ECE Guest Seminar Series

Representations vs Algorithms: Symbols and Geometry in Robotics

Prof. Nicholas Roy, MIT

Wednesday, February 26, 2020
Noon–1 p.m.

1400 Wegmans Hall


In the last few years, the ability for robots to understand and operate in the world around them has advanced considerably. Examples include the growing number of self-driving car systems, the considerable work in robot mapping, and the growing interest in home and service robots. However, one limitation is that robots most often reason and plan using very geometric models of the world, such as point features, dense occupancy grids and action cost maps. To be able to plan and reason over long length and timescales, as well as planning more complex missions, robots need to be able to reason about abstract concepts such as landmarks, segmented objects and tasks (among other representations). I will talk about recent work in joint reasoning about semantic representations and physical representations and what these joint representations mean for planning and decision making.


Nicholas Roy is the Bisplinghoff Professor of Aeronautics & Astronautics and a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL) at the Massachusetts Institute of Technology. He received his B.Sc. in Physics and Cognitive Science in 1995 and his M.Sc. in Computer Science in 1997, both from McGill University. He received his Ph. D. in Robotics from Carnegie Mellon University in 2003. He has made research contributions to planning under uncertainty, machine learning, human-computer interaction and aerial robotics. He founded and led Project Wing at Google [X] from 2012-2014, and is currently the director of the Bridge in MIT's Quest for Intelligence.