Skip to content

Simulation Archive

Posts Loop

Figure 1: The helmet simulation in LS-DYNA.
NFL Helmet Challenge
Helmets in the NFL are not effective enough to safeguard the health of the players. Players sustain concussions which can not only bench them, but leave life-long brain damage from the accelerations experienced during impact. As part of the project to improve the helmet, simulations were used to test material properties of different components of football helmets, such as hard foams, soft foams, and the shell. Data from the simulations were analyzed with performance metrics provided by the NFL.
3D model of the robot design.
Robotic Steering
The project aims to design a steering system for robots used in various ECE courses. The robotic system has issues with lifetime, maneuverability, and mobility. The new model was designed with an aim to direct most of the off-axis load into the chassis while still maintaining the capability of the DC motor driving the wheel. These improvements helped in significantly increasing the lifetime of the motors. Additionally, the ability to steer each wheel independently increased the mobility of the robot.
The California Baja SAE Vehicle
Drive By Wire
The project goal was to create methods to control the brakes, steering angle, and accelerator position of a Baja SAE off-road vehicle in a manner that allows the remote driving of the car. The team has created detailed models, simulations, and system documentation to ensure a strong foundation for the continuation of the project in the coming year. This project hopes to create new opportunities for future undergraduates to work on problems related to autonomous vehicles.
Meramec Suction-Elevator
For spinal surgeons who face difficulty visualizing the nerve root during spinal decompressions, the Meramec suction/elevator is a surgical instrument that combines multiple instrument functions to free surgeons' hands and increase OR efficiency. It combines the functionality and familiarity of existing suction tips and manual elevators with end effector geometry specific to the lumbar nerve roots, reducing the need to switch instruments. This improves OR workflow and increases patient safety.