Skip to main content


Profile photo

Wyatt E. Tenhaeff

  • Associate Professor of Chemical Engineering

PhD, Massachusetts Institute of Technology, 2009

4303 Wegmans Hall
(585) 275-5080
Fax: (585) 273-1348


Selected Honors & Awards

NSF Career Award 2019
Alvin M. Weinberg Fellowship, Oak Ridge National Laboratory (2009-2011)
National Science Foundation Graduate Research Fellowship (2005-2008)
MIT Presidential T. Haslam Fellowship (2004-2005)


ChE 231: Chemical Reactor Design
ChE 476: Polymer Synthesis and Characterization

Recent Publications

Zhao, Y.N.; Huo, N.; Ye, S.; Boromand, A.; Ouderkirk, A.; Tenhaeff, W.E., "Stretchable, Transparent, Permeation Barrier Layer for Flexible Optics," Advanced Optical Materials, 2021. DOI: 10.1002/adom.202100334. Publication

Li, Z.; Zhao, Y.N.; Tenhaeff, W.E., "Determining the Absolute Anodic Stability Threshold of Polymer Electrolytes: A Capacity-Based Electrochemical Method," Chemistry of Materials, 2021, 33, 6, 1927-1934. DOI: 10.1021/acs.chemmater.0c04248. Publication

Ioanniti, M.M.; Hu, F.; Tenhaeff, W.E., "Energy-Dense Li Metal Anodes Enabled by Thin Film Eelectrolytes" Journal  of Vacuum Science & Technology, 2020, 38, 6. DOI: 10.1116/6.0000430. Publication

Hu, F.; Li, Z.; Wang, S.; Tenhaeff, W.E., "Mirror-Like Electrodeposition of Lithium Metal under a Low-Resistance Artificial Solid Electrolyte Interphase Layer," ACS Applied Materials & Interfaces, 2020, 12, 35, 39674-39684. Publication

Patel, A.; Wilcox, K.;  Li, Z., George, I.; Juneja, R.; Lollar, C.; Lazar, S.; Grunlan, J.; Tenhaeff, W.E.; Lutkenhaus, J.L., "High Modulus, Thermally Stable, and Self-Extinguishing Aramid Nanofiber Separators," ACS Applied Materials & Interfaces2020, 12, 23, 25756-25766. Publication

Zhao, Y.; Tenhaeff, W.E., "Thermally and Oxidatively Stable Polymer Electrolyte for Batteries Enabled by Phthalate Plasticization," ACS Applied Polymer Materials, 2020, 2, 80-90. Publication

Shen, B.H.; Wang, S.; Tenhaeff, W.E., "Ultrathin Conformal Polycyclosiloxane Films to Improve Silicon Cycling Stability," Science Advances,2019, 5, 7, eaaw4856. Publication

Gao, Y.; Tenhaeff, W.E., "Synthesis and Characterization of Thin Film Polyelectrolytes for Soild-State Lithium Microbatteries," Journal of Vacuum Science & Technology B, 2019, 37, 5, 051401. Publication

Li, Z.; Zhao, Y.N.; Tenhaeff, W.E., "5V Stable Nitrile-Bearing Polymer Electroyte with Aliphatic Segment as Internal Plasticizer," ACS Applied Energy Materials, 2019, 2, 5, 3264-3273. Publication

Shen, B.H.; Armstrong, B.L.; Doucet, M.; Heroux, L.; Browning, J.F.; Agamalian, M.; Tenhaeff, W.E.;Veith, G.M., "Shear Thickening Electrolyte Built from Sterically Stabilized Colloidal Particles,"ACS Applied Materials and Interfaces, 2018, 10, 11, 9424-9434. Publication

Shen, B.H.; Veith, G.M.; Tenhaeff, W. E., "Silicon Surface Tethered Polymer as Artificial Solid Electrolyte Interface,"Scientific Reports, 2018, 8, 11549. Publication

Research Overview

Our research emphasizes the development of novel thin film materials and structures for several applications.  Electrochemical energy storage in reversible lithium ion and lithium metal batteries is a primary interest.  We are developing approaches to improve the stability (e.g. cycle life) and power performance in lithium batteries. For lithium metal batteries, for example, we are studying the stabilization of lithium metal anodes for safe, reversible cycling where the formation of dendritic morphologies is suppressed. In lithium ion batteries, thin coating layers and/or surface modifications are used to dramatically alter reaction kinetics. We have expertise in many thin film synthesis techniques-both vacuum and solution based. In particular, we exploit the exceptional compositional control and conformality of initiated chemical vapor deposition (iCVD) for the synthesis of polymeric thin films. The fundamentals of this technique are studies such that new capabilities can be developed.

We are also interested in redox flow batteries for grid level energy storage applications.  We are utilizing our expertise in solid electrolyte characterization to develop new flow battery concepts.  Replacing the porous membrane separating the two charge storage solutions with a liquid-impermeable solid electrolyte provides new opportunities that we are exploring.