Skip to main content


Profile photo

Mitchell Anthamatten

  • Professor and Chair; Scientist, Laboratory for Laser Energetics

PhD, Massachusetts Institute of Technology, 2001

4311 Wegmans Hall
(585) 273-5526
Fax: (585) 27-3134


Selected Honors & Awards

Provost's Multidisciplinary Research Award, University of Rochester (2009)
3M Non-tenured Faculty Award (2007)


ChE 257: Practicum Soft Materials
ChE 486:  Polymer Science & Engineering

Research Expertise

Macromolecular Self-Assembly; Associative & Functional Polymers; Nanostructured Materials; Interfacial Phenomena; Optoelectronic Materials; Vapor Deposition Polymerization.

Recent Publications

Yang, J.C.; Huang, X.; Meng, Y.; Anthamatten, M., " Tensile Stress Generation on Crystallization of Polymer Networks," ACS Appl. Polym. Mater.,2019, 1, 7, 1829-1836. DOI: 0.1021/acsapm.9b00350

Meng, Y.; Xu, W.; Newman, M.R.; Benoit, D.S.W.; Anthamatten, M., "Thermoreversible Siloxane Networks: Soft Biomaterials with Widely Tunable Viscoelasticity," Advanced Functional Materials, 2019, 29, 38, 1903721. DOI:10.1002/adfm.201903721

Anthamatten, M.; O'Neil, S.W.; Liu, D.Z.; Wheler, T.M.; Vallery, R.S.; Gidley, D.W., "Tunability of Free Volume and Viscoelastic Damping of Thiol-Ene Networks Deep in the Glassy State," Macromolecules, 2018, 51, 7, 2564-2571.

Ozcalik, O.; Anthamatten, M., "RAFT synthesis of ABA-BAB type PS-PVBC triblock copolymers for polyelectrolyte materials," Abstracts of Papers of the ACS,  2018, 255, 414.

Ozcalik, O.; Anthamatten, M., "Design and synthesis of highly stable triblock copolymers for anion exchange membrane fuel cells," Abstracts of Papers of the ACS,  2018, 255, 359.

Lee, H.; Yang, J.C.; Thoppey, N.; Anthamatten, M., "Semicrystalline Shape-Memory Elastomers: Effects of Molecular Weight, Architecture, and Thermomechanical Path," Macromolecular Materials and Engineering, 2017, 302, 12, 1700297.

Meng, Y; Huang, X.; Fitzgerald, C.; Lee, H.; Yang, J.C.; Anthamatten, M., "Laboratory-Scale Reaction Injection Molding of Poly(Caprolactone) Elastomers for Rapid Prototyping of Stimuli-Responsive Thermosets," Rubber Chemistry and Technology, 2017, 90, 2, 337-346.

Pratchayanan, D.; Yang, J.C.; Lewis, C.L.; Thoppey, N.; Anthamatten, M., "Thermomechanical Insight into the Reconfiguration of Diels-Alder Networks," Journal of Rheology, 2017, 61, 1359.

Research Overview

A major research challenge is to create modular and robust processes that yield functional, easy-to-process polymeric materials. Our group designs polymer architectures containing reversibly binding groups to control supramolecular structure. We apply thermodynamics, synthetic chemistry, and polymer physics to develop stimuli-responsive materials and highly hysteretic processing schemes, leading to quenched, non-equilibrium, end-use states. Notable accomplishments include (1) development of novel shape-memory elastomers containing reversibly binding side-groups capable of elastic energy storage on multiple time-scales, (2) application of vapor deposition polymerization to trap thin film microstructures during film-growth, and (3) development of nanostructured ionomers and liquid crystals to promote ion-transport under anhydrous conditions. Working with surgeons at UR’s school of medicine, we are currently developing biomedical devices that require in vivo shape change. Through collaboration with the UR’s Laboratory of Laser Energetics, a vapor deposition polymerization process is being developed to fabricate spherical microcapsule targets for inertial fusion energy. All projects are highly interdisciplinary, combining core chemical engineering areas with fundamental chemistry, physics and optics, and projects are directed at specific applications in areas of alternative energy, separations, biotechnologies, advanced optics, and optoelectronics.