. Paulsen
    J Magn Reson Imaging. 17(1) , pp. 72 -85  (2003). View Online
  35. Progress in Freehand Elastography of the Breast.
    J. C. Bamber, Paul E. Barbone, Nigel L. Bush, David O. Cosgrove, M. M. Doyley, Frank G. Fueschel, Paul M. Meaney, Naomi R. Miller, Tsuyoshi Shiina, and Francois Tranquart
    IEICE Transactions on Information and Systems Vol.E85-D No.1 , pp. 5 -14  (2002). View Online
  36. A freehand elastographic imaging approach for clinical breast imaging: system development and performance evaluation.
    M. M. Doyley, J. C. Bamber, Frank G. Fueschel, and Nigel L. Bush
    Ultrasound Med Biol. 27(10) , pp. 1347 -1357  (2001). View Online
  37. Evaluation of an iterative reconstruction method for quantitative elastography.
    M. M. Doyley, Paul M. Meaney, and J. C. Bamber
    Phys Med Biol. 45(6) , pp. 1521 -1540  (2000). View Online