Fall Term Schedule
Fall 2022
Number  Title  Instructor  Time 

ME 0901
Christopher Muir
–


UR SAE Baja members by instructor permission only. 

ME 10011
John Lambropoulos
–


Graduate research assistantship in Mechanical Engineering. 

ME 1041
Renato Perucchio
TR 9:40AM  10:55AM


An introduction to the art of bridge building based on the study of the engineering and technological problems involved in the design, construction, and collapse of bridges from antiquity to the present time. The course includes several case studies of major historical bridges selected for their structural significance. Students learn how to calculate the forces acting on structural elements, how these forces depend on the bridge structural form, how the form itself is conditioned by the structural materials, and how forces are measured with electromechanical instrumentation. The study includes fundamental notions of mechanics, strength of materials, structural behavior, instrumentation failure analysis, and design optimization. Working on teams, students use constructive experimental models as well as computeraided programs to design, build, instrument, and test realistic bridge projects. This is a selfcontained course open to all Rochester undergraduates.


ME 1042
Renato Perucchio
R 4:50PM  6:05PM


An introduction to the art of bridge building based on the study of the engineering and technological problems involved in the design, construction, and collapse of bridges from antiquity to the present time. The course includes several case studies of major historical bridges selected for their structural significance. Students learn how to calculate the forces acting on structural elements, how these forces depend on the bridge structural form, how the form itself is conditioned by the structural materials, and how forces are measured with electromechanical instrumentation. The study includes fundamental notions of mechanics, strength of materials, structural behavior, instrumentation failure analysis, and design optimization. Working on teams, students use constructive experimental models as well as computeraided programs to design, build, instrument, and test realistic bridge projects. This is a selfcontained course open to all Rochester undergraduates.


ME 1045
Renato Perucchio
W 7:40PM  8:55PM


An introduction to the art of bridge building based on the study of the engineering and technological problems involved in the design, construction, and collapse of bridges from antiquity to the present time. The course includes several case studies of major historical bridges selected for their structural significance. Students learn how to calculate the forces acting on structural elements, how these forces depend on the bridge structural form, how the form itself is conditioned by the structural materials, and how forces are measured with electromechanical instrumentation. The study includes fundamental notions of mechanics, strength of materials, structural behavior, instrumentation failure analysis, and design optimization. Working on teams, students use constructive experimental models as well as computeraided programs to design, build, instrument, and test realistic bridge projects. This is a selfcontained course open to all Rochester undergraduates.


ME 1046
Renato Perucchio
T 7:40PM  8:55PM


An introduction to the art of bridge building based on the study of the engineering and technological problems involved in the design, construction, and collapse of bridges from antiquity to the present time. The course includes several case studies of major historical bridges selected for their structural significance. Students learn how to calculate the forces acting on structural elements, how these forces depend on the bridge structural form, how the form itself is conditioned by the structural materials, and how forces are measured with electromechanical instrumentation. The study includes fundamental notions of mechanics, strength of materials, structural behavior, instrumentation failure analysis, and design optimization. Working on teams, students use constructive experimental models as well as computeraided programs to design, build, instrument, and test realistic bridge projects. This is a selfcontained course open to all Rochester undergraduates.


ME 1101
Craig Ronald
T 3:25PM  4:40PM


This course covers engineering drawing, and modeling using the Computer Aided Design software Pro/ENGINEER. Topics include orthographic projections, solid modeling, assemblies, and dimensioning. Students will complete the course with a fundamental ability to create and understand solid modeling, and engineering drawings using state of the art PC CAD software. Lectures will make use of a computer projection screen as well as individual computers for each student.


ME 1102
Craig Ronald
T 4:50PM  6:05PM


This course covers engineering drawing, and modeling using the Computer Aided Design software Pro/ENGINEER. Topics include orthographic projections, solid modeling, assemblies, and dimensioning. Students will complete the course with a fundamental ability to create and understand solid modeling, and engineering drawings using state of the art PC CAD software. Lectures will make use of a computer projection screen as well as individual computers for each student.


ME 1201
Laura Slane
TR 4:50PM  6:05PM


Basic concepts of mechanics; units; forces; moments; force systems; equilibrium; vector algebra.Plane trusses; method of joints; method of sections; space trusses; frames and machines.Centroids of lines, areas, and volumes; center of mass. Distributed loads on beams; internalforces in beams; distributed loads on cables. Basic concepts of dry friction; friction in machines.Virtual work and potential energy methods.


ME 1202
Laura Slane
W 3:25PM  4:40PM


Basic concepts of mechanics; units; forces; moments; force systems; equilibrium; vector algebra.Plane trusses; method of joints; method of sections; space trusses; frames and machines.Centroids of lines, areas, and volumes; center of mass. Distributed loads on beams; internalforces in beams; distributed loads on cables. Basic concepts of dry friction; friction in machines.Virtual work and potential energy methods.


ME 1203
Laura Slane
W 9:00AM  10:15AM


Basic concepts of mechanics; units; forces; moments; force systems; equilibrium; vector algebra.Plane trusses; method of joints; method of sections; space trusses; frames and machines.Centroids of lines, areas, and volumes; center of mass. Distributed loads on beams; internalforces in beams; distributed loads on cables. Basic concepts of dry friction; friction in machines.Virtual work and potential energy methods.


ME 1211
Hesam Askari; A M S Anushika Athauda
MW 2:00PM  3:15PM


This course uses an engineering approach to the solution of dynamics problems with an emphasis on conceptual understanding. Topics include kinematics and kinetics of particles and rigid bodies.


ME 1212
Hesam Askari
R 2:00PM  3:15PM


This course uses an engineering approach to the solution of dynamics problems with an emphasis on conceptual understanding. Topics include kinematics and kinetics of particles and rigid bodies.


ME 1213
Hesam Askari
R 4:50PM  6:05PM


This course uses an engineering approach to the solution of dynamics problems with an emphasis on conceptual understanding. Topics include kinematics and kinetics of particles and rigid bodies.


ME 1451
Michael Pomerantz
TR 12:30PM  1:45PM


Course will provide a basic understanding of CNC machining and deterministic micro grinding processes for spherical and aspheric shapes in optical substrates. Note that concurrent registration/overlap with ME 225 is permissible. The course will meet for half the semester (Thursday, 8/31 to Thursday 10/20).


ME 1461
Michael Pomerantz
TR 12:30PM  1:45PM


Students will gain an understanding in CNC subaperture fine grinding and polishing of spherical and aspheric surfaces. Note that concurrent registration/overlap with ME 225 is permissible. The course will meet for the second half of the semester (Tuesday, `10/25 to Thursday, 12/8)


ME 1601
Laura Slane
M 3:25PM  4:40PM


General engineering computations using Matlab. Programming basics, including: Functions, logic, looping, File manipulation and basic data structures. Applied topics will include: Number representation and error, root finding, interpolation, curve fitting, systems of linear equations, and data reduction and plotting (2D). Examples will be drawn from typical problems in the mechanical engineering curriculum.


ME 1602
Laura Slane
R 3:25PM  4:40PM


General engineering computations using Matlab. Programming basics, including: Functions, logic, looping, File manipulation and basic data structures. Applied topics will include: Number representation and error, root finding, interpolation, curve fitting, systems of linear equations, and data reduction and plotting (2D). Examples will be drawn from typical problems in the mechanical engineering curriculum.


ME 1603
Laura Slane
T 3:25PM  4:40PM


General engineering computations using Matlab. Programming basics, including: Functions, logic, looping, File manipulation and basic data structures. Applied topics will include: Number representation and error, root finding, interpolation, curve fitting, systems of linear equations, and data reduction and plotting (2D). Examples will be drawn from typical problems in the mechanical engineering curriculum.


ME 2011
Hussein Aluie
MWF 11:50AM  12:40PM


This course covers the classical partial differential equations of mathematical physics: the heat equation, the Laplace equation, and the wave equation. The primary technique covered in the course is separation of variables, which leads to solutions in the form of eigenfunction expansions. The topics include Fourier series, separation of variables, SturmLiouville theory, unbounded domains and the Fourier transform, spherical coordinates and Legendres equation, cylindrical coordinates and Bessels equation. The software package Mathematica will be used extensively. Prior knowledge of Mathematica is helpful but not essential. In the last two weeks of the course, there will be a project on an assigned topic. The course will include applications in heat conduction, electrostatics, fluid flow, and acoustics.


ME 2012
Hussein Aluie
F 3:25PM  4:40PM


This course covers the classical partial differential equations of mathematical physics: the heat equation, the Laplace equation, and the wave equation. The primary technique covered in the course is separation of variables, which leads to solutions in the form of eigenfunction expansions. The topics include Fourier series, separation of variables, SturmLiouville theory, unbounded domains and the Fourier transform, spherical coordinates and Legendres equation, cylindrical coordinates and Bessels equation. The software package Mathematica will be used extensively. Prior knowledge of Mathematica is helpful but not essential. In the last two weeks of the course, there will be a project on an assigned topic. The course will include applications in heat conduction, electrostatics, fluid flow, and acoustics.


ME 2041
Christopher Muir
TR 9:40AM  10:55AM


The theory and application of structural mechanics to mechanical design. Topics include: matrix structural analysis and finite element techniques. Students will use the NASTRAN finite element program to solve a variety of design and analysis problems. The term project consists of a team competition to design, analyze build, and test a lightweight structure.


ME 2042
Christopher Muir
M 4:50PM  6:05PM


The theory and application of structural mechanics to mechanical design. Topics include: matrix structural analysis and finite element techniques. Students will use the NASTRAN finite element program to solve a variety of design and analysis problems. The term project consists of a team competition to design, analyze build, and test a lightweight structure.


ME 2043
Christopher Muir
W 4:50PM  6:05PM


The theory and application of structural mechanics to mechanical design. Topics include: matrix structural analysis and finite element techniques. Students will use the NASTRAN finite element program to solve a variety of design and analysis problems. The term project consists of a team competition to design, analyze build, and test a lightweight structure.


ME 2044
Christopher Muir
R 12:30PM  1:45PM


Description: The theory and application of structural mechanics to mechanical design. Topics include: matrix structural analysis and finite element techniques. Students will use the NASTRAN finite element program to solve a variety of design and analysis problems. The term project consists of a team competition to design, analyze build, and test a lightweight structure.


ME 2131
Robert Clark
TR 11:05AM  12:20PM


Free and forced vibrations. Complex representation, the EulerLagrange equations, state space, matrix methods, Laplace transforms. Feedback control of linear systems in state space: stabilization, tracking and observers.


ME 2132
Robert Clark
R 6:15PM  7:30PM


Free and forced vibrations. Complex representation, the EulerLagrange equations, state space, matrix methods, Laplace transforms. Feedback control of linear systems in state space: stabilization, tracking and observers.


ME 2241
Jessica Nelson
MW 3:25PM  4:40PM


This course is designed to give engineers practical information about how optical components (lenses) are made and tested, and provide basic tools to create costeffective optical system designs. Topics covered include optical material properties, grinding, polishing, CNC programming for optical fabrication, modern fabrication technologies, surface testing and fabrication tolerances. We will discuss case studies of challenging fabrication projects for leadingedge optical systems. The accompanying lab will use the facilities of the Hopkins Center fabrication and metrology labs to introduce polishing and metrology techniques. Lab exercises will include handson experiments, such as exploring the properties of optical materials, measuring the removal function of a subaperture polishing and grinding machines, and characterizing the surface form and texture of polished surfaces. Prerequisites: Students must in their Sophomore, Junior, or Senior year. Not for firstyear undergraduates.


ME 2243
–
M 9:00AM  11:45AM


Blank Description


ME 2244
–
W 9:00AM  11:45AM


Blank Description


ME 2245
–
R 3:00PM  5:50PM


Blank Description


ME 2251
Adam Sefkow
MWF 9:00AM  9:50AM


Fluid properties; fluid statics; kinematics of moving fluids; the Bernoulli equation and applications; control volume analysis; differential analysis of fluid flow; inviscid flow, plane potential flow; viscous flow, the NavierStokes equation; dimensional analysis,similitude; empirical analysis of pipe flows; flow over immersed bodies, boundary layers, lift and drag.


ME 2253
Adam Sefkow
R 2:00PM  3:15PM


Fluid properties; fluid statics; kinematics of moving fluids; the Bernoulli equation and applications; control volume analysis; differential analysis of fluid flow; inviscid flow, plane potential flow; viscous flow, the NavierStokes equation; dimensional analysis,similitude; empirical analysis of pipe flows; flow over immersed bodies, boundary layers, lift and drag.


ME 2254
Adam Sefkow
M 4:50PM  6:05PM


Fluid properties; fluid statics; kinematics of moving fluids; the Bernoulli equation and applications; control volume analysis; differential analysis of fluid flow; inviscid flow, plane potential flow; viscous flow, the NavierStokes equation; dimensional analysis,similitude; empirical analysis of pipe flows; flow over immersed bodies, boundary layers, lift and drag.


ME 2401
Douglas Kelley; A M S Anushika Athauda
M 2:00PM  3:15PM


Familiarization with data acquisition at a low level, including error estimation, statistical analysis, and technical report preparation. Possible content includes force, displacement, temperature, acceleration, and pressure measurement using mechanical and electronic instrumentation.


ME 24010
Douglas Kelley; A M S Anushika Athauda
W 2:00PM  3:15PM


Familiarization with data acquisition at a low level, including error estimation, statistical analysis, and technical report preparation. Possible content includes force, displacement, temperature, acceleration, and pressure measurement using mechanical and electronic instrumentation.


ME 2402
Douglas Kelley
W 10:00AM  1:00PM


No description


ME 2403
Douglas Kelley
R 11:00AM  2:00PM


No description


ME 2404
Douglas Kelley
F 1:00PM  4:00PM


No description


ME 2405
Omar Soufan
R 3:00PM  6:00PM


No description


ME 2406
Douglas Kelley
F 9:00AM  12:00PM


No description


ME 2407
Douglas Kelley
F 1:00PM  4:00PM


No description


ME 2408
Douglas Kelley
M 10:30AM  1:30PM


No description


ME 2451
Ethan BurnhamFay
TR 4:50PM  6:05PM


This course focuses teaching the multidisciplinary aspects of designing complex, precise systems. In these systems, aspects from mechanics, optics, electronics, design for manufacturing/assembly, and metrology/qualification must all be considered to design, build, and demonstrate a successful precision system. The goal of this class is to develop a fundamental understanding of multidisciplinary design for designing the next generation of advanced instrumentation. This course is open to graduate students in engineering and physics backgrounds although it has a strong emphasis on mechanical engineering and systems engineering topics. This course is open to undergraduates who are in their senior year.


ME 2541
Hesam Askari
MW 10:25AM  11:40AM


This course provides a thorough grounding on the theory and application of linear steadystate finite element method (FEM) applied to solid mechanics. Topics include: review of matrix algebra and solid mechanics, Principle of Minimum Potential Energy, Rayleigh Ritz Method, FEM computational procedures, isoparametric shape functions and numerical integration for 1D, 2D, and 3D elements, error estimation and convergence, and the demonstration of FEM best practices using a commercial FEM code. A semester project that involves coding FEM software in Matlab is required for graduate students.


ME 2801
John Lambropoulos
TR 9:40AM  10:55AM


Properties of engineering materials including metals, alloys, ceramics, polymers and composites. Relationship of properties to the materials microstructure including atomic bonding, atomic arrangement, crystal structure, coexisting phases, interfaces, defects and impurities. Processing techniques for altering the microstructure and properties.


ME 2802
–
M 10:25AM  11:40AM


Properties of engineering materials including metals, alloys, ceramics, polymers and composites. Relationship of properties to the materials microstructure including atomic bonding, atomic arrangement, crystal structure, coexisting phases, interfaces, defects and impurities. Processing techniques for altering the microstructure and properties.


ME 2803
–
M 3:25PM  4:40PM


Properties of engineering materials including metals, alloys, ceramics, polymers and composites. Relationship of properties to the materials microstructure including atomic bonding, atomic arrangement, crystal structure, coexisting phases, interfaces, defects and impurities. Processing techniques for altering the microstructure and properties.


ME 2804
–
F 12:30PM  1:45PM


Properties of engineering materials including metals, alloys, ceramics, polymers and composites. Relationship of properties to the materials microstructure including atomic bonding, atomic arrangement, crystal structure, coexisting phases, interfaces, defects and impurities. Processing techniques for altering the microstructure and properties.


ME 2811
Niaz Abdolrahim
TR 3:25PM  4:40PM


Description: The mechanical response of crystalline (metals, ceramics, semiconductors)and amorphous solids (glasses, polymers) and their composites in terms of the relationships between stress, strain, damage, fracture, strainrate, temperature, and microstructure. Topics include: (1) Material structure and property overview. (2) Isotropic and anisotropic elasticity and viscoelasticity. (3) Properties of composites. (4) Plasticity. (5) Point and line defects. (6) Interfacial and volumetric defects. (7) Yield surfaces and flow rules in plasticity of polycrystals and single crystals. (8) Macro and micro aspects of fractures in metals, ceramics and polymers.(9) Creep and superplasticity. (10) Deformation and fracture mechanism maps. (11) Fatigue damage and failure; fracture and failure in composites (If time permits).


ME 2831
–
TR 11:05AM  12:20PM


In this course, we will survey the role of mechanics in cells, tissues, organs and organisms. A particular emphasis will be placed on the mechanics of the musculoskeletal system, the circulatory system and the eye. Engineering concepts will be used to understand how physical forces contribute to biological processes, especially disease and healing. Experimental and modeling techniques for characterizing the complex mechanical response of biosolids will be discussed in detail, and the continuum mechanics approach will highlighted. Prerequisites: ME226, BME 201, and 201P or ME 120.


ME 2832
Amy Lerner
R 12:30PM  1:45PM


In this course, we will survey the role of mechanics in cells, tissues, organs and organisms. A particular emphasis will be placed on the mechanics of the musculoskeletal system, the circulatory system and the eye. Engineering concepts will be used to understand how physical forces contribute to biological processes, especially disease and healing. Experimental and modeling techniques for characterizing the complex mechanical response of biosolids will be discussed in detail, and the continuum mechanics approach will highlighted. Prerequisites: ME226, BME 201, and 201P or ME 120.


ME 2833
Amy Lerner
R 9:40AM  10:55AM


In this course, we will survey the role of mechanics in cells, tissues, organs and organisms. A particular emphasis will be placed on the mechanics of the musculoskeletal system, the circulatory system and the eye. Engineering concepts will be used to understand how physical forces contribute to biological processes, especially disease and healing. Experimental and modeling techniques for characterizing the complex mechanical response of biosolids will be discussed in detail, and the continuum mechanics approach will highlighted. Prerequisites: ME226, BME 201, and 201P or ME 120.


ME 3961
John Lambropoulos
MF 9:00AM  12:00PM


Enrollment by permission only.

Fall 2022
Number  Title  Instructor  Time 

Monday  
ME 2243
–


Blank Description 

ME 2802
–


Properties of engineering materials including metals, alloys, ceramics, polymers and composites. Relationship of properties to the materials microstructure including atomic bonding, atomic arrangement, crystal structure, coexisting phases, interfaces, defects and impurities. Processing techniques for altering the microstructure and properties. 

ME 2408
Douglas Kelley


No description 

ME 2401
Douglas Kelley; A M S Anushika Athauda


Familiarization with data acquisition at a low level, including error estimation, statistical analysis, and technical report preparation. Possible content includes force, displacement, temperature, acceleration, and pressure measurement using mechanical and electronic instrumentation. 

ME 1601
Laura Slane


General engineering computations using Matlab. Programming basics, including: Functions, logic, looping, File manipulation and basic data structures. Applied topics will include: Number representation and error, root finding, interpolation, curve fitting, systems of linear equations, and data reduction and plotting (2D). Examples will be drawn from typical problems in the mechanical engineering curriculum. 

ME 2803
–


Properties of engineering materials including metals, alloys, ceramics, polymers and composites. Relationship of properties to the materials microstructure including atomic bonding, atomic arrangement, crystal structure, coexisting phases, interfaces, defects and impurities. Processing techniques for altering the microstructure and properties. 

ME 2042
Christopher Muir


The theory and application of structural mechanics to mechanical design. Topics include: matrix structural analysis and finite element techniques. Students will use the NASTRAN finite element program to solve a variety of design and analysis problems. The term project consists of a team competition to design, analyze build, and test a lightweight structure. 

ME 2254
Adam Sefkow


Fluid properties; fluid statics; kinematics of moving fluids; the Bernoulli equation and applications; control volume analysis; differential analysis of fluid flow; inviscid flow, plane potential flow; viscous flow, the NavierStokes equation; dimensional analysis,similitude; empirical analysis of pipe flows; flow over immersed bodies, boundary layers, lift and drag. 

Monday and Wednesday  
ME 2541
Hesam Askari


This course provides a thorough grounding on the theory and application of linear steadystate finite element method (FEM) applied to solid mechanics. Topics include: review of matrix algebra and solid mechanics, Principle of Minimum Potential Energy, Rayleigh Ritz Method, FEM computational procedures, isoparametric shape functions and numerical integration for 1D, 2D, and 3D elements, error estimation and convergence, and the demonstration of FEM best practices using a commercial FEM code. A semester project that involves coding FEM software in Matlab is required for graduate students. 

ME 1211
Hesam Askari; A M S Anushika Athauda


This course uses an engineering approach to the solution of dynamics problems with an emphasis on conceptual understanding. Topics include kinematics and kinetics of particles and rigid bodies. 

ME 2241
Jessica Nelson


This course is designed to give engineers practical information about how optical components (lenses) are made and tested, and provide basic tools to create costeffective optical system designs. Topics covered include optical material properties, grinding, polishing, CNC programming for optical fabrication, modern fabrication technologies, surface testing and fabrication tolerances. We will discuss case studies of challenging fabrication projects for leadingedge optical systems. The accompanying lab will use the facilities of the Hopkins Center fabrication and metrology labs to introduce polishing and metrology techniques. Lab exercises will include handson experiments, such as exploring the properties of optical materials, measuring the removal function of a subaperture polishing and grinding machines, and characterizing the surface form and texture of polished surfaces. Prerequisites: Students must in their Sophomore, Junior, or Senior year. Not for firstyear undergraduates. 

Monday, Wednesday, and Friday  
ME 2251
Adam Sefkow


Fluid properties; fluid statics; kinematics of moving fluids; the Bernoulli equation and applications; control volume analysis; differential analysis of fluid flow; inviscid flow, plane potential flow; viscous flow, the NavierStokes equation; dimensional analysis,similitude; empirical analysis of pipe flows; flow over immersed bodies, boundary layers, lift and drag. 

ME 2011
Hussein Aluie


This course covers the classical partial differential equations of mathematical physics: the heat equation, the Laplace equation, and the wave equation. The primary technique covered in the course is separation of variables, which leads to solutions in the form of eigenfunction expansions. The topics include Fourier series, separation of variables, SturmLiouville theory, unbounded domains and the Fourier transform, spherical coordinates and Legendres equation, cylindrical coordinates and Bessels equation. The software package Mathematica will be used extensively. Prior knowledge of Mathematica is helpful but not essential. In the last two weeks of the course, there will be a project on an assigned topic. The course will include applications in heat conduction, electrostatics, fluid flow, and acoustics. 

Monday and Friday  
ME 3961
John Lambropoulos


Enrollment by permission only. 

Tuesday  
ME 1101
Craig Ronald


This course covers engineering drawing, and modeling using the Computer Aided Design software Pro/ENGINEER. Topics include orthographic projections, solid modeling, assemblies, and dimensioning. Students will complete the course with a fundamental ability to create and understand solid modeling, and engineering drawings using state of the art PC CAD software. Lectures will make use of a computer projection screen as well as individual computers for each student. 

ME 1603
Laura Slane


General engineering computations using Matlab. Programming basics, including: Functions, logic, looping, File manipulation and basic data structures. Applied topics will include: Number representation and error, root finding, interpolation, curve fitting, systems of linear equations, and data reduction and plotting (2D). Examples will be drawn from typical problems in the mechanical engineering curriculum. 

ME 1102
Craig Ronald


This course covers engineering drawing, and modeling using the Computer Aided Design software Pro/ENGINEER. Topics include orthographic projections, solid modeling, assemblies, and dimensioning. Students will complete the course with a fundamental ability to create and understand solid modeling, and engineering drawings using state of the art PC CAD software. Lectures will make use of a computer projection screen as well as individual computers for each student. 

ME 1046
Renato Perucchio


An introduction to the art of bridge building based on the study of the engineering and technological problems involved in the design, construction, and collapse of bridges from antiquity to the present time. The course includes several case studies of major historical bridges selected for their structural significance. Students learn how to calculate the forces acting on structural elements, how these forces depend on the bridge structural form, how the form itself is conditioned by the structural materials, and how forces are measured with electromechanical instrumentation. The study includes fundamental notions of mechanics, strength of materials, structural behavior, instrumentation failure analysis, and design optimization. Working on teams, students use constructive experimental models as well as computeraided programs to design, build, instrument, and test realistic bridge projects. This is a selfcontained course open to all Rochester undergraduates. 

Tuesday and Thursday  
ME 1041
Renato Perucchio


An introduction to the art of bridge building based on the study of the engineering and technological problems involved in the design, construction, and collapse of bridges from antiquity to the present time. The course includes several case studies of major historical bridges selected for their structural significance. Students learn how to calculate the forces acting on structural elements, how these forces depend on the bridge structural form, how the form itself is conditioned by the structural materials, and how forces are measured with electromechanical instrumentation. The study includes fundamental notions of mechanics, strength of materials, structural behavior, instrumentation failure analysis, and design optimization. Working on teams, students use constructive experimental models as well as computeraided programs to design, build, instrument, and test realistic bridge projects. This is a selfcontained course open to all Rochester undergraduates. 

ME 2041
Christopher Muir


The theory and application of structural mechanics to mechanical design. Topics include: matrix structural analysis and finite element techniques. Students will use the NASTRAN finite element program to solve a variety of design and analysis problems. The term project consists of a team competition to design, analyze build, and test a lightweight structure. 

ME 2801
John Lambropoulos


Properties of engineering materials including metals, alloys, ceramics, polymers and composites. Relationship of properties to the materials microstructure including atomic bonding, atomic arrangement, crystal structure, coexisting phases, interfaces, defects and impurities. Processing techniques for altering the microstructure and properties. 

ME 2131
Robert Clark


Free and forced vibrations. Complex representation, the EulerLagrange equations, state space, matrix methods, Laplace transforms. Feedback control of linear systems in state space: stabilization, tracking and observers. 

ME 2831
–


In this course, we will survey the role of mechanics in cells, tissues, organs and organisms. A particular emphasis will be placed on the mechanics of the musculoskeletal system, the circulatory system and the eye. Engineering concepts will be used to understand how physical forces contribute to biological processes, especially disease and healing. Experimental and modeling techniques for characterizing the complex mechanical response of biosolids will be discussed in detail, and the continuum mechanics approach will highlighted. Prerequisites: ME226, BME 201, and 201P or ME 120. 

ME 1451
Michael Pomerantz


Course will provide a basic understanding of CNC machining and deterministic micro grinding processes for spherical and aspheric shapes in optical substrates. Note that concurrent registration/overlap with ME 225 is permissible. The course will meet for half the semester (Thursday, 8/31 to Thursday 10/20). 

ME 1461
Michael Pomerantz


Students will gain an understanding in CNC subaperture fine grinding and polishing of spherical and aspheric surfaces. Note that concurrent registration/overlap with ME 225 is permissible. The course will meet for the second half of the semester (Tuesday, `10/25 to Thursday, 12/8) 

ME 2811
Niaz Abdolrahim


Description: The mechanical response of crystalline (metals, ceramics, semiconductors)and amorphous solids (glasses, polymers) and their composites in terms of the relationships between stress, strain, damage, fracture, strainrate, temperature, and microstructure. Topics include: (1) Material structure and property overview. (2) Isotropic and anisotropic elasticity and viscoelasticity. (3) Properties of composites. (4) Plasticity. (5) Point and line defects. (6) Interfacial and volumetric defects. (7) Yield surfaces and flow rules in plasticity of polycrystals and single crystals. (8) Macro and micro aspects of fractures in metals, ceramics and polymers.(9) Creep and superplasticity. (10) Deformation and fracture mechanism maps. (11) Fatigue damage and failure; fracture and failure in composites (If time permits). 

ME 1201
Laura Slane


Basic concepts of mechanics; units; forces; moments; force systems; equilibrium; vector algebra.Plane trusses; method of joints; method of sections; space trusses; frames and machines.Centroids of lines, areas, and volumes; center of mass. Distributed loads on beams; internalforces in beams; distributed loads on cables. Basic concepts of dry friction; friction in machines.Virtual work and potential energy methods. 

ME 2451
Ethan BurnhamFay


This course focuses teaching the multidisciplinary aspects of designing complex, precise systems. In these systems, aspects from mechanics, optics, electronics, design for manufacturing/assembly, and metrology/qualification must all be considered to design, build, and demonstrate a successful precision system. The goal of this class is to develop a fundamental understanding of multidisciplinary design for designing the next generation of advanced instrumentation. This course is open to graduate students in engineering and physics backgrounds although it has a strong emphasis on mechanical engineering and systems engineering topics. This course is open to undergraduates who are in their senior year. 

Wednesday  
ME 1203
Laura Slane


Basic concepts of mechanics; units; forces; moments; force systems; equilibrium; vector algebra.Plane trusses; method of joints; method of sections; space trusses; frames and machines.Centroids of lines, areas, and volumes; center of mass. Distributed loads on beams; internalforces in beams; distributed loads on cables. Basic concepts of dry friction; friction in machines.Virtual work and potential energy methods. 

ME 2244
–


Blank Description 

ME 2402
Douglas Kelley


No description 

ME 24010
Douglas Kelley; A M S Anushika Athauda


Familiarization with data acquisition at a low level, including error estimation, statistical analysis, and technical report preparation. Possible content includes force, displacement, temperature, acceleration, and pressure measurement using mechanical and electronic instrumentation. 

ME 1202
Laura Slane


Basic concepts of mechanics; units; forces; moments; force systems; equilibrium; vector algebra.Plane trusses; method of joints; method of sections; space trusses; frames and machines.Centroids of lines, areas, and volumes; center of mass. Distributed loads on beams; internalforces in beams; distributed loads on cables. Basic concepts of dry friction; friction in machines.Virtual work and potential energy methods. 

ME 2043
Christopher Muir


The theory and application of structural mechanics to mechanical design. Topics include: matrix structural analysis and finite element techniques. Students will use the NASTRAN finite element program to solve a variety of design and analysis problems. The term project consists of a team competition to design, analyze build, and test a lightweight structure. 

ME 1045
Renato Perucchio


An introduction to the art of bridge building based on the study of the engineering and technological problems involved in the design, construction, and collapse of bridges from antiquity to the present time. The course includes several case studies of major historical bridges selected for their structural significance. Students learn how to calculate the forces acting on structural elements, how these forces depend on the bridge structural form, how the form itself is conditioned by the structural materials, and how forces are measured with electromechanical instrumentation. The study includes fundamental notions of mechanics, strength of materials, structural behavior, instrumentation failure analysis, and design optimization. Working on teams, students use constructive experimental models as well as computeraided programs to design, build, instrument, and test realistic bridge projects. This is a selfcontained course open to all Rochester undergraduates. 

Thursday  
ME 2833
Amy Lerner


In this course, we will survey the role of mechanics in cells, tissues, organs and organisms. A particular emphasis will be placed on the mechanics of the musculoskeletal system, the circulatory system and the eye. Engineering concepts will be used to understand how physical forces contribute to biological processes, especially disease and healing. Experimental and modeling techniques for characterizing the complex mechanical response of biosolids will be discussed in detail, and the continuum mechanics approach will highlighted. Prerequisites: ME226, BME 201, and 201P or ME 120. 

ME 2403
Douglas Kelley


No description 

ME 2044
Christopher Muir


Description: The theory and application of structural mechanics to mechanical design. Topics include: matrix structural analysis and finite element techniques. Students will use the NASTRAN finite element program to solve a variety of design and analysis problems. The term project consists of a team competition to design, analyze build, and test a lightweight structure. 

ME 2832
Amy Lerner


In this course, we will survey the role of mechanics in cells, tissues, organs and organisms. A particular emphasis will be placed on the mechanics of the musculoskeletal system, the circulatory system and the eye. Engineering concepts will be used to understand how physical forces contribute to biological processes, especially disease and healing. Experimental and modeling techniques for characterizing the complex mechanical response of biosolids will be discussed in detail, and the continuum mechanics approach will highlighted. Prerequisites: ME226, BME 201, and 201P or ME 120. 

ME 1212
Hesam Askari


This course uses an engineering approach to the solution of dynamics problems with an emphasis on conceptual understanding. Topics include kinematics and kinetics of particles and rigid bodies. 

ME 2253
Adam Sefkow


Fluid properties; fluid statics; kinematics of moving fluids; the Bernoulli equation and applications; control volume analysis; differential analysis of fluid flow; inviscid flow, plane potential flow; viscous flow, the NavierStokes equation; dimensional analysis,similitude; empirical analysis of pipe flows; flow over immersed bodies, boundary layers, lift and drag. 

ME 2245
–


Blank Description 

ME 2405
Omar Soufan


No description 

ME 1602
Laura Slane


General engineering computations using Matlab. Programming basics, including: Functions, logic, looping, File manipulation and basic data structures. Applied topics will include: Number representation and error, root finding, interpolation, curve fitting, systems of linear equations, and data reduction and plotting (2D). Examples will be drawn from typical problems in the mechanical engineering curriculum. 

ME 1042
Renato Perucchio


An introduction to the art of bridge building based on the study of the engineering and technological problems involved in the design, construction, and collapse of bridges from antiquity to the present time. The course includes several case studies of major historical bridges selected for their structural significance. Students learn how to calculate the forces acting on structural elements, how these forces depend on the bridge structural form, how the form itself is conditioned by the structural materials, and how forces are measured with electromechanical instrumentation. The study includes fundamental notions of mechanics, strength of materials, structural behavior, instrumentation failure analysis, and design optimization. Working on teams, students use constructive experimental models as well as computeraided programs to design, build, instrument, and test realistic bridge projects. This is a selfcontained course open to all Rochester undergraduates. 

ME 1213
Hesam Askari


This course uses an engineering approach to the solution of dynamics problems with an emphasis on conceptual understanding. Topics include kinematics and kinetics of particles and rigid bodies. 

ME 2132
Robert Clark


Free and forced vibrations. Complex representation, the EulerLagrange equations, state space, matrix methods, Laplace transforms. Feedback control of linear systems in state space: stabilization, tracking and observers. 

Friday  
ME 2406
Douglas Kelley


No description 

ME 2804
–


Properties of engineering materials including metals, alloys, ceramics, polymers and composites. Relationship of properties to the materials microstructure including atomic bonding, atomic arrangement, crystal structure, coexisting phases, interfaces, defects and impurities. Processing techniques for altering the microstructure and properties. 

ME 2404
Douglas Kelley


No description 

ME 2407
Douglas Kelley


No description 

ME 2012
Hussein Aluie


This course covers the classical partial differential equations of mathematical physics: the heat equation, the Laplace equation, and the wave equation. The primary technique covered in the course is separation of variables, which leads to solutions in the form of eigenfunction expansions. The topics include Fourier series, separation of variables, SturmLiouville theory, unbounded domains and the Fourier transform, spherical coordinates and Legendres equation, cylindrical coordinates and Bessels equation. The software package Mathematica will be used extensively. Prior knowledge of Mathematica is helpful but not essential. In the last two weeks of the course, there will be a project on an assigned topic. The course will include applications in heat conduction, electrostatics, fluid flow, and acoustics. 